Pyrylium Salts Acting as Both Energy Transfer and Electron Transfer Photocatalysts for $\boldsymbol{E} \rightarrow \boldsymbol{Z}$ Isomerization of Activated Alkenes and Cyclization of Cinnamic or Biaryl Carboxylic

 Acids

 Acids
 Lei Bao^{\dagger}, Jin-Tang Cheng* ${ }^{\star}$, Zhi-Xiang Wang* ${ }^{\dagger}$, and Xiang-Yu Chen* ${ }^{\dagger}$
 ${ }^{\dagger}$ School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
 ${ }^{4}$ Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
 Email: jtcheng@icmm.ac.cn; zxwang@ucas.ac.cn; chenxiangyu20@ucas.ac.cn

Table of Contents

1. General Information S2
2. Experimental Section S4
3. Compound Characterization Data. S12
4. NMR Spectra S21
5. Computational Details S62
6. Plausible Rationalizations of No Reactions for NO_{2} - and MeO -substituted 1a S62
7. References S73

1. General Information

- Chemicals were purchased from Alfa Aesar, Leyan, Macklin and Bidepharm used without further purification unless otherwise noted. Solvents were purified using a solvent-purification system (VSPS-8, Vigor) that contained activated alumina and molecular sieves.
- Chromatographic purification of the products was performed on silica gel 60 , particle size $0.040-0.063 \mathrm{~mm}$ (230-240 mesh, flash).
- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ - NMR spectra were recorded at ambient temperature on a Shimadzu Avance 400 Spectrometer and Shimadzu Avance 500 Spectrometer. The chemical shifts are reported in ppm downfield of tetramethylsilane (TMS) and referenced to residual solvent peaks resonance as the internal standard. The order of citation in parentheses is a) multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $d d=$ doublet of doublet, $d d d=$ doublet of doublet of doublet, $t d=$ triplet of doublet, $\mathrm{qd}=$ quartet of doublet, $\mathrm{m}=$ multiplet), b) coupling constants, c) number of protons. Coupling constants (J) are reported in Hertz (Hz).
- IR spectra were taken on a Vertex 70 spectrophotometer and reported as wave numbers $\left(\mathrm{cm}^{-1}\right)$.
- HRMS were obtained on an IonSpec FT-ICR mass spectrometer with ESI resource. The mass analysis mode of the HRMS was orbitrap.
- Photochemical experiments were performed magnetically stirred in 10 mL glass Schlenk tubes, sealed with a rubber septum (Figure S1). The tubes were irradiated with blue light with a power output of 100 W (a LED lamp with 450 nm wavelength) and 10W (a photochemical reactor with 455 nm wavelength). All distances from the light source to the irradiation vessel is 2 cm to keep the reaction temperature at $45 \pm 5{ }^{\circ} \mathrm{C}$ (The purchase link for LED lamp is https://m.tb.cn/h.VCrrHu2?sm=c8b887). To maintain a constant reaction temperature of $25^{\circ} \mathrm{C}$, the setup was cooled by a continuous water-cooling device (The purchase link for the the photochemical reactor is http://www.bjplss.com/productshow 1.html).
- UV/vis absorption spectra were acquired on UV-1900 spectrophotometer (Shimadzu, Japan).

Figure S1 A, B, the LED lamp device for cyclization of $\mathbf{1}$ to $\mathbf{2}$ and 5 to $\mathbf{6}$; C, D, the photochemical reactor device for E / Z isomerization of $\mathbf{3}$ to 4 .

Figure S2 The spectrum of blue LEDs (100 W) employed in the reaction.

2. Experimental Section

2.1 Preparation of the starting materials

The specified α, β-unsaturated esters, nitriles and acids were respectively synthesized according to the literature. ${ }^{1-3}$ Except $\mathbf{1 a - 1 e}, \mathbf{1} \mathbf{j}$, which are the reactants of $\mathbf{2 a - 2} \mathbf{e}, \mathbf{2} \mathbf{j}$, were purchased from Bidepharm. The specified biphenyl-2-carboxylic acids were synthesized according to the literatures. ${ }^{4-6}$ Except $\mathbf{5 a}, \mathbf{5 c}, \mathbf{5 i}$, which are the reactants of $\mathbf{6 a}, \mathbf{6 c}, \mathbf{6 i}$, were purchased from Bidepharm.

2.2 Preparation of the photocatalysts

$$
\begin{aligned}
& \text { PC1: } X=O, A r^{1}=A r^{2}=P h \\
& \text { PC2: } X=O, \mathrm{Ar}^{1}=A r^{2}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \\
& \text { PC3: } X=O, \mathrm{Ar}^{1}=A r^{2}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\
& \text { PC4: } X=O, A^{1}=A r^{2}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}{ }^{r} \\
& \text { PC5: } X=S, A^{1}=A r^{2}=P h \\
& \text { PC6: } X=O, \mathrm{Ar}^{1}=\text { Mes, } \mathrm{Ar}^{2}=\mathrm{Ph}
\end{aligned}
$$

$\mathbf{P C 1 - P C 4}$ were synthesized according to literature procedure. ${ }^{7}$ Freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.4$ equiv.) was slowly added to a mixture of the specified benzaldehyde (1.0 equiv.) and acetophenone (2.0 equiv.) at room temperature. If both starting materials were solids, they were dissolved in a small amount of toluene before addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. The mixture was then stirred at $100{ }^{\circ} \mathrm{C}$ for 4 h . Upon cooling to room temperature, acetone was added until full dissolution of all solids. $\mathrm{Et}_{2} \mathrm{O}$ was then added, which resulted in precipitation of the desired product. The solid was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo. Multiple recrystallizations in MeCN afforded the pure pyrylium salts. The obtained solid was dried under high vacuum.

PC5 was synthesized according to literature procedure. ${ }^{8}$ An aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}$ (4 equiv.) was added dropwise to a stirred solution of PC1 (1 equiv.). Then the mixture was stirred at room temperature for 1 h , upon which the color had changed to red. Afterwards the red solution was added to an Erlenmeyerflask containing aqueous $\mathrm{HBF}_{4}(0.25 \mathrm{M}, 48 \mathrm{wt} . \%)$ and stirred for another 1 h . The yellow precipitate was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$. Multiple recrystallizations in MeCN afforded the pure thiapyrylium salt. The obtained solid was dried under high vacuum.

PC6 was synthesized according to literature procedure. ${ }^{9}$ To a flame dried 100 mL round bottom flask with a stirring bar was added purchased 2,6-diphenyl-4H-pyran-4-one (1 equiv.) under an argon atmosphere. The solid was then dissolved with of anhydrous THF (0.05 M) and 2mesitylmagnesium bromide (5 equiv., from 1 M solution in THF) was added dropwise. The reaction changed color over time from clear to yellow and to red. After consumption of starting material determined by TLC, the reaction was quenched by sat. NaHCO_{3} aqueous solution. THF
was removed in vacuo and the remaining mixture was extracted (x3) with DCM. The combined organic layers were then washed with brine and dried over MgSO_{4}. The organic solvent was reduced in vacuo and dried under high vacuum for 30 minutes. The crude material was dissolved into of $\mathrm{Et}_{2} \mathrm{O}(0.1 \mathrm{M})$ and stirred, at which point a solution of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1.2 equiv., dissolved in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{M})$ was added dropwise. At the onset of addition, a yellow precipitate was observed. After the addition was completed, the mixture was cooled with an ice bath and stirred for 30 minutes. The yellow precipitate was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$. Multiple recrystallizations in MeCN afforded the pure pyrylium salt. The obtained solid was dried under high vacuum.

2.3 Optimization of the reaction conditions

Table S1 Screening of solvents ${ }^{a}$

Entry	Solvent	Yield $(\%)^{b}$
1	Acetone	trace
2	DMA	ND
3	DMF	ND
4	THF	ND
5	MeOH	trace
6	DCM	20
7	MeCN	30
8	Ethyl ether	trace
9	DMSO	ND

${ }^{a} \mathbf{1 a}(0.2 \mathrm{mmol})$, solvent $(2.0 \mathrm{~mL})$, irradiation with 100 W blue LEDs, ND is 'no product was detected';
${ }^{b}$ Isolated yield.
Table S2 Screening of additives ${ }^{a}$

Entry	PC	Additive	Yield (\%) ${ }^{b}$
1	PC1	$10 \mathrm{~mol} \% \mathrm{NaI}$	34
2	PC1	$20 \mathrm{~mol} \% \mathrm{NaI}$	48
3	PC1	$20 \mathrm{~mol} \% \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{PI}$	47
4	PC1	$20 \mathrm{~mol} \% \mathrm{KI}$	48
5	PC1	$20 \mathrm{~mol} \% \mathrm{FeI}$	35
6	PC1	$20 \mathrm{~mol} \% \mathrm{CuI}$	28
7	PC6	$20 \mathrm{~mol} \% \mathrm{NaI}$	78
8^{c}	PC6	$20 \mathrm{~mol} \% \mathrm{NaI}$	75

${ }^{a} \mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{MeCN}(2.0 \mathrm{~mL})$, irradiation with 100 W blue LEDs; ${ }^{b}$ isolated yield; ${ }^{c}$ in oxygen atmosphere.

