Pyrylium Salts Acting as Both Energy Transfer and Electron Transfer Photocatalysts for *E*→*Z* Isomerization of Activated Alkenes and Cyclization of Cinnamic or Biaryl Carboxylic Acids

Lei Bao[†], Jin-Tang Cheng^{*†}, Zhi-Xiang Wang^{*†}, and Xiang-Yu Chen^{*†}

[†]School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China [‡]Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China

Email: jtcheng@icmm.ac.cn; zxwang@ucas.ac.cn; chenxiangyu20@ucas.ac.cn

Table of Contents

1. General Information	S2
2. Experimental Section	S4
3. Compound Characterization Data	S12
4. NMR Spectra	S21
5. Computational Details	S62
6. Plausible Rationalizations of No Reactions for NO2- and MeO-substituted 1a	S62
7. References	S73

1. General Information

- Chemicals were purchased from Alfa Aesar, Leyan, Macklin and Bidepharm used without further purification unless otherwise noted. Solvents were purified using a solvent-purification system (VSPS-8, Vigor) that contained activated alumina and molecular sieves.
- Chromatographic purification of the products was performed on silica gel 60, particle size 0.040-0.063 mm (230-240 mesh, flash).
- ¹H- and ¹³C- NMR spectra were recorded at ambient temperature on a Shimadzu Avance 400 Spectrometer and Shimadzu Avance 500 Spectrometer. The chemical shifts are reported in ppm downfield of tetramethylsilane (TMS) and referenced to residual solvent peaks resonance as the internal standard. The order of citation in parentheses is a) multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd= doublet of doublet, ddd= doublet of doublet of doublet, td = triplet of doublet, qd = quartet of doublet, m = multiplet), b) coupling constants, c) number of protons. Coupling constants (*J*) are reported in Hertz (Hz).
- IR spectra were taken on a Vertex 70 spectrophotometer and reported as wave numbers (cm⁻¹).
- HRMS were obtained on an IonSpec FT-ICR mass spectrometer with ESI resource. The mass analysis mode of the HRMS was orbitrap.
- Photochemical experiments were performed magnetically stirred in 10 mL glass Schlenk tubes, sealed with a rubber septum (Figure S1). The tubes were irradiated with blue light with a power output of 100 W (a LED lamp with 450nm wavelength) and 10W (a photochemical reactor with 455nm wavelength). All distances from the light source to the irradiation vessel is 2 cm to keep the reaction temperature at 45±5 °C (The purchase link for LED lamp is https://m.tb.cn/h.VCrrHu2?sm=c8b887). To maintain a constant reaction temperature of 25 °C, the setup was cooled by a continuous water-cooling device (The purchase link for the the photochemical reactor is http://www.bjplss.com/productshow_1.html).
- UV/vis absorption spectra were acquired on UV-1900 spectrophotometer (Shimadzu, Japan).

Figure S1 A, B, the LED lamp device for cyclization of 1 to 2 and 5 to 6; C, D, the photochemical reactor device for *E/Z* isomerization of 3 to 4.

Figure S2 The spectrum of blue LEDs (100 W) employed in the reaction.

2. Experimental Section

2.1 Preparation of the starting materials

The specified α , β -unsaturated esters, nitriles and acids were respectively synthesized according to the literature.¹⁻³ Except **1a-1e**, **1j**, which are the reactants of **2a-2e**, **2j**, were purchased from Bidepharm. The specified biphenyl-2-carboxylic acids were synthesized according to the literatures.⁴⁻⁶ Except **5a**, **5c**, **5i**, which are the reactants of **6a**, **6c**, **6i**, were purchased from Bidepharm.

2.2 Preparation of the photocatalysts

PC1-PC4 were synthesized according to literature procedure.⁷ Freshly distilled BF₃•Et₂O (2.4 equiv.) was slowly added to a mixture of the specified benzaldehyde (1.0 equiv.) and acetophenone (2.0 equiv.) at room temperature. If both starting materials were solids, they were dissolved in a small amount of toluene before addition of BF₃•OEt₂. The mixture was then stirred at 100 °C for 4 h. Upon cooling to room temperature, acetone was added until full dissolution of all solids. Et₂O was then added, which resulted in precipitation of the desired product. The solid was filtered, washed with Et₂O, and dried in vacuo. Multiple recrystallizations in MeCN afforded the pure pyrylium salts. The obtained solid was dried under high vacuum.