Table S3 Optimization of the $E \rightarrow Z$ isomerization reaction ${ }^{a}$

Entry	PC	${\text { Yield }(\boldsymbol{\%})^{b}}^{\text {Z/E } \text { ratio }^{\boldsymbol{c}}}$	
1	PC1	30	$/$
2	PC2	20	$/$
3	PC3	trace	$/$
4	PC4	trace	$/$
5	PC5	trace	$/$
6	PC6	85	$93: 7$
7^{d}	PC6	ND	1

${ }^{a} \mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{MeCN}(2.0 \mathrm{~mL})$, irradiation with 10 W blue LEDs, ND is 'no product was detected';
${ }^{b}$ isolated yield; ${ }^{c} Z / E$ ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of reaction mixture; ${ }^{d}$ no illumination or no PC6

Table S4 Optimization of cyclization of biaryl carboxylic acids ${ }^{a}$

Entry	PC	Solvent	Yield (\%) ${ }^{b}$
1	PC1	DMF	ND
2	PC1	DMA	ND
3	PC1	Acetone	trace
4	PC1	THF	60
5	PC1	DCM	51
6	PC1	MeCN	80
7	PC2	MeCN	71
8	PC3	MeCN	33
9	PC4	MeCN	65
10	PC5	MeCN	64
11	PC6	MeCN	78
12^{c}	PC1	MeCN	1

${ }^{a} \mathbf{5 a}(0.2 \mathrm{mmol})$, solvent $(2.0 \mathrm{~mL})$, irradiation with 100 W blue LEDs, ND is 'no product was detected';
${ }^{b}$ isolated yield; ${ }^{c}$ no illumination or no PC1.
Table S5 Conversion and by-product analysis of the cascade cyclization ${ }^{a}$

Entry	PC	Conversion (\%)	Yield (2a, \%) $)^{c}$	${\text { Yield }(\mathbf{b}, \boldsymbol{\%})^{d}}^{\text {PC }}$
1	PC1	100	35	25
2	PC2	100	22	12
3	PC3	50	trace	20
4	PC4	100	35	30

5	PC5	88	20	14
6	PC6	100	65	15

${ }^{a} \mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{MeCN}(2.0 \mathrm{~mL})$; ${ }^{c}$ isolated yield; ${ }^{b, d}$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of reaction mixture using 1,1,2,2-tetrachloroethane as internal standard.

Table S6 Optimization of PC's equivalent ${ }^{a}$

		$\xrightarrow[\substack{\text { solvent }(0.1 \mathrm{M}), \text { air } \\ 24 \mathrm{~h}, 45 \pm 5^{\circ} \mathrm{C}, \text { blue LEDs }}]{\text { PC6 }(\mathrm{x} \mathrm{~mol} \%)}$		
Entry	PC	\mathbf{x}	Yield (\%) ${ }^{c}$	$\boldsymbol{Z} / \mathbf{E}$ ratio ${ }^{\text {d }}$
1	PC6	1	14	1
2	PC6	2.5	17	1
3	PC6	5	30	1
4	PC6	10	42	1
5	PC6	15	51	1
6	PC6	20	65	1
$7^{\text {b }}$	PC6	1	trace	/
8^{b}	PC6	2.5	trace	1
$9^{\text {b }}$	PC6	5	trace	1
10^{b}	PC6	10	23	1
$11^{\text {b }}$	PC6	15	41	1
$12^{\text {b }}$	PC6	20	78	1
		$\xrightarrow{\text { t } \xrightarrow[\operatorname{MeCN}(0.1 \mathrm{M}), \mathrm{N}_{2}]{\text { PC6 }(\mathrm{x} \mathrm{~mol} \%)}}$ 16 h , blue LEDs, r.t.		
Entry	PC	\mathbf{x}	Yield (\%) ${ }^{c}$	Z/E ratio ${ }^{d}$
13	PC6	1	10	8:92
14	PC6	2.5	27	37:63
15	PC6	5	52	68:32
16	PC6	10	59	88:12
17	PC6	15	72	90:10
18	PC6	20	85	93:7
		$\xrightarrow[\text { MeCN }(0.1 \mathrm{M}), \text { air }]{\text { PC1 }(\text { x mol\%) }}$ 18 h , blue LEDs, $45 \pm 5^{\circ} \mathrm{C}$	 6a	
Entry	PC	\mathbf{x}	Yield (\%) ${ }^{c}$	$\boldsymbol{Z} / \mathbf{E}$ ratio $^{\text {d }}$
19	PC1	1	21	1
20	PC1	2.5	23	1
21	PC1	5	36	1
22	PC1	10	58	1
23	PC1	15	70	1
24	PC1	20	80	1

${ }^{a}$ all reactants $(0.2 \mathrm{mmol}), \mathrm{MeCN}(2.0 \mathrm{~mL}) ;{ }^{b}$ adding $20 \mathrm{~mol} \% \mathrm{NaI} ;{ }^{c}$ isolated yield; ${ }^{d} \mathrm{Z} / E$ ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of reaction mixture.

2.4 The general procedure of cyclization and isomerization reactions

General Procedure A: To a dry Schlenk equipped with a stirring bar, the specified cinnamic acid (0.2 mmol), $\mathrm{NaI}(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%, 6.0 \mathrm{mg})$, PC6 ($0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%, 18.0 \mathrm{mg}$) were added. After the addition of $\mathrm{MeCN}(2.0 \mathrm{~mL})$ to the mixture via gastight syringe under air atmosphere, the mixture was stirred 24 h under a 100 W blue LED (450 nm) lamp spaced 2 cm apart. A fan was used to keep the reaction temperature at $45 \pm 5^{\circ} \mathrm{C}$ (the heat source is from irradiation of LED lamp). The reaction mixture was subjected to silica gel chromatography to afford the desired product $(\mathrm{PE} / \mathrm{EA}=$ $30: 1-10: 1)$.

General Procedure B: To a dry Schlenk equipped with a stirring bar, the specified esters, nitrile or phosphonate $(0.20 \mathrm{mmol})$, PC6 $(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%, 18.0 \mathrm{mg})$ were added. The tube was evacuated and filled with argon (three times). After the addition of $\mathrm{MeCN}(2.0 \mathrm{~mL})$ to the mixture via gastight syringe under argon atmosphere, the mixture was stirred 16 h at room temperature in a blue LED (455 nm) photoreactor. The reaction mixture was subjected to silica gel chromatography to afford the desired product $(\mathrm{PE} / \mathrm{EA}=150: 1-20: 1$ for esters and nitriles $)$.

General Procedure C: To a dry Schlenk equipped with a stirring bar, the specified 2phenylbenzoic acid (0.20 mmol), PC1 ($0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%, 16.0 \mathrm{mg}$) were added. After the addition of $\mathrm{MeCN}(2.0 \mathrm{~mL})$ to the mixture via gastight syringe under air atmosphere, the mixture was stirred 24 h under a 100 W blue LED $(450 \mathrm{~nm})$ lamp spaced 2 cm apart. A fan was used to keep the reaction temperature at $45 \pm 5^{\circ} \mathrm{C}$ (the heat source is from irradiation of LED lamp). The reaction
mixture was subjected to silica gel chromatography to afford the desired product ($\mathrm{PE} / \mathrm{EA}=30: 1-$ 10:1).

2.5. Gram-scale reaction

The Procedure: To a Schlenk reaction flask with a stirring bar, the 2-phenylbenzoic acid 5a (1 mmol , $198.0 \mathrm{mg})$ and PC1 $(0.2 \mathrm{mmol}, 79.2 \mathrm{mg})$ were added, the flask was filled with air. After the addition of $\operatorname{MeCN}(10 \mathrm{~mL})$ to the mixture via gastight syringe, the mixture was stirred for 24 h under two 100 W blue LEDs (450 nm) lamps spaced 2 cm apart. A fan was used to keep the reaction temperature at 45 $\pm 5^{\circ} \mathrm{C}$ (the heat source is from irradiation of LED lamp). The product was purified by silica gel chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(0.61 \mathrm{mmol}, 120.0 \mathrm{mg}, 61 \%)$.

2.6. Stern-Volmer Emission Quenching Experiment

To 1 mL of a $5 \mu \mathrm{M}$ solution of PC6 in a degassed mixture of MeCN was added the specified amount of the quencher ($\boldsymbol{E} \mathbf{- 3 a}$ or $\boldsymbol{Z} \mathbf{- 3 a}$, respectively) in 1 mL degassed MeCN . Luminescence intensities were recorded using an Edinburgh instruments FS5 spectrofluorometer excited at 320 nm . All luminescence measurements were recorded using a quartz cuvette (fluorescence quartz cuvette, 10*10 mm, 3.5 mL). Quenching was analyzed by plotting $\mathrm{I}_{0} / \mathrm{I}$ according to the Stern-Volmer relationship: $\mathrm{I}_{0} / \mathrm{I}=\mathrm{k}_{\mathrm{q}} \tau_{0}[\mathrm{Q}]+1$ where I_{0} represents the integral of the luminescence over the range of 330 to 600 nm in the absence of a quencher, I is the integral of luminescence over the range of 330 to 600 nm in the presence of a quencher, k_{q} represents the quenching rate constant, [Q] is the concentration of a given quencher.

Entry	Quencher Concentration $(\boldsymbol{E}-\mathbf{3 a}$ or \boldsymbol{Z}-3a $)$	PC6 Concentration
1	0 mM	$5 \mu \mathrm{M}$
2	20 mM	$5 \mu \mathrm{M}$
3	30 mM	$5 \mu \mathrm{M}$
4	40 mM	$5 \mu \mathrm{M}$
5	50 mM	$5 \mu \mathrm{M}$

Figure S3 Fluorescence emission spectrum of PC6 at different concentrations of \boldsymbol{E}-3a.

Figure S4 Fluorescence emission spectrum of PC6 at different concentrations of \boldsymbol{Z}-3a.

Figure S5 Stern-Volmer emission quenching plot of PC6 at different concentrations of $\boldsymbol{E} / \boldsymbol{Z}$-3a.
2.7. The LED emission spectrum and the UV/vis absorption spectra of pyrylium salts.