PC5 was synthesized according to literature procedure.⁸ An aqueous solution of Na₂S (4 equiv.) was added dropwise to a stirred solution of **PC1** (1 equiv.). Then the mixture was stirred at room temperature for 1 h, upon which the color had changed to red. Afterwards the red solution was added to an Erlenmeyerflask containing aqueous HBF₄ (0.25 M, 48 wt.%) and stirred for another 1 h. The yellow precipitate was filtered, washed with Et₂O. Multiple recrystallizations in MeCN afforded the pure thiapyrylium salt. The obtained solid was dried under high vacuum.

PC6 was synthesized according to literature procedure.⁹ To a flame dried 100 mL round bottom flask with a stirring bar was added purchased 2,6-diphenyl-4*H*-pyran-4-one (1 equiv.) under an argon atmosphere. The solid was then dissolved with of anhydrous THF (0.05 M) and 2-mesitylmagnesium bromide (5 equiv., from 1 M solution in THF) was added dropwise. The reaction changed color over time from clear to yellow and to red. After consumption of starting material determined by TLC, the reaction was quenched by sat. NaHCO₃ aqueous solution. THF

was removed in vacuo and the remaining mixture was extracted (x3) with DCM. The combined organic layers were then washed with brine and dried over MgSO₄. The organic solvent was reduced in vacuo and dried under high vacuum for 30 minutes. The crude material was dissolved into of Et₂O (0.1 M) and stirred, at which point a solution of HBF₄•Et₂O (1.2 equiv., dissolved in Et₂O (0.5 M) was added dropwise. At the onset of addition, a yellow precipitate was observed. After the addition was completed, the mixture was cooled with an ice bath and stirred for 30 minutes. The yellow precipitate was filtered, washed with Et₂O. Multiple recrystallizations in MeCN afforded the pure pyrylium salt. The obtained solid was dried under high vacuum.

2.3 Optimization of the reaction conditions

	COOH PC1 (20 mol%) solvent (0.1M), air 24 h. 45±5°C, blue LEDs	
Entry 1a	Solvent	2a Yield (%) ^b
1	Acetone	trace
2	DMA	ND
3	DMF	ND
4	THF	ND
5	MeOH	trace
6	DCM	20
7	MeCN	30
8	Ethyl ether	trace
9	DMSO	ND

 Table S1 Screening of solvents^a

^a1a (0.2 mmol), solvent (2.0 mL), irradiation with 100 W blue LEDs, ND is 'no product was detected';

^bIsolated yield.

Table S2 Screening of additives^a

	La COOH	PC (20 mol%), additive MeCN (0.1M), air 24 h, 45±5 °C, blue LEDs	2a
Entry	РС	Additive	Yield (%) ^b
1	PC1	10 mol% NaI	34
2	PC1	20 mol% NaI	48
3	PC1	20 mol% C ₂₄ H ₂₀	PI 47
4	PC1	20 mol% KI	48
5	PC1	20 mol% FeI	35
6	PC1	20 mol% CuI	28
7	PC6	20 mol% NaI	78
8 ^c	PC6	20 mol% NaI	75

^a1a (0.2 mmol), MeCN (2.0 mL), irradiation with 100 W blue LEDs; ^bisolated yield; ^cin oxygen atmosphere.

Table S3 Optimization of the $E \rightarrow Z$ isomerization reaction^{*a*}

	COOEt	PC (20 mol%) MeCN (0.1M), N ₂ 16 h, blue LEDs, r.t. 2a	COOEt
Entry	РС	Yield (%) ^b	Z/E ratio ^c
1	PC1	30	/
2	PC2	20	/
3	PC3	trace	/
4	PC4	trace	/
5	PC5	trace	/
6	PC6	85	93:7
7^d	PC6	ND	/

^{*a*}**1a** (0.2 mmol), MeCN (2.0 mL), irradiation with 10 W blue LEDs, ND is 'no product was detected'; ^{*b*}isolated yield; ^{*c*}Z/E ratios were determined by ¹H NMR spectroscopy of reaction mixture; ^{*d*}no illumination or no **PC6**.

Table S4 Optimization of cyclization of biaryl carboxylic acids^a

(CO ₂ H PC (2) 5a PC (2) solvent 18 h, blue L	0 mol%) (0.1 M), air EDs, 45±5 °C 6a	$\mathbf{)}$
Entry	PC	Solvent	Yield (%) ^b
1	PC1	DMF	ND
2	PC1	DMA	ND
3	PC1	Acetone	trace
4	PC1	THF	60
5	PC1	DCM	51
6	PC1	MeCN	80
7	PC2	MeCN	71
8	PC3	MeCN	33
9	PC4	MeCN	65
10	PC5	MeCN	64
11	PC6	MeCN	78
12°	PC1	MeCN	/

^a5a (0.2 mmol), solvent (2.0 mL), irradiation with 100 W blue LEDs, ND is 'no product was detected';

_

^{*b*}isolated yield; ^{*c*}no illumination or no **PC1**.

Table S5 Conversion and by-product analysis of the cascade cyclization^a

la 1a	СООН РС МеС 24 h, 45	20 mol% N (0.1M), air E5°C, blue LEDs 2	ea by pr	oduct (b)
Entry	РС	Conversion (%) ^b	Yield (2a, %) ^c	Yield (b , %) ^d
1	PC1	100	35	25
2	PC2	100	22	12
3	PC3	50	trace	20
4	PC4	100	35	30

5	PC5	88	20	14
6	PC6	100	65	15

^a1a (0.2 mmol), MeCN(2.0 mL); ^cisolated yield; ^{b, d}determined by ¹H NMR spectroscopy of reaction

mixture using 1,1,2,2-tetrachloroethane as internal standard.

Table S6 Optimization of PC's equivalent^a

	L COU	DH PC6 (x mol%) solvent (0.1M), air 24 h, 45±5 °C, blue LEDs		
Entry	PC	X	Yield (%) ^c	Z/E ratio ^d
1	PC6	1	14	/
2	PC6	2.5	17	/
3	PC6	5	30	/
4	PC6	10	42	/
5	PC6	15	51	/
6	PC6	20	65	/
7^b	PC6	1	trace	/
8^b	PC6	2.5	trace	/
9^b	PC6	5	trace	/
10^{b}	PC6	10	23	/
11^{b}	PC6	15	41	/
12^{b}	PC6	20	78	/

	cool	Et PC6 (x mol%) MeCN (0.1M), N ₂ 16 h. blue LEDs. r.t.	COOEt	
Entry	PC	X	Yield (%) ^c	Z/E ratio ^d
13	PC6	1	10	8:92
14	PC6	2.5	27	37:63
15	PC6	5	52	68:32
16	PC6	10	59	88:12
17	PC6	15	72	90:10
18	PC6	20	85	93:7
	СО ₂ Н 5а	PC1 (x mol%) MeCN (0.1 M), air 18 h, blue LEDs, 45±5 °C		
Entry	PC	X	Yield (%) ^c	Z/E ratio ^d
19	PC1	1	21	/
20	PC1	2.5	23	/
21	PC1	5	36	/
22	PC1	10	58	/
23	PC1	15	70	/
24	PC1	20	80	/

^{*a*}all reactants (0.2 mmol), MeCN (2.0 mL); ^{*b*}adding 20 mol% NaI; ^{*c*}isolated yield; ^{*d*}Z/E ratios were determined by ¹H NMR spectroscopy of reaction mixture.

2.4 The general procedure of cyclization and isomerization reactions

General Procedure A: To a dry Schlenk equipped with a stirring bar, the specified cinnamic acid (0.2 mmol), NaI (0.04 mmol, 20 mol%, 6.0 mg), **PC6** (0.04 mmol, 20 mol%, 18.0 mg) were added. After the addition of MeCN (2.0 mL) to the mixture via gastight syringe under air atmosphere, the mixture was stirred 24 h under a 100 W blue LED (450 nm) lamp spaced 2 cm apart. A fan was used to keep the reaction temperature at 45 ± 5 °C (the heat source is from irradiation of LED lamp). The reaction mixture was subjected to silica gel chromatography to afford the desired product (PE/EA = 30:1 - 10:1).

General Procedure B: To a dry Schlenk equipped with a stirring bar, the specified esters, nitrile or phosphonate (0.20 mmol), **PC6** (0.04 mmol, 20 mol%, 18.0 mg) were added. The tube was evacuated and filled with argon (three times). After the addition of MeCN (2.0 mL) to the mixture via gastight syringe under argon atmosphere, the mixture was stirred 16 h at room temperature in a blue LED (455 nm) photoreactor. The reaction mixture was subjected to silica gel chromatography to afford the desired product (PE/EA = 150:1 - 20:1 for esters and nitriles).