Figure S6. The LED emission spectrum and UV/vis absorption spectra of pyrylium salts PC1-PC6 ($10^{-4} \mathrm{M}$ in acetonitrile)

3. Compound Characterization Data

2H-chromen-2-one (2a): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA $=30: 1-10: 1)$ as a white solid ($22.7 \mathrm{mg}, 0.155 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.73(\mathrm{dd}, J=9.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36$ $-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d). $\delta 160.9,154.2,143.6$, $132.0,128.0,124.5,118.9,117.0,116.8$. These data are in agreement with those reported previously in the literature. ${ }^{3}$

2b

7-methyl-2H-chromen-2-one (2b): Following the general procedure A, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid ($18.6 \mathrm{mg}, 0.116 \mathrm{mmol}, 58 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.66(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.3,154.2,143.6,143.3,127.6,125.7,117.2,116.6,115.6,21.9$. These data are in agreement with those reported previously in the literature. ${ }^{10}$

2c

7-fluoro-2H-chromen-2-one (2c): Following the general procedure A, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid (13.1 mg, $0.080 \mathrm{mmol}, 40 \%) .{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.67$ (d, 1H), 7.68 - 7.64 (m, 1H), $7.08-$ $6.96(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 164.3(\mathrm{~d}, J=252.2 \mathrm{~Hz}$) $160.4,155.1(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 143.0,129.5(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 115.6115 .4(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 112.7(\mathrm{~d}, J=$ $22.9 \mathrm{~Hz}), 104.7(\mathrm{~d}, J=25.6 \mathrm{~Hz}) .{ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-104.86--104.91(\mathrm{~m})$. These data are in agreement with those reported previously in the literature. ${ }^{10}$

2d

7-chloro-2H-chromen-2-one (2d): Following the general procedure A, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(16.2 \mathrm{mg}, 0.090 \mathrm{mmol}, 45 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.69$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 160.1,154.5,142.8,138.0,128.8,125.2,117.6,117.4,116.8$. These data are in agreement with those reported previously in the literature. ${ }^{10}$

2e

7-bromo-2H-chromen-2-one (2e): Following the general procedure A , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(24.8 \mathrm{mg}, 0.110 \mathrm{mmol}, 55 \%) .{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.68(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, 2H), $6.44(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 160.0,154.4,142.9,128.9,128.0$, $125.9,120.3,117.9,117.0$. These data are in agreement with those reported previously in the literature. ${ }^{10}$

2f

4-methyl-2H-chromen-2-one (2f): Following the general procedure A, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white $\operatorname{solid}(19.2 \mathrm{mg}, 0.120 \mathrm{mmol}, 60 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.64$ (d, $\mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.38$ $-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.0,153.6,152.6$, $131.9,124.7,124.3,120.1,117.2,115.2,18.8$. These data are in agreement with those reported previously in the literature. ${ }^{3}$

2g

4-methyl-2H-benzo[h]chromen-2-one (2g): Following the general procedure A, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(31.1 \mathrm{mg}, 0.148$ mmol, 74%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.52-8.49$ (m, 1H), 7.84 $-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 2.47$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 161.0,153.5,150.5,134.8,128.6,127.7,127.2,124.2$, 123.1, 122.6, 120.4, 115.2, 114.3, 19.3. These data are in agreement with those reported previously in the literature. ${ }^{3}$

2h

4-ethyl-7-methyl-2H-chromen-2-one (2h): Following the general procedure A, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(30.5 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%) .{ }^{1} \mathbf{H} \mathbf{~ N M R}$ (500 MHz , Chloroform-d) $\delta 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 161.6,157.6,153.8,142.8,125.4,123.9,117.5,117.0,112.0,24.7,21.7,12.2$. These data are in agreement with those reported previously in the literature. ${ }^{11}$

$2 i$

4-propyl-2H-chromen-2-one (2j): Following the general procedure A, the title product was obtained after purification by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ 30:1-10:1) as a white solid (27.4 mg, $0.146 \mathrm{mmol}, 73 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.65(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 161.2,156.2,153.8,131.7,124.5,124.3,119.4,117.4$, $114.0,33.8,21.4,14.1$. These data are in agreement with those reported previously in the literature. ${ }^{3}$

2j

3-methyl-2H-chromen-2-one (2k): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1-10:1) as a white solid ($26.9 \mathrm{mg}, 0.168 \mathrm{mmol}, 84 \%$). ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.52$ (s, 1H), $7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}$, 2H), $2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 162.4,153.3,139.4,130.6,127.1,125.9,124.4$, $119.7,116.6,17.3$. These data are in agreement with those reported previously in the literature. ${ }^{10}$

4a

Ethyl (Z)-3-phenylbut-2-enoate (4a): Following the general procedure B, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=150: 1-50: 1)$ as a yellow liquid $(32.3 \mathrm{mg}$, $0.170 \mathrm{mmol}, 85 \%, Z / E=93: 7$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.37$ $-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 166.1,155.6,141.0,128.6$, $128.0,127.9,126.9,126.4,117.9,59.9,27.3,14.1$. These data are in agreement with those reported previously in the literature. ${ }^{2}$

Ethyl (Z)-3-(4-(trifluoromethyl)phenyl)but-2-enoate
(4b):
Following the general procedure B , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=150: 1-50: 1)$ as a yellow liquid ($51.6 \mathrm{mg}, 0.200 \mathrm{~mol}$, quant., $Z / E=95: 5$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ (500 MHz , Chloroform- d) $\delta 7.61$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 165.6,154.2,144.9(\mathrm{q}, J=1.4 \mathrm{~Hz}), 129.8(\mathrm{q}, J=32.4 \mathrm{~Hz}), 127.3,125.4(\mathrm{q}, J=3.7 \mathrm{~Hz})$, $125.1(\mathrm{q}, J=272.2 \mathrm{~Hz}), 118.9,60.1,27.2,14.0 .{ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-62.45$ (s). These data are in agreement with those reported previously in the literature. ${ }^{2}$

Ethyl (Z)-3-(4-cyanophenyl)but-2-enoate (4c): Following the general procedure B , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=150: 1-50: 1)$ as a yellow liquid $(31.8 \mathrm{mg}$, $0.148 \mathrm{mmol}, 74 \%, Z / E=99: 1) .{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) δ $7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 165.3,153.6,146.1,131.9$, 127.7, 119.2, 118.8, 111.4, 60.1, 26.8, 14.0. These data are in agreement with those reported previously in the literature. ${ }^{2}$

4d

Ethyl (Z)-3-(pyridin-2-yl)but-2-enoate (4f): Following the general procedure B , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=150: 1-50: 1)$ as a yellow liquid $(19.1 \mathrm{mg}, 0.100$ mmol, $50 \%, Z / E=98: 2$). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.59$ (ddd, $J=$ $4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.6$, $4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) δ 166.0, 158.9, 153.5, 149.2, 135.9, 122.6, 119.5, 60.1, 25.1, 14.1. These data are in agreement with those reported previously in the literature. ${ }^{12}$

$4 e$

Ethyl (\boldsymbol{Z})-3-(p-tolyl)pent-2-enoate ($\mathbf{(4 g)}$): Following the general procedure B, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=150: 1-50: 1)$ as a yellow liquid $(29.2 \mathrm{mg}, 0.134$ $\mathrm{mmol}, 67 \%, Z / E=99: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.44-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 166.7, 161.6, 160.5, 133.2, 128.1, 115.1, 114.0, 59.8, 55.4, 24.1, 14.5, 13.9. IR (ATR) v 2972, 1709, 1626, 1369, 1224, 1155, 1045, $820 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~K}^{+}$257.0938, found 257.0934.

$4 f$
(\boldsymbol{Z})-3-phenylbut-2-enenitrile (4i): Following the general procedure B, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1-20: 1)$ as a yellow liquid $(25.2 \mathrm{mg}, 0.176 \mathrm{mmol}, 88 \%, Z / E=$ 95:5). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}$, $3 \mathrm{H}), 5.40(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 161.1$, $138.0,130.0,128.9,128.8,127.2,126.0,117.7,95.6,24.8$. These data are in agreement with those reported previously in the literature. ${ }^{1}$

(\boldsymbol{Z})-3-(4-chlorophenyl)but-2-enenitrile $\mathbf{(4 j) : ~ F o l l o w i n g ~ t h e ~ g e n e r a l ~}$ procedure B , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1-20: 1)$ as a yellow liquid $(25.3 \mathrm{mg}, 0.142$ $\mathrm{mmol}, 71 \%, Z / E=87: 13$). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.51-7.46$ (m, 2H), $7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 159.7,136.3,136.0,129.1,128.6,117.4,96.2,24.7$. These data are in agreement with those reported previously in the literature. ${ }^{1}$

4h
(Z)-3-(p-tolyl)but-2-enenitrile (4k): Following the general procedure B , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1-20: 1)$ as a yellow liquid $(23.2 \mathrm{mg}, 0.148 \mathrm{mmol}, 74 \%, Z / E=$ 92:8). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.34(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroformd) $\delta 160.9,140.3,135.1,129.4,127.1,118.0,94.8,24.7,21.5$. IR (ATR) v 2213, 1606, 1510, 1438, 1377 , 823, 720, 595, $475 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NNa}^{+}$180.0784, found 180.0780.
(Z)-4-(1-cyanoprop-1-en-2-yl)benzonitrile (41): Following the general

$4 i$ procedure B , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1-20: 1)$ as a yellow liquid $(21.5 \mathrm{mg}, 0.128$ $\mathrm{mmol}, 64 \%, Z / E=99: 1) .{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.76$ - 7.72 (m, $2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) $\delta 159.1,142.4,132.6,128.0,118.3,116.7,113.5,98.0,24.5$. These data are in agreement with those reported previously in the literature. ${ }^{1}$

4j
(\boldsymbol{Z})-3-(4-fluorophenyl)pent-2-enenitrile (4n): Following the general procedure B , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1-20: 1)$ as a yellow liquid $(35.0 \mathrm{mg}, 0.200$ mmol, quant., $Z / E=89: 11$). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.47-7.42$ (m, 2H), $7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=$
$7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) $\delta 166.2,163.4(\mathrm{~d}, J=249.9 \mathrm{~Hz}), 133.7(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, $129.4(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 117.6,115.9(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 94.8,31.3,12.3 .{ }^{19}$ F NMR (471 MHz , Chloroformd) $\delta-110.86--111.00(\mathrm{~m})$. These data are in agreement with those reported previously in the literature.