General Procedure C: To a dry Schlenk equipped with a stirring bar, the specified 2-phenylbenzoic acid (0.20 mmol), **PC1** (0.04 mmol, 20 mol %, 16.0 mg) were added. After the addition of MeCN (2.0 mL) to the mixture via gastight syringe under air atmosphere, the mixture was stirred 24 h under a 100 W blue LED (450 nm) lamp spaced 2 cm apart. A fan was used to keep the reaction temperature at 45 ± 5 °C (the heat source is from irradiation of LED lamp). The reaction

mixture was subjected to silica gel chromatography to afford the desired product (PE/EA = 30:1 - 10:1).

2.5. Gram-scale reaction

The Procedure: To a Schlenk reaction flask with a stirring bar, the 2-phenylbenzoic acid **5a** (1 mmol, 198.0 mg) and **PC1** (0.2 mmol, 79.2 mg) were added, the flask was filled with air. After the addition of MeCN (10 mL) to the mixture via gastight syringe, the mixture was stirred for 24 h under two 100W blue LEDs (450 nm) lamps spaced 2 cm apart. A fan was used to keep the reaction temperature at 45 \pm 5 °C (the heat source is from irradiation of LED lamp). The product was purified by silica gel chromatography (PE/EA = 30:1 – 10:1) as a white solid (0.61 mmol, 120.0 mg, 61%).

2.6. Stern-Volmer Emission Quenching Experiment

To 1 mL of a 5 μ M solution of **PC6** in a degassed mixture of MeCN was added the specified amount of the quencher (*E*-3a or *Z*-3a, respectively) in 1 mL degassed MeCN. Luminescence intensities were recorded using an Edinburgh instruments FS5 spectrofluorometer excited at 320 nm. All luminescence measurements were recorded using a quartz cuvette (fluorescence quartz cuvette, 10*10 mm, 3.5 mL). Quenching was analyzed by plotting I₀/I according to the Stern-Volmer relationship: I₀/I = k_qτ₀[Q]+1 where I₀ represents the integral of the luminescence over the range of 330 to 600 nm in the absence of a quencher, I is the integral of luminescence over the range of 330 to 600 nm in the presence of a quencher, k_q represents the quenching rate constant, [Q] is the concentration of a given quencher.

Entry	Quencher Concentration (<i>E</i> -3a or <i>Z</i> -3a)	PC6 Concentration
1	0 mM	5 µM
2	20 mM	5 µM
3	30 mM	5 µM
4	40 mM	5 µM
5	50 mM	5 µM

Figure S3 Fluorescence emission spectrum of PC6 at different concentrations of *E*-3a.

Figure S4 Fluorescence emission spectrum of PC6 at different concentrations of Z-3a.

Figure S5 Stern-Volmer emission quenching plot of PC6 at different concentrations of *E*/*Z*-3a.

2.7. The LED emission spectrum and the UV/vis absorption spectra of pyrylium salts.

Figure S6. The LED emission spectrum and UV/vis absorption spectra of pyrylium salts **PC1-PC6** (10⁻⁴ M in acetonitrile)

3. Compound Characterization Data

2*H***-chromen-2-one (2a)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA =30:1 - 10:1) as a white solid (22.7 mg, 0.155 mmol, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (dd, *J* = 9.5, 0.6 Hz, 1H), 7.59 – 7.46 (m, 2H), 7.36

-7.28 (m, 2H), 6.44 (d, J = 9.5 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*). δ 160.9, 154.2, 143.6, 132.0, 128.0, 124.5, 118.9, 117.0, 116.8. These data are in agreement with those reported previously in the literature.³

7-methyl-2*H***-chromen-2-one (2b)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (18.6 mg, 0.116 mmol, 58%). ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 9.5 Hz, 1H), 7.35 (d, J = 7.8 Hz,

1H), 7.12 (s, 1H), 7.09 (d, J = 7.7 Hz, 1H), 6.34 (d, J = 9.5 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.3, 154.2, 143.6, 143.3, 127.6, 125.7, 117.2, 116.6, 115.6, 21.9. These data are in agreement with those reported previously in the literature.¹⁰

7-fluoro-2*H*-chromen-2-one (2c): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (13.1 mg, 0.080 mmol, 40%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (d, 1H), 7.68 – 7.64 (m, 1H), 7.08 –

6.96 (m, 2H), 6.36 (d, J = 9.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.3 (d, J = 252.2 Hz) 160.4, 155.1 (d, J = 12.7 Hz), 143.0, 129.5 (d, J = 10.3 Hz), 115.6 115.4 (d, J = 3.2 Hz), 112.7 (d, J = 22.9 Hz), 104.7 (d, J = 25.6 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -104.86 – -104.91 (m). These data are in agreement with those reported previously in the literature.¹⁰

7-chloro-2*H***-chromen-2-one (2d)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (16.2 mg, 0.090 mmol, 45%).¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 (d, J = 9.6 Hz, 1H), 7.43 (d, J = 7.3 Hz, 1H),

7.36 – 7.35 (m, 1H), 7.28 - 7.26 (m, 1H), 6.43 (d, J = 9.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.1, 154.5, 142.8, 138.0, 128.8, 125.2, 117.6, 117.4, 116.8. These data are in agreement with those reported previously in the literature.¹⁰

7-bromo-2*H***-chromen-2-one (2e)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (24.8 mg, 0.110 mmol, 55%). ¹H

NMR (500 MHz, Chloroform-*d*) δ 7.68 (d, J = 9.6 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.42 - 7.35 (m, 2H), 6.44 (d, J = 9.6 Hz, 1H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 160.0, 154.4, 142.9, 128.9, 128.0, 125.9, 120.3, 117.9, 117.0. These data are in agreement with those reported previously in the literature.¹⁰

4-methyl-2*H***-chromen-2-one (2f)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (19.2 mg, 0.120 mmol, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, J = 9.6 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.38

- 7.29 (m, 2H), 6.31 (s, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.0, 153.6, 152.6, 131.9, 124.7, 124.3, 120.1, 117.2, 115.2, 18.8. These data are in agreement with those reported previously in the literature.³

4-methyl-2*H***-benzo[h]chromen-2-one (2g)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (31.1 mg, 0.148 mmol, 74%). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.52 – 8.49 (m, 1H), 7.84 – 7.82 (m, 1H), 7.67 – 7.59 (m, 3H), 7.53 (d, J = 8.8 Hz, 1H), 6.32 (s, 1H), 2.47

(s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.0, 153.5, 150.5, 134.8, 128.6, 127.7, 127.2, 124.2, 123.1, 122.6, 120.4, 115.2, 114.3, 19.3. These data are in agreement with those reported previously in the literature.³

4-ethyl-7-methyl-2*H***-chromen-2-one (2h)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (30.5 mg, 0.162 mmol, 81%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 (d, J = 8.1 Hz, 1H), 7.15 – 7.08 (m, 2H), 6.24 (d,

J = 1.3 Hz, 1H), 2.80 (q, J = 7.3 Hz, 2H), 2.45 (s, 3H), 1.33 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.6, 157.6, 153.8, 142.8, 125.4, 123.9, 117.5, 117.0, 112.0, 24.7, 21.7, 12.2. These data are in agreement with those reported previously in the literature.¹¹

4-propyl-2*H***-chromen-2-one (2j)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (27.4 mg, 0.146 mmol, 73%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (dd, J = 8.0, 1.6 Hz, 1H), 7.53 (m, 1H), 7.39 – 7.29 (m, 2H), 6.29 (s, 1H), 2.76 (t, J = 7.7 Hz, 2H), 1.76 (dq, J = 14.8, 7.4 Hz, 2H), 1.07 (t, J = 7.7 Hz, 2H), 1.76 (dq, J = 14.8, 7.4 Hz, 2H), 1.07 (t, J = 14.8

7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.2, 156.2, 153.8, 131.7, 124.5, 124.3, 119.4, 117.4, 114.0, 33.8, 21.4, 14.1. These data are in agreement with those reported previously in the literature.³

3-methyl-2*H***-chromen-2-one (2k)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (26.9 mg, 0.168 mmol, 84%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 (s, 1H), 7.46 – 7.40 (m, 2H), 7.31 - 7.25 (m,