4k
(Z)-3-(p-tolyl)pent-2-enenitrile (40): Following the general procedure B, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1-20: 1)$ as a yellow liquid $(29.4 \mathrm{mg}, 0.172 \mathrm{mmol}, 86 \%, Z / E=$ 94:6). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.37$ - 7.34 (m, 2H), $7.24-7.21$ (m, $2 \mathrm{H}), 5.32(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 167.3,139.9,134.8,129.4,127.3,118.0,93.9,31.1,21.4,12.4$. These data are in agreement with those reported previously in the literature. ${ }^{1}$

41
(Z)-3-phenylhex-2-enenitrile (4p): Following the general procedure B, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1-20: 1)$ as a yellow liquid $(30.4 \mathrm{mg}, 0.178 \mathrm{mmol}, 89 \%, Z / E=$ 98:2). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.45-7.39(\mathrm{~m}, 5 \mathrm{H}), 5.37(\mathrm{t}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ $166.0,137.6,129.6,128.7,127.4,117.7,95.4,40.2,21.0,13.5$. These data are in agreement with those reported previously in the literature. ${ }^{1}$

6a
$\mathbf{6 H}$-benzo[c]chromen-6-one (6a): Following the general procedure C , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid ($31.4 \mathrm{mg}, 0.160 \mathrm{mmol}, 80 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.44$ - $8.36(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.06$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ $(\mathrm{ddd}, J=8.5,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 161.3, 151.4, $135.0,134.9,130.7,130.6,129.0,124.7,122.9,121.8,121.4,118.2,117.9$. These data are in agreement with those reported previously in the literature. ${ }^{5}$

6b

3-methyl-6H-benzo[c]chromen-6-one (6b): Following the general procedure C , the title product was obtained after purification by column chromatography $\mathrm{PE} / \mathrm{EA}=30: 1-10: 1$) as a white solid $(29.8 \mathrm{mg}, 0.142$ $\mathrm{mmol}, 71 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.36-8.33(\mathrm{~m}, 1 \mathrm{H}), 8.03$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.48$ (m, 1H), 7.13 - $7.11(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 161.5,151.3,141.3$, $135.0,134.8,130.5,128.4,125.7,122.6,121.5,120.9,117.9,115.4,21.5$. These data are in agreement with those reported previously in the literature. ${ }^{6}$

6c

3-(trifluoromethyl)-6 H -benzo[c]chromen-6-one (6c): Following the general procedure C , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(44.4 \mathrm{mg}$, $0.168 \mathrm{mmol}, 84 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.42-8.39(\mathrm{~m}, 1 \mathrm{H})$, $8.16-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}$, $2 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 160.3,151.0,135.3,133.4,132.3(\mathrm{q}, J=33.5 \mathrm{~Hz}$), 130.9 , 130.2, 123.7, $123.5(\mathrm{q}, J=272.6 \mathrm{~Hz}), 122.3,121.7,121.2,121.2(\mathrm{q}, J=3.5 \mathrm{~Hz}), 115.3(\mathrm{q}, J=4.1 \mathrm{~Hz})$. ${ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-62.69(\mathrm{~s})$. These data are in agreement with those reported previously in the literature. ${ }^{5}$

6d

3-fluoro-6 H -benzo[c]chromen-6-one (6d): Following the general procedure C, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid ($29.5 \mathrm{mg}, 0.138 \mathrm{mmol}, 69 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.37$ (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.05-8.01$ (m, 2H), $7.82(\operatorname{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 163.6(\mathrm{~d}, J=252.1 \mathrm{~Hz}), 160.9,152.3(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 135.2$, $134.3,130.8,128.9,124.5(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 121.6,120.5,114.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 112.6(\mathrm{~d}, J=22.4 \mathrm{~Hz})$, $105.2(\mathrm{~d}, J=25.3 \mathrm{~Hz}) .{ }^{19}$ F NMR (471 MHz, Chloroform- d) $\delta-108.24--108.30(\mathrm{~m})$. These data are in agreement with those reported previously in the literature. ${ }^{5}$

$6 e$

3-chloro-6H-benzo[c]chromen-6-one(6e): Following the general procedure C, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid ($35.1 \mathrm{mg}, 0.152 \mathrm{mmol}, 76 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.35$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 160.7,151.6,136.0,135.2,134.1$, $130.8,129.3,125.1,123.9,121.8,121.0,118.0,116.8$. These data are in agreement with those reported previously in the literature. ${ }^{6}$

$6 f$

3-bromo-6 \boldsymbol{H}-benzo $[$ c]chromen-6-one (6f): Following the general procedure C, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid ($44.6 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.39-8.25$ (m, 1H), 8.02 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 $7.77(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) δ 160.6, 151.6, 135.2, 134.1, 130.9, 129.4, 128.0, 124.1, 123.8, 121.8, 121.1, 121.0, 117.2. These data are in agreement with those reported previously in the litzzerature. ${ }^{5}$

6 g

2-fluoro-6 H -benzo[c]chromen-6-one ($\mathbf{6 g}$): Following the general procedure C, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(24.0 \mathrm{mg}, 0.112 \mathrm{mmol}, 56 \%) . \delta 8.41(\mathrm{dd}$, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, $J=9.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=9.0,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=9.0,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 160.9,159.4(\mathrm{~d}, J=243.4 \mathrm{~Hz}$), $147.5(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 135.1,134.0(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 130.8,129.7,122.0,121.4,119.5(\mathrm{~d}, J=8.6 \mathrm{~Hz})$, $119.4(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 117.8(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 108.9(\mathrm{~d}, J=24.8 \mathrm{~Hz}) .{ }^{19}$ F NMR (471 MHz , Chloroformd) $\delta-117.03-117.08(\mathrm{~m})$. These data are in agreement with those reported previously in the literature. ${ }^{4}$

6h

3-methoxy-6H-benzo[c]chromen-6-one (6h): Following the general procedure C , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white $\operatorname{solid}(14.5 \mathrm{mg}, 0.064 \mathrm{mmol}$, 32%). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.38-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (ddd, $J=8.3,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (ddd, $J=8.2,7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 161.6,152.8,135.3,135.0,130.7,127.9,123.9,121.2,120.1,112.6$, $111.3,101.8,55.8$. These data are in agreement with those reported previously in the literature. ${ }^{4}$

$6 i$

8-methyl-6 \boldsymbol{H}-benzo[c]chromen-6-one (6i): Following the general procedure C , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid $(30.2 \mathrm{mg}, 0.144 \mathrm{mmol}$,
 (m, 2H), 7.63 (dd, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (ddd, $J=8.5,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $-7.29(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 161.5, 151.1, 139.4, 136.2, 132.4, $130.5,130.0,124.6,122.7,121.8,121.2,118.3,117.8,21.4$. These data are in agreement with those reported previously in the literature. ${ }^{5}$

6j

8-fluoro-6 \boldsymbol{H}-benzo[c]chromen-6-one (6j): Following the general procedure C , the title product was obtained after purification by column chromatography ($\mathrm{PE} / \mathrm{EA}=30: 1-10: 1$) as a white $\operatorname{solid}(30.0 \mathrm{mg}, 0.140 \mathrm{mmol}, 70 \%) .{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.11$ (dd, $J=8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (dd, $J=8.5,2.7$ Hz, 1H), $8.04-7.98$ (m, 1H), 7.53 (ddd, $J=8.9,7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45$ (m, $1 \mathrm{H}), 7.37$ - $7.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 162.5$ (d, $J=251.0 \mathrm{~Hz}$), 160.3 (d, $J=$ $3.4 \mathrm{~Hz}), 150.9,131.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 130.5,124.9,124.4(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 123.2(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 122.7$,
$117.9,117.5,116.3(\mathrm{~d}, J=23.3 \mathrm{~Hz}) .{ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-110.00--110.07(\mathrm{~m})$.These data are in agreement with those reported previously in the literature. ${ }^{5}$

8-chloro-6H-benzo[c]chromen-6-one (6k): Following the general

6k procedure C , the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white $\operatorname{solid}(33.7 \mathrm{mg}, 0.160 \mathrm{mmol}$, $73 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.06(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 160.2,151.3,135.3,135.1$, $133.4,131.0,130.2,125.0,123.6,122.9,122.7,118.0,117.4$. These data are in agreement with those reported previously in the literature. ${ }^{5}$

61

8-bromo-6H-benzo[c]chromen-6-one (41): Following the general procedure C, the title product was obtained after purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1-10: 1)$ as a white solid ($50.0 \mathrm{mg}, 0.182 \mathrm{mmol}, 91 \%) .{ }^{1} \mathbf{H} \mathbf{N M R}$ (400 MHz , Chloroform- d) $\delta 8.45$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.88$ (dd, $J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.6,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 160.0,151.2,138.0,133.7,133.2,131.0,125.0,123.6,122.9$, $122.8,122.8,118.0,117.4$. These data are in agreement with those reported previously in the literature. ${ }^{6}$

4. NMR Spectra

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{2 a}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 a}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{2 b}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 b}$ (101 MHz in CDCl_{3})

$\stackrel{9}{i}$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{2 c}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

2c

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 c}\left(101 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \text {-1 } r
\end{aligned}
$$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{2 d}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $2 \mathbf{d}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

[^0]${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{2 e}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 e}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{2 f}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$
\[

$$
\begin{gathered}
\circ \\
\underset{i}{+} \\
\text { i }
\end{gathered}
$$
\]

2f

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 f}\left(101 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{2 g}$ (400 MHz in CDCl_{3})

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 g}$ (101 MHz in CDCl_{3})

[^1]${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{2 h}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 h}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ of compound $\mathbf{2 i}$ (400 MHz in CDCl_{3})

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2 i}$ (101 MHz in CDCl_{3})

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{2} \mathbf{j}$ (500 MHz in CDCl_{3})

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{2} \mathbf{j}$ (126 MHz in CDCl_{3})
$\stackrel{m}{\stackrel{n}{i}}$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{4 a}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

4a
${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 a}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{4 b}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\stackrel{\infty}{\sim}} \stackrel{\circ}{\sim}$

4b

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 b}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

```
|
``%
```


${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{4 b}$ (471 MHz in CDCl_{3})

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ of compound $\mathbf{4 c}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 c}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{4 d}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 d}$ (126 MHz in CDCl_{3})

- ¢ ¢ ก	\square.	$\bigcirc \bigcirc$			
¢in ¢ ¢	$\stackrel{\sim}{0}$	N ${ }^{\circ}$	$\bar{\circ}$	$\stackrel{\square}{5}$	F
, \ \	\|	1	,		\|

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{4 e}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 e}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\dot{J}} \underset{\sim}{\dot{j}}$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{2 f}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $2 \mathbf{f}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

「	$\stackrel{\sim}{\sim}$	$\stackrel{\odot}{\circ}$	
$\stackrel{\square}{\square}$		¢	$\stackrel{\text { ¢ }}{\text { N }}$
	-	,	

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{4 g}$ (500 MHz in CDCl_{3})

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 g}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

$\stackrel{\text { N }}{1}$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{4 h}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 h}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

[^2]${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ of compound $\mathbf{4 i}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 i}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$
$$
\stackrel{\text { ח }}{\underset{\sim}{~}}
$$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{4 j}$ (500 MHz in CDCl_{3})

4j

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 j}$ (126 MHz in CDCl_{3})

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{4 k}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 k}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{4 l}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

```
* \underbrace
```


${ }^{13} \mathbf{C} \mathbf{N M R}$ of compound $\mathbf{4 l}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{6 a}$ (400 MHz in CDCl_{3})

6a

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 a}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{6 b}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 b}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

$$
\stackrel{\llcorner }{\stackrel{\circ}{n}} \stackrel{\text { N }}{1}
$$

[^3]${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{6 c}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 c}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of compound $\mathbf{6 c}\left(471 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{6 d}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 d}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of compound $\mathbf{6 d}\left(471 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{6 e}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 e}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{6 f}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 f}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ of compound $\mathbf{6 g}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 g}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

zz
${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{6 h}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 h}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

in

${ }^{\mathbf{1}} \mathbf{H}$ NMR of compound $\mathbf{6 i}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$
$$
\underset{\text { N゙ }}{\substack{\text { I }}}
$$

$6 i$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 i}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $\mathbf{6 j}$ (400 MHz in CDCl_{3})

$$
\begin{aligned}
& \text { N天○○ ono }
\end{aligned}
$$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 j}$ (126 MHz in CDCl_{3})

${ }^{19}$ F NMR of compound $\mathbf{6 j}$ (471 MHz in CDCl_{3})

[^4]

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ of compound $\mathbf{6 k}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 k}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of compound $6 \mathbf{1}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

がかへへへへへへへへへへへへへへへへへへへへへ

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{6 l}\left(126 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

5. Computational Details

The geometries were optimized in MeCN solvent with the implicit solvent model SMD ${ }^{13}$ at B3LYPD3 ${ }^{14} /$ TZVP ${ }^{15}$ level. Harmonic vibrational frequency analyses were performed at the same level to verify the nature of stationary points (no imaginary frequency for minima and only one imaginary frequency for transition states). The energies were further improved by B3LYP-D3/def2-TZVP single-point calculations with solvent effects of MeCN accounted by the SMD solvent model. Harmonic vibration frequencies at B3LYP-D3/TZVP level were used to correct the singlet-point energies to free energies at 298.15 K , which are used in the main text. The vertical excitation energy of the photocatalyst PC6 was calculated at TD ${ }^{16}$-B3LYP-D3/def2-TZVP level with solvent effects of MeCN accounted by the SMD solvent model. All DFT and TD-DFT calculations were carried out by using Gaussian 09 program. ${ }^{17}$ The SET barriers were calculated on the basis of Marcus electron transfer theory. ${ }^{18}$

6. Plausible Rationalizations of no Reaction for NO_{2} - and MeO -substituted 1a.

Figure S 7 (A) compares the experimental results for the reactions of $\mathbf{1 a}, \mathbf{1 a -} \mathbf{N O}_{\mathbf{2}}$, and $\mathbf{1 a - O M e}$. In the case of $\mathbf{1 a - N O} \mathbf{N}_{2}$, the reaction did not occur with 100% substrate recovery. In the case of $\mathbf{1 a - O M e}$, the reaction took place poorly with 88% substrate recovery. The mixture contained minor Z-2-OMe and benzaldehyde side-product. According to the experimental results, we reason that the EnT step for the two substrates could not go smoothly.

Using DFT calculations, we attempted to understand why the reactions of $\mathbf{1 a -} \mathbf{N O}_{\mathbf{2}}$ and $\mathbf{1 a - O M e}$ could not take place effectively. We calculated the energetics for SET and EnT processes of the three reactions (see Figure S 7). For 1a, because the SET process is endergonic by $11.4 \mathrm{kcal} / \mathrm{mol}$, the substrate would disfavor SET and favor EnT to give the cyclization product. For $\mathbf{1 a - N O} \mathbf{O}_{\mathbf{2}}$, the electron withdrawing effect of NO_{2} group makes both EnT and SET processes endergonic, which could be the reason for no reaction of the substrate. Compared to $\mathbf{1 a}$, the electron-donating effect of OMe group in 1a-OMe benefits both EnT and SET processes thermodynamically. Because there is no method to estimate the EnT barrier, we were not able to compare the kinetic favorability of the two processes. Nevertheless, the thermodynamics of SET indicates that 1a-OMe could undergo
reversible SET. Thus, we reason that the reversible SET could suppress the EnT process to give the cyclization product.

Substrate recovery: 88\%,
conversion: 12%

Figure $\mathbf{S 7}$ (A) Comparing the experimental results of $\mathbf{1 a}, \mathbf{1 a - N O} \mathbf{N}_{2}$ and $\mathbf{1 a - O M e}$. (B) The energetics for the three substrates to undergo SET and EnT processes.

Energies and Cartesian coordinates for all structures (Energies are given in Hartree and coordinates in angstroms)			C -2.810570	2.498784	-0.152874
			C -0.850242	3.893542	-0.447550
			C -3.591427	3.635658	-0.012116
			H -3.260360	1.519672	-0.070915
${ }^{1} \mathrm{PC6}$			C -1.640434	5.024247	-0.309312
B3LYP-D3/TZVP SCF energy in MeCN solvent: -1505.008532			H 0.209810	4.002245	-0.632460
			C -3.010449	4.899185	-0.090545
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -1505.066551			H -4.654354	3.536518	0.167015
			H -1.187842	6.005166	-0.376306
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -1504.705572			H -3.623390	5.784810	0.020428
			C -1.671844	-1.947627	-1.284368
			C -2.948353	-1.630491	-1.771309
C -0.735481	-0.891775	-0.929682	C -1.306925	-3.292581	-1.129407
C 0.619000	-1.020095	-0.741228	C - 3.836371	-2.642323	-2.101612
C 1.393795	0.103631	-0.436392	H -3.238944	-0.597119	-1.897127
C 0.752046	1.340865	-0.321282	C -2.202711	-4.297434	-1.459768
C -0.605857	1.427974	-0.504401	H -0.334917	-3.554847	-0.735351
H 1.082446	-1.985174	-0.863869	C -3.467643	-3.976513	-1.946583
H 1.307144	2.222350	-0.044539	H -4.818421	-2.390226	-2.480700
C -1.430563	2.619292	-0.372367	H -1.916548	-5.333246	-1.330410

H -4.164542	-4.764533	-2.202948	C -1.402721	2.708079	-0.334452
C 2.851625	-0.016979	-0.235009	C -2.818797	2.685882	-0.438091
C 3.348418	-0.858600	0.778548	C -0.763139	3.941721	-0.034174
C 3.734691	0.708843	-1.061005	C -3.549224	3.839525	-0.244697
C 4.728162	-0.947205	0.955112	H -3.323314	1.756691	-0.655829
C 5.103950	0.563999	-0.861801	C -1.508012	5.084642	0.150847
C 5.621627	-0.250916	0.145218	H 0.313143	3.993700	0.042408
H 5.111100	-1.577716	1.749492	C -2.903984	5.044943	0.049262
H 5.785024	1.101419	-1.512230	H -4.628642	3.809807	-0.318666
O -1.299885	0.321772	-0.816987	H -1.009303	6.018533	0.375273
B -1.936716	-0.800015	2.522481	H -3.482948	5.947056	0.199350
F -3.065904	-0.740019	1.682381	C -1.740276	-1.856827	-1.319818
F -1.240858	-2.005134	2.294258	C -3.114946	-1.561537	-1.531675
F -2.350225	-0.745038	3.869816	C -1.314465	-3.211591	-1.418890
F -1.086655	0.291848	2.249290	C -4.005941	-2.568878	-1.831135
C 7.106179	-0.352568	0.359248	H -3.456506	-0.540604	-1.457395
H 7.634624	-0.470863	-0.589093	C -2.218792	-4.204017	-1.718259
H 7.491958	0.555504	0.832348	H -0.278841	-3.471734	-1.256511
H 7.357394	-1.195765	1.003487	C -3.569675	-3.894905	-1.926229
C 3.243825	1.602559	-2.171087	H -5.049969	-2.332108	-1.990530
H 2.421864	1.149840	-2.727595	H -1.883912	-5.230665	-1.788801
H 2.886952	2.560720	-1.785735	H -4.274780	-4.682266	-2.159016
H 4.053359	1.812911	-2.870065	C 2.822108	-0.018171	-0.279663
C 2.440445	-1.633950	1.698998	C 3.314998	-0.879391	0.719576
H 1.581862	-1.044007	2.020243	C 3.718919	0.700528	-1.095275
H 2.052964	-2.534859	1.216844	C 4.694097	-1.003151	0.884397
H 2.988899	-1.948935	2.586700	C 5.088751	0.539475	-0.899379
			C 5.597861	-0.304450	0.087010
			H 5.069188	-1.659174	1.662323
${ }^{3} \mathrm{PC6}$			H 5.775340	1.081562	-1.540369
B3LYP-D3/TZVP SCF energy in MeCN solvent: -1504.923120			O -1.408809	0.434405	-0.922946
			B -1.803817	-1.022512	2.569103
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -1504.981260			F -3.073749	-0.881950	1.973367
			F -1.228135	-2.246883	2.170957
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -1504.627941			F -1.941009	-1.006041	3.973622
			F -0.973946	0.043924	2.169557
			C 7.081591	-0.433086	0.301865
C -0.829624	-0.814262	-1.001280	H 7.628234	-0.329957	-0.637263
C 0.540955	-0.954241	-0.798315	H 7.446339	0.346817	0.977795
C 1.364011	0.131171	-0.478986	H 7.336262	-1.396196	0.746979
C 0.715580	1.365742	-0.331704	C 3.231919	1.614644	-2.190224
C -0.653180	1.512752	-0.528709	H 2.442490	1.148228	-2.782870
H 0.971365	-1.938066	-0.900072	H 2.825387	2.546996	-1.789669
H 1.282051	2.230124	-0.021177	H 4.051853	1.877003	-2.859291