2H), 2.22 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.4, 153.3, 139.4, 130.6, 127.1, 125.9, 124.4, 119.7, 116.6, 17.3. These data are in agreement with those reported previously in the literature.¹⁰

Ethyl (Z)-3-phenylbut-2-enoate (4a): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 150:1 - 50:1) as a yellow liquid (32.3 mg, 0.170 mmol, 85%, Z/E = 93:7). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37

-7.31 (m, 3H), 7.23 - 7.19 (m, 2H), 5.91 (d, J = 1.6 Hz, 1H), 4.01 (q, J = 7.1 Hz, 2H), 2.18 (d, J = 1.5 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.1, 155.6, 141.0, 128.6, 128.0, 127.9, 126.9, 126.4, 117.9, 59.9, 27.3, 14.1. These data are in agreement with those reported previously in the literature.²

Ethyl (*Z*)-3-(4-(trifluoromethyl)phenyl)but-2-enoate (4b): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 150:1 - 50:1) as a yellow liquid (51.6 mg, 0.200 mol, quant., *Z/E* = 95:5). ¹H NMR

(500 MHz, Chloroform-*d*) δ 7.61 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.97 (d, J = 1.5 Hz, 1H), 4.00 (q, J = 7.1 Hz, 2H), 2.18 (d, J = 1.5 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.6, 154.2, 144.9 (q, J = 1.4 Hz), 129.8 (q, J = 32.4 Hz), 127.3, 125.4 (q, J = 3.7 Hz), 125.1 (q, J = 272.2 Hz), 118.9, 60.1, 27.2, 14.0. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.45 (s). These data are in agreement with those reported previously in the literature.²

Ethyl (*Z*)-3-(4-cyanophenyl)but-2-enoate (4c): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 150:1 - 50:1) as a yellow liquid (31.8 mg, 0.148 mmol, 74%, Z/E = 99:1). ¹H NMR (500 MHz, Chloroform-*d*) δ

7.66 – 7.63 (m, 2H), 7.31-7.28 (m, 2H), 5.97 (q, J = 1.5 Hz, 1H), 4.00 (q, J = 7.1 Hz, 2H), 2.17 (d, J = 1.5 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.3, 153.6, 146.1, 131.9, 127.7, 119.2, 118.8, 111.4, 60.1, 26.8, 14.0. These data are in agreement with those reported previously in the literature.²

Ethyl (Z)-3-(pyridin-2-yl)but-2-enoate (4f): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 150:1 - 50:1) as a yellow liquid (19.1 mg, 0.100 mmol, 50%, Z/E = 98:2). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.59 (ddd, J =

4.9, 1.8, 1.0 Hz, 1H), 7.65 (ddd, J = 7.7, 1.8 Hz, 1H), 7.23 (td, J = 7.9, 1.1 Hz, 1H), 7.20 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H), 5.99 (q, J = 1.5 Hz, 1H), 4.00 (q, J = 7.1 Hz, 2H), 2.22 (d, J = 1.5 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.0, 158.9, 153.5, 149.2, 135.9, 122.6, 119.5, 60.1, 25.1, 14.1. These data are in agreement with those reported previously in the literature.¹²

Ethyl (Z)-3-(p-tolyl)pent-2-enoate (4g): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 150:1 - 50:1) as a yellow liquid (29.2 mg, 0.134

mmol, 67%, Z/E = 99:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.44 - 7.40

(m, 2H), 6.92 - 6.88 (m, 2H), 6.00 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 3.09 (q, J = 7.5 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.7, 161.6, 160.5, 133.2, 128.1, 115.1, 114.0, 59.8, 55.4, 24.1, 14.5, 13.9. **IR (ATR)** v 2972, 1709, 1626, 1369, 1224, 1155, 1045, 820 cm⁻¹. **HRMS** (ESI) m/z: [M+K]⁺ calcd. for C₁₄H₁₈O₂K⁺ 257.0938, found 257.0934.

(*Z*)-3-phenylbut-2-enenitrile (4i): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 50:1 - 20:1) as a yellow liquid (25.2 mg, 0.176 mmol, 88%, *Z/E* = 95:5).¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 - 7.52 (m, 2H), 7.45 - 7.40 (m,

3H), 5.40 (q, J = 1.6 Hz, 1H), 2.28 (t, J = 2.0 Hz, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 161.1, 138.0, 130.0, 128.9, 128.8, 127.2, 126.0, 117.7, 95.6, 24.8. These data are in agreement with those reported previously in the literature.¹

(*Z*)-3-(4-chlorophenyl)but-2-enenitrile (4j): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 50:1 - 20:1) as a yellow liquid (25.3 mg, 0.142 mmol, 71%, Z/E = 87:13). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 – 7.46 (m,

2H), 7.43 – 7.38 (m, 2H), 5.41 (q, J = 1.5 Hz, 1H), 2.26 (d, J = 1.6 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.7, 136.3, 136.0, 129.1, 128.6, 117.4, 96.2, 24.7. These data are in agreement with those reported previously in the literature.¹

(*Z*)-3-(*p*-tolyl)but-2-enenitrile (4k): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 50:1 - 20:1) as a yellow liquid (23.2 mg, 0.148 mmol, 74%, *Z*/*E* = 92:8). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.48 – 7.43 (m, 2H), 7.22 (d, *J* = 7.7

Hz, 2H), 5.34 (q, *J* = 1.5 Hz, 1H), 2.37 (s, 3H), 2.25 (d, *J* = 1.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform*d*) δ 160.9, 140.3, 135.1, 129.4, 127.1, 118.0, 94.8, 24.7, 21.5. **IR (ATR)** v 2213, 1606, 1510, 1438, 1377, 823, 720, 595, 475 cm⁻¹. **HRMS** (ESI) *m/z*: [M+Na]⁺, calcd. for C₁₁H₁₁NNa⁺ 180.0784, found 180.0780.

(*Z*)-4-(1-cyanoprop-1-en-2-yl)benzonitrile (4l): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 50:1 - 20:1) as a yellow liquid (21.5 mg, 0.128 mmol, 64%, Z/E = 99:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.76 – 7.72 (m, 2H), 7.65 – 7.61 (m, 2H), 5.53 (q, J = 1.6 Hz, 1H), 2.31 (d, J = 1.6 Hz, 3H). ¹³C

NMR (126 MHz, Chloroform-*d*) δ 159.1, 142.4, 132.6, 128.0, 118.3, 116.7, 113.5, 98.0, 24.5. These data are in agreement with those reported previously in the literature.¹

(Z)-3-(4-fluorophenyl)pent-2-enenitrile (4n): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 50:1 - 20:1) as a yellow liquid (35.0 mg, 0.200 mmol, quant., Z/E = 89:11). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 – 7.42 (m, 2H), 7.15 – 7.09 (m, 2H), 5.37 (t, J = 1.5 Hz, 1H), 2.58 (m, 2H), 1.08 (t, J = 1.5 Hz, 1H), 2.58 (m, 2H), 2.58 (m, 2H),

7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.2, 163.4 (d, J = 249.9 Hz), 133.7 (d, J = 3.2 Hz), 129.4 (d, J = 8.4 Hz), 117.6, 115.9 (d, J = 21.7 Hz), 94.8, 31.3, 12.3. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.86 – -111.00 (m). These data are in agreement with those reported previously in the literature.¹

(*Z*)-3-(*p*-tolyl)pent-2-enenitrile (40): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 50:1 - 20:1) as a yellow liquid (29.4 mg, 0.172 mmol, 86%, *Z/E* =

4k 94:6). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.37 – 7.34 (m, 2H), 7.24 – 7.21 (m, 2H), 5.32 (t, *J* = 1.5 Hz, 1H), 2.58 (m, 2H), 2.38 (s, 3H), 1.07 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.3, 139.9, 134.8, 129.4, 127.3, 118.0, 93.9, 31.1, 21.4, 12.4. These data are in agreement with those reported previously in the literature.¹

(*Z*)-3-phenylhex-2-enenitrile (4p): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 50:1 - 20:1) as a yellow liquid (30.4 mg, 0.178 mmol, 89%, *Z/E* = 98:2).¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 – 7.39 (m, 5H), 5.37 (t, *J* = 1.3

Hz, 1H), 2.54 (m, 2H), 1.42 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 166.0, 137.6, 129.6, 128.7, 127.4, 117.7, 95.4, 40.2, 21.0, 13.5. These data are in agreement with those reported previously in the literature.¹