C 2.392801	-1.653578	1.626485	C 0.887828	0.904411	0.331628
H 1.541988	-1.052634	1.948840	C 0.762511	-0.508049	0.231057
H 1.990265	-2.541601	1.131415	C 1.930197	-1.253946	-0.087748
H 2.930529	-1.991765	2.512675	C 3.142240	-0.622232	-0.288267
			C 3.243566	0.768739	-0.180707
			H 2.182399	2.599966	0.210970
${ }^{1} 1 \mathrm{a}$			H 0.012402	1.497538	0.567139
B3LYP-D3/TZVP SCF energy in MeCN			H 1.854762	-2.331730	-0.170721
			H 4.020187	-1.209214	-0.529864
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.478237			H 4.195769	1.259482	-0.337752
			C -1.706120	-0.493758	0.794713
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.366226			H -1.988298	-0.381153	1.837535
			C -0.468990	-1.164679	0.433915
solvent: -498.366226			H -0.498457	-2.247458	0.333922
C 2.746779	1.336608	0.000093	C -2.613852	0.031691	-0.203160
C 1.378369	1.117014	0.000099	O -2.447097	-0.027314	-1.411241
C 0.866234	-0.190743	0.000000	O -3.705805	0.621625	0.348660
C 1.768932	-1.264377	-0.000083	H -4.265874	0.951825	-0.375763
C 3.140522	-1.042092	-0.000090			
C 3.633271	0.258898	-0.000002			
H 3.128050	2.350211	0.000169	${ }^{3} Z-1 \mathrm{a}$		
H 0.703752	1.963187	0.000185	B3LYP-D3/T	VPP SCF ene	in MeCN
H 1.384006	-2.277227	-0.000146	solvent: -498.3	2781	
H 3.823405	-1.882552	-0.000159	B3LYP-D3	f2-TZVP S	ergy in MeCN
H 4.701638	0.436123	-0.000004	solvent: -49	4645	
C -1.569322	0.400686	-0.000065	B3LYP-D3	f2-TZVP fr	ergy in MeCN
H -1.405649	1.469862	-0.000163	solvent: -498.	87567	
C -0.561468	-0.484491	-0.000001			
H -0.819604	-1.539293	0.000077	C -2.109778	-1.522197	-0.126790
C -2.963953	-0.051350	0.000011	C -0.889343	-0.905647	-0.329356
O -3.354458	-1.202582	0.000214	C -0.763041	0.506879	-0.231064
O -3.823238	0.997078	-0.000172	C -1.930424	1.254103	0.085994
H -4.730211	0.642804	-0.000065	C -3.143037	0.623619	0.286817
			C -3.245313	-0.767457	0.181458
			H -2.185186	-2.600056	-0.206499
${ }^{3} \boldsymbol{E}-1 \mathrm{a}$			H -0.014265	-1.499876	-0.563240
B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.372779			H -1.854254	2.331970	0.167209
			H -4.020697	1.211626	0.526962
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.394645			H -4.197961	-1.257270	0.338714
			C 0.468820	1.162603	-0.434172
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.287577			H 0.498526	2.245489	-0.335367
			C 1.705746	0.491124	-0.794803
			H 1.986506	0.376104	-1.837738
C 2.107675	0.522198	0.129432	C 2.615514	-0.031202	0.202780

O 2.451485	0.031332	1.411018	C -1.918209	1.238106	-0.089052
O 3.706568	-0.622375	-0.349733	C -3.048210	0.471131	-0.197375
H 4.268041	-0.950591	0.374499	C -2.954680	-0.922099	-0.046261
			H -1.677071	-2.615869	0.352137
Z-1a			H 0.353549	-1.276793	0.551173
B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.447301			H -1.961675	2.313730	-0.197855
			H -4.008220	0.929774	-0.390467
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.468961			H -3.848020	-1.528547	-0.123350
			C 0.479985	1.486500	0.186208
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.356990			H 0.258102	2.547202	0.233746
			C 1.815311	1.168859	0.146784
			H 2.538105	1.967714	0.276796
C -2.072936	-1.491708	0.026334	C 2.435930	-0.172697	-0.025661
C -0.832417	-0.869059	0.054408	O 2.968627	-0.715116	0.909932
C -0.738487	0.532984	0.027265	O 2.426512	-0.727605	-1.239083
C -1.934395	1.275480	-0.024386	H 1.977228	-0.160286	-1.893128
C -3.171296	0.649083	-0.055436			
C -3.244937	-0.740970	-0.029635			
H -2.125668	-2.573465	0.048845	PC6 ${ }^{-}$		
H 0.068917	-1.458486	0.096133	B3LYP-D3/T	P SCF en	in MeCN
H -1.880834	2.357485	-0.043085	solvent: -1505	136774	
H -4.076018	1.242696	-0.097997	B3LYP-D3/d	-TZVP S	nergy in
H -4.208089	-1.235886	-0.052183	solvent: -1505	193711	
C 0.494053	1.315163	0.054665	B3LYP-D3/de	f2-TZVP fr	nergy in M
H 0.284538	2.380858	0.081946	solvent: -1504	839965	
C 1.817787	1.048232	0.044599			
H 2.473084	1.909889	0.064203	C -0.773217	-0.772150	-1.055929
C 2.546384	-0.221398	-0.007100	C 0.569521	-0.932107	-0.862289
O 2.110594	-1.356850	-0.001207	C 1.393436	0.144613	-0.479589
O 3.882977	0.011960	-0.067008	C 0.762157	1.390546	-0.290799
H 4.332980	-0.850805	-0.096425	C -0.579659	1.548672	-0.489161
			H 1.002739	-1.908371	-1.017546
			H 1.340471	2.238103	0.044812
$Z-1 \mathrm{a}^{+}$			C -1.357143	2.761034	-0.295996
B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.213626			C -2.761720	2.728538	-0.364396
			C -0.733089	3.995832	-0.034577
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.236980			C -3.507984	3.884567	-0.171006
			H -3.264854	1.792321	-0.558062
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.126900			C -1.485274	5.142687	0.158435
			H 0.345663	4.060283	0.011198
			C -2.879021	5.097570	0.091674
C -1.718328	-1.544225	0.214456	H -4.588978	3.834428	-0.223362
C -0.579805	-0.791071	0.310896	H -0.982280	6.081302	0.357350
C -0.644178	0.626303	0.137366	H -3.462620	5.997195	0.242191

C	-1.731835	-1.791190	-1.447416
C	-3.064670	-1.445547	-1.734403
C	-1.363787	-3.147287	-1.535850
C	-3.985470	-2.417069	-2.106409
H	-3.373734	-0.412718	-1.667275
C	-2.288000	-4.108781	-1.909689
H	-0.353402	-3.453503	-1.301179
C	-3.606638	-3.752659	-2.198539
H	-5.006272	-2.126634	-2.324172
H	-1.981986	-5.146293	-1.968374
H	-4.326282	-4.508592	-2.487013
C	2.848874	-0.025895	-0.273025
C	3.329703	-0.919036	0.704279
C	3.767502	0.706222	-1.056239
C	4.707429	-1.060648	0.881023
C	5.133503	0.529697	-0.849766
C	5.626552	-0.347784	0.116548
H	5.068108	-1.740709	1.645309
H	5.831380	1.086365	-1.466582
O	-1.347729	0.474669	-0.895274
B	-1.924043	-1.165978	2.705531
F	-3.170546	-1.061676	2.053898
F	-1.188804	-2.233336	2.151924
F	-2.135722	-1.409216	4.080673
F	-1.207198	0.036512	2.549217
C	7.108368	-0.502043	0.331273
H	7.629306	-0.683940	-0.612025
H	7.539616	0.404708	0.765914
H	7.325861	-1.330924	1.006161
C	3.304378	1.651782	-2.135306
H	2.518590	1.205696	-2.748088
H	2.896939	2.576186	-1.718861
H	4.136141	1.922181	-2.786888
C	2.394980	-1.707828	1.585691
H	1.554912	-1.101890	1.926705
H	1.973030	-2.569087	1.061477
H	2.926737	-2.084541	2.460223

O_{2}
B3LYP-D3/TZVP SCF energy in MeCN
solvent: -150.386380
B3LYP-D3/def2-TZVP SCF energy in MeCN
solvent: -150.394051

B3LYP-D3/def2-TZVP free energy in MeCN solvent: -150.410325
$\begin{array}{llll}\mathrm{O} & 0.000000 & 0.000000 & 0.603839\end{array}$
$\begin{array}{llll}\text { O } & 0.000000 & 0.000000 & -0.603839\end{array}$
$\mathrm{O}_{\mathbf{2}}{ }^{-}$
B3LYP-D3/TZVP SCF energy in MeCN solvent: -150.501262
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -150.505831
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -150.522951
$\begin{array}{llll}\text { O } & 0.000000 & 0.000000 & 0.675344\end{array}$
$\begin{array}{llll}\text { O } & 0.000000 & 0.000000 & -0.675344\end{array}$
$\mathrm{HO}_{2}{ }^{\mathbf{}}$
B3LYP-D3/TZVP SCF energy in MeCN
solvent: -150.980104
B3LYP-D3/def2-TZVP SCF energy in MeCN
solvent: -150.986798
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -150.995048

O	0.055639	-0.609904	0.000000
H	-0.890231	-0.880162	0.000000
O	0.055639	0.719924	0.000000

${ }^{2}$ IM1

B3LYP-D3/TZVP SCF energy in MeCN solvent: -497.777471
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -497.799668
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -497.701772

C	1.736182	-1.536099	-0.087398
C	0.566987	-0.804151	-0.106342
C	0.607453	0.608385	-0.021878
C	1.871205	1.241973	0.062361

C	3.036737	0.501300	0.082156
C	2.973335	-0.890573	0.007875
H	1.695355	-2.615830	-0.149352
H	-0.373762	-1.325512	-0.191581
H	1.910080	2.322622	0.117907
H	3.995210	0.998677	0.153299
Н	3.884928	-1.474553	0.022732
С	-0.546576	1.454941	-0.022600
Н	-0.328848	2.518491	-0.016717
C	-1.879846	1.129736	0.009086
H	-2.599787	1.936392	-0.079072
C	-2.484161	-0.227007	0.092261
O	-2.694455	-0.564840	-1.115960
O	-2.739429	-0.839075	1.122167

${ }^{2}$ TS1

B3LYP-D3/TZVP SCF energy in MeCN solvent: -497.770339
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -497.791986 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -497.690999

C	1.543958	-1.375450	0.510709
C	0.442145	-0.510405	0.774477
C	0.488256	0.843609	0.291669
C	1.626399	1.305656	-0.356994
C	2.687521	0.439292	-0.602054
C	2.631850	-0.906296	-0.180199
H	1.517696	-2.388394	0.889941
H	-0.140692	-0.700300	1.666321
H	1.662989	2.328315	-0.711076
H	3.559286	0.795518	-1.135565
H	3.474878	-1.557575	-0.373117
C	-0.729156	1.620727	0.399251
H	-0.653063	2.696092	0.521805
C	-1.932160	1.035235	0.275295
H	-2.845338	1.609337	0.362778
C	-2.115321	-0.364109	-0.193113
O	-3.214156	-0.733365	-0.607289
O	-1.090432	-1.180703	-0.234627

${ }^{2}$ TS1a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.202441

B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -648.790337

B3LYP-D3/def2-TZVP free energy in MeCN solvent: -648.681274

C	1.508568	-1.439458	0.385787
C	0.437407	-0.531400	0.702693
C	0.547007	0.852949	0.266486
C	1.737357	1.309414	-0.271451
C	2.780863	0.414631	-0.511849
С	2.645807	-0.959685	-0.197687
Н	1.418040	-2.474602	0.685393
Н	-0.037452	-0.681484	1.669041
Н	1.831225	2.350054	-0.554224
Н	3.694774	0.769026	-0.969188
Н	3.472859	-1.628840	-0.396019
С	-0.641331	1.652564	0.317019
Н	-0.544844	2.731704	0.345169
С	-1.871943	1.094600	0.227972
Н	-2.767848	1.700622	0.250065
С	-2.012338	-0.301557	-0.120108
О	-1.074550	-1.141993	-0.136213
О	-3.175846	-0.765164	-0.524204
Н	-3.851973	-0.061572	-0.540075

${ }^{2}$ IM1a

B3LYP-D3/TZVP SCF energy in MeCN
solvent: -498.212018
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.236372
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.120886

C	-1.358129	-1.504117	0.124357
C	-0.520508	0.874820	0.127282
C	-1.825629	1.295586	-0.111031
C	-2.851023	0.370973	-0.227584
C	-2.594246	-1.031444	-0.153242
H -1.139877	-2.562436	0.179003	
H	-2.019064	2.350477	-0.261143
H	-3.855225	0.710793	-0.442707

H	-3.405677	-1.721352	-0.344720
C	0.603400	1.707392	0.087019
H	0.474783	2.778033	-0.012590
C	1.873064	1.165144	0.104714
H	2.761939	1.779578	0.084123
C	2.006903	-0.222515	-0.048691
C	-0.276587	-0.557982	0.491110
H	-0.143488	-0.602833	1.586040
O	1.003256	-1.055210	-0.046332
O	3.135883	-0.834982	-0.299195
H	3.870033	-0.197871	-0.387389

${ }^{2}$ IM2

B3LYP-D3/TZVP SCF energy in MeCN
solvent: -497.787392
B3LYP-D3/def2-TZVP SCF energy in MeCN
solvent: -497.810108
B3LYP-D3/def2-TZVP free energy in MeCN
solvent: -497.707488

C	-1.338523	-1.490421	0.146942
C	-0.468437	0.867732	0.112461
C	-1.765039	1.303355	-0.125012
C	-2.814279	0.398416	-0.218949
C	-2.571945	-1.006434	-0.125797
H	-1.139832	-2.552730	0.209799
H	-1.942271	2.360036	-0.289169
H	-3.815471	0.751626	-0.427349
H	-3.394187	-1.690281	-0.297122
C	0.678722	1.695816	0.096358
H	0.555996	2.772081	0.047447
C	1.921962	1.142997	0.109128
H	2.818673	1.746072	0.116782
C	2.119343	-0.290849	-0.080684
O	3.200296	-0.801923	-0.306391
C	-0.219740	-0.566419	0.476988
H	-0.060361	-0.600275	1.569497
O	1.015338	-1.087038	-0.103421

${ }^{2}$ TS2
B3LYP-D3/TZVP SCF energy in MeCN
solvent: -648.742459
B3LYP-D3/def2-TZVP SCF energy in MeCN
solvent: -648.771441
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -648.664042

C	1.509249	0.523457	-1.398991
C	0.674241	-0.763291	0.611813
C	2.026260	-0.898455	1.022713
С	3.036373	-0.356514	0.287440
С	2.771065	0.333403	-0.961695
Н	1.292372	1.015220	-2.338620
Н	2.236440	-1.469561	1.919044
Н	4.063916	-0.474630	0.605453
Н	3.610197	0.672771	-1.555269
С	-0.413235	-1.330379	1.244787
Н	-0.274319	-1.893574	2.159605
С	-1.687550	-1.188119	0.697882
Н	-2.566831	-1.576905	1.190043
С	-1.883213	-0.658032	-0.629519
О	-2.927418	-0.681215	-1.247712
C	0.387984	0.134610	-0.556621
Н	0.084089	1.284121	0.081447
О	-0.776570	-0.152815	-1.294992
О	-1.649246	1.888267	1.051681
Н	-1.593001	1.496214	1.943753
О	-0.319253	2.216547	0.751984

2a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -497.243004 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -497.267593
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -497.173962

C	-1.293203	-1.484538	-0.000111
C	-0.473198	0.809705	-0.000626
C	-1.799522	1.269486	-0.000237
C	-2.850994	0.371390	-0.000332
С	-2.594319	-1.004449	0.000329
Н	-1.081142	-2.545584	0.000763
Н	-1.980744	2.337349	-0.000532
Н	-3.872028	0.729977	-0.000022
Н	-3.418434	-1.706553	0.000311
С	0.672039	1.674288	0.000334

H	0.513440	2.746113	0.000503		O	4.680953	1.014092	-0.194543
C	1.920716	1.164931	0.000392		H	3.973520	1.629689	-0.446822
H	2.800772	1.792083	0.001023		N	-3.848755	-0.149899	-0.011312
C	2.152951	-0.264848	0.000006		O	-4.535638	0.867232	0.033750
O	3.232161	-0.815546	-0.000545		O	-4.317537	-1.283671	-0.066732
C	-0.244201	-0.573439	0.000507		C	2.755158	-0.476702	-0.050414
O	1.029905	-1.075521	0.000093		H	2.498185	-1.526276	-0.106885

$\mathrm{H}_{2} \mathrm{O}_{2}$

B3LYP-D3/TZVP SCF energy in MeCN
solvent: -151.624639
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -151.630402
B3LYP-D3/def2-TZVP free energy in MeCN solvent: - 151.626022

O	0.000000	-0.727517	-0.062798
H	-0.768637	-0.914998	0.502385
O	0.000000	0.727517	-0.062798
H	0.768637	0.914998	0.502385

1a-NO
B3LYP-D3/TZVP SCF energy in MeCN
solvent: -703.034177
B3LYP-D3/def2-TZVP SCF energy in MeCN
solvent: -703.070807
B3LYP-D3/def2-TZVP free energy in MeCN

C	-1.595344	-1.146318	-0.048793
C	-0.220960	-1.006514	-0.034945
C	0.369580	0.265897	0.029175
C	-0.460409	1.395384	0.082978
C	-1.839269	1.270700	0.068906
C	-2.387864	-0.002990	0.002166
H	-2.051050	-2.123934	-0.097227
H	0.392927	-1.895382	-0.072856
H	-0.014781	2.380447	0.135311
H	-2.476775	2.141159	0.109522
C	1.815770	0.474087	0.037540
H	2.103217	1.517390	0.131509
C	4.210595	-0.239565	0.000531
O	5.001283	-1.132362	0.215496

1a-NO ${ }_{2}{ }^{+}$

B3LYP-D3/TZVP SCF energy in MeCN
solvent: -702.787198
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -702.824929
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -702.716097

C	1.578995	-1.156871	0.010789
C	0.214599	-1.025703	-0.013224
C	-0.379073	0.273518	-0.049356
C	0.460048	1.427313	-0.070624
C	1.825365	1.295515	-0.060345
C	2.355053	0.004188	-0.010779
H	2.049063	-2.128651	0.041517
H	-0.40183	-1.912237	-0.006294
H	0.003207	2.407358	-0.094058
H	2.476798	2.156852	-0.078212
C	-1.778441	0.486419	-0.043094
H	-2.107098	1.519507	-0.081308
C	-4.184009	-0.204351	-0.042170
O	-4.827586	-0.659950	-0.956836
O	-4.739259	0.573346	0.882379
H	-4.099376	0.837797	1.570133
N	3.826239	-0.143675	0.024596
O	4.490687	0.717372	-0.532135
O	4.277371	-1.115785	0.611439
C	-2.730951	-0.505813	0.017639
H	-2.483649	-1.560053	0.004256
3			
B3-NO			
B3LYP-D3/TZVP SCF energy in MeCN			
solvent:	-702.957786		

B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -702.994140				H 0.412880	2.225973	0.015895
				H 2.834166	1.877157	0.025030
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -702.889283				- -1.521852	0.419235	-0.012511
				H -1.781455	1.472700	-0.021117
				- -3.937757	-0.117872	0.010669
C 1.210984	-1.011901	-0.299107		-4.847368	-0.927501	0.057587
C -0.10134	-0.633923	-0.448252		-4.180685	1.216293	-0.038145
C -0.486081	0.732735	-0.329745		H -5.145197	1.339950	-0.018771
C 0.526849	1.694293	-0.048778		- 2.524418	-0.478543	0.002916
C 1.838903	1.317369	0.099765		H -2.342639	-1.545096	0.019689
C 2.175204	-0.035234	-0.026850		- 4.001648	-0.587970	-0.002378
H 1.503314	-2.047444	-0.389560		C 4.952984	0.482571	0.029160
H -0.854379	-1.382236	-0.658816		H 5.930832	0.007428	0.030025
H 0.249382	2.736398	0.043383		H 4.856558	1.119069	-0.853321
H 2.606341	2.047186	0.309776		H 4.837042	1.083002	0.934205
C -1.818642	1.143175	-0.481063				
H -2.040024	2.205431	-0.392876	1a-OMe ${ }^{+}$			
C -3.795472	-0.375293	0.156453	B3LYP-D3/TZVP SCF energy in MeCN solvent: -612.819438			
O -4.738034	-1.080844	-0.156319				
O -3.535646	-0.166459	1.471313	B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -612.848718			
H -2.755113	0.403525	1.585606				
N 3.562297	-0.435930	0.129961	B3LYP-D3/def2-TZVP free energy in MeCN			
O 4.397004	0.432424	0.395045	solvent: -612.708119			
O 3.848383	-1.627597	-0.007996				
C -2.924491	0.261020	-0.816947		- 1.763799	1.388729	-0.028719
H -3.174733	0.075009	-1.856430		- -0.422640	1.175527	-0.022755
				C 0.099681	-0.154075	0.009906
				- 0.815605	-1.249530	0.041988
1a-OMe				- 2.164325	-1.052736	0.038869
B3LYP-D3/TZVP SCF energy in MeCN solvent: -613.029984				- -2.661132	0.278624	-0.002580
				H -2.181899	2.385719	-0.055699
B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -613.058258				H 0.249337	2.021277	-0.043860
				H -0.41774	-2.255417	0.070078
B3LYP-D3/def2-TZVP free energy in MeCN solvent: -612.919354				H -2.842625	-1.891923	0.063255
				C 1.493433	-0.450302	0.006715
				H 1.757164	-1.500838	0.023379
C 1.799664	-1.370487	-0.026240		C 3.924670	0.116741	-0.000312
C 0.437860	-1.162675	-0.029474		- 4.803158	0.947692	0.091419
C -0.097584	0.140199	-0.013623		- 4.161218	-1.203379	-0.094472
C 0.801063	1.214342	0.004376		H 5.124209	-1.349977	-0.062560
C 2.176136	1.020952	0.009736		C 2.493356	0.471084	-0.013066
C 2.684306	-0.279990	-0.005433		H 2.303253	1.535251	-0.019285
H 2.208537	-2.372795	-0.039564		-3.932363	0.585086	-0.019753
H -0.221897	-2.020355	-0.046051		C-4.955350	-0.449727	0.001561

H -5.895980	0.089247	-0.036034	H -2.131354	2.372797	-0.000204	
H -4.844845	-1.091963	-0.870698	H	0.276903	1.966757	0.000037
H -4.876718	-1.022582	0.924230	H -0.497557	-2.311916	0.000366	
		H -2.893952	-1.871501	0.000183		
3 1a-OMe		C	1.474737	-0.527400	0.000128	
B3LYP-D3/TZVP SCF energy in MeCN	H	1.761315	-1.570769	0.000149		
solvent: -612.943402	C	3.923505	0.154623	-0.000034		
B3LYP-D3/def2-TZVP SCF energy in MeCN	O	4.823307	0.997140	0.000190		
solvent: -612.971633		O	4.212415	-1.182390	-0.000444	
B3LYP-D3/def2-TZVP free energy in MeCN	H	5.180270	-1.267705	-0.000460		
solvent: -612.838011		C	2.526810	0.456460	0.000114	
		H	2.297754	1.512122	0.000338	
C -1.745891	1.360760	-0.000091	O -3.973016	0.637666	-0.000291	
C -0.402133	1.126462	0.000048	C -4.972206	-0.394928	0.000011	
C 0.124516	-0.224030	0.000151	H -5.926972	0.124020	-0.000354	
C -0.855933	-1.290018	0.000237	H -4.888985	-1.014349	-0.894770	
C -2.198772	-1.044225	0.000131	H -4.889214	-1.013545	0.895367	
C -2.672942	0.291422	-0.000077				

7. References

1. Metternich, J. B.; Artiukhin, D. G.; Holland, M. C.; von Bremen-Kühne, M.; Neugebauer, J.; Gilmour, R., Photocatalytic $E \rightarrow Z$ Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. J. Org. Chem. 2017, 82, 9955-9977.
2. Metternich, J. B.; Gilmour, R., A Bio-Inspired, Catalytic $E \rightarrow Z$ Isomerization of Activated Olefins. J. Am. Chem. Soc. 2015, 137, 11254-11257.
3. Metternich, J. B.; Gilmour, R., One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (-)-Riboflavin. J. Am. Chem. Soc. 2016, 138, 1040-1045.
4. Li, Y.; Ding, Y.-J.; Wang, J.-Y.; Su, Y.-M.; Wang, X.-S., Pd-Catalyzed C-H Lactonization for Expedient Synthesis of Biaryl Lactones and Total Synthesis of Cannabinol. Org. Lett. 2013, 15, 25742577.
5. Morack, T.; Metternich, J. B.; Gilmour, R., Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via (-)-Riboflavin-Mediated Electron Transfer. Org. Lett. 2018, 20, 1316-1319.
6. Xia, S.; Hu, K.; Lei, C.; Jin, J., Intramolecular Aromatic C-H Acyloxylation Enabled by Iron Photocatalysis. Org. Lett. 2020, 22, 1385-1389.
7. Zhao, Y.; Huang, B.; Yang, C.; Li, B.; Gou, B.; Xia, W., Photocatalytic Cross-Dehydrogenative Amination Reactions between Phenols and Diarylamines. ACS Catal. 2017, 7, 2446-2451.
8.Michaudel, Q.; Chauviré, T.; Kottisch, V.; Supej, M. J.; Stawiasz, K. J.; Shen, L.; Zipfel, W. R.; Abruña, H. D.; Freed, J. H.; Fors, B. P., Mechanistic Insight into the Photocontrolled Cationic Polymerization of Vinyl Ethers. J. Am. Chem. Soc. 2017, 139, 15530-15538.
8. Alfonzo, E.; Alfonso, F. S.; Beeler, A. B., Redesign of a Pyrylium Photoredox Catalyst and Its Application to the Generation of Carbonyl Ylides. Org. Lett. 2017, 19, 2989-2992.
9. Zhao, B.; Xu, B., Visible-light promoted oxidative cyclization of cinnamic acid derivatives using xanthone as the photocatalyst. Org. Bio. Chem. 2021, 19, 568-573.
10. Wang, Z.; Li, X.; Wang, L.; Li, P., Photoinduced cyclization of alkynoates to coumarins with NIodosuccinimide as a free-radical initiator under ambient and metal-free conditions. Tetrahedron 2019, 75, 1044-1051.
11. Cruché, C.; Neiderer, W.; Collins, S. K., Heteroleptic Copper-Based Complexes for EnergyTransfer Processes: $E \rightarrow Z$ Isomerization and Tandem Photocatalytic Sequences. ACS Catal. 2021, 11, 8829-8836.
12. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Chem. Phys. 1994, 98, 11623-11627.
13. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
14. Davidson, E. R.; Feller, D., Basis set selection for molecular calculations. Chem. Rev. 1986, 86, 681-696.
15. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218-8224.
16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;

Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov , V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01: Wallingford, CT, 2016.
18. Marcus, R. A., Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew. Chem. Int. Ed., 1993, 32, 1111-1222.

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