6*H*-benzo[c]chromen-6-one (6a): Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (31.4 mg, 0.160 mmol, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 – 8.36 (m, 1H), 8.16-8.10 (m, 1H), 8.06 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.87 – 7.78 (m, 1H), 7.59 (m, *J* = 7.6 Hz, 1H), 7.48

(ddd, *J* = 8.5, 7.1, 1.5 Hz, 1H), 7.40 – 7.32 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.3, 151.4, 135.0, 134.9, 130.7, 130.6, 129.0, 124.7, 122.9, 121.8, 121.4, 118.2, 117.9. These data are in agreement with those reported previously in the literature.⁵

3-methyl-6*H***-benzo[c]chromen-6-one (6b)**: Following the general procedure C, the title product was obtained after purification by column chromatography PE/EA = 30:1 - 10:1) as a white solid (29.8 mg, 0.142 mmol, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 – 8.33 (m, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.80 – 7.73 (m, 1H), 7.55 – 7.48

(m, 1H), 7.13 – 7.11 (m, 2H), 2.43 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.5, 151.3, 141.3, 135.0, 134.8, 130.5, 128.4, 125.7, 122.6, 121.5, 120.9, 117.9, 115.4, 21.5. These data are in agreement with those reported previously in the literature.⁶

3-(trifluoromethyl)-6*H***-benzo[c]chromen-6-one (6c):** Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (44.4 mg, 0.168 mmol, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.39 (m, 1H), 8.16 – 8.14 (m, 2H), 7.87 – 7.91 (m, 1H), 7.70 – 7.63 (m, 1H), 7.61 – 7.55 (m,

2H) ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.3, 151.0, 135.3, 133.4, 132.3 (q, *J* = 33.5 Hz), 130.9, 130.2, 123.7, 123.5 (q, *J* = 272.6 Hz), 122.3, 121.7, 121.2, 121.2 (q, *J* = 3.5 Hz), 115.3 (q, *J* = 4.1 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.69 (s). These data are in agreement with those reported previously in the literature.⁵

3-fluoro-6*H***-benzo[c]chromen-6-one (6d):** Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (29.5 mg, 0.138 mmol, 69%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (dd, J = 8.0, 1.0 Hz, 1H), 8.05 – 8.01 (m, 2H), 7.82 (td, J = 7.8, 1.5 Hz, 1H), 7.58 (td, J =7.5, 1.1 Hz, 1H), 7.11 – 7.03 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 163.6 (d, J = 252.1 Hz), 160.9, 152.3 (d, J = 12.4 Hz), 135.2, 134.3, 130.8, 128.9, 124.5 (d, J = 9.8 Hz), 121.6, 120.5, 114.7 (d, J = 3.4 Hz), 112.6 (d, J = 22.4 Hz), 105.2 (d, J = 25.3 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -108.24 – -108.30 (m). These data are in agreement with those reported previously in the literature.⁵

3-chloro-6*H***-benzo[c]chromen-6-one(6e):** Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (35.1 mg, 0.152 mmol, 76%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (d, J = 1.5 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.82 (m, 1H), 7.55 – 7.60 (m, 1H), 7.33 (d, J = 2.1 Hz, 1H),

7.29 (dd, J = 8.5, 2.1 Hz, 1H).¹³C NMR (126 MHz, Chloroform-*d*) δ 160.7, 151.6, 136.0, 135.2, 134.1, 130.8, 129.3, 125.1, 123.9, 121.8, 121.0, 118.0, 116.8. These data are in agreement with those reported previously in the literature.⁶

3-bromo-6*H***-benzo[c]chromen-6-one (6f):** Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (44.6 mg, 0.162 mmol, 81%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 – 8.25 (m, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.88 – 7.77 (m, 2H), 7.61 – 7.54 (m, 1H), 7.48 – 7.39 (m, 2H). ¹³C NMR (126 MHz,

Chloroform-*d*) δ 160.6, 151.6, 135.2, 134.1, 130.9, 129.4, 128.0, 124.1, 123.8, 121.8, 121.1, 121.0, 117.2. These data are in agreement with those reported previously in the litzzerature.⁵

2-fluoro-6*H***-benzo[c]chromen-6-one (6g):** Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (24.0 mg, 0.112 mmol, 56%). δ 8.41 (dd, J = 7.9, 1.4 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.84 (td, J = 7.7, 1.5 Hz, 1H), 7.71

(dd, J = 9.1, 2.9 Hz, 1H), 7.62 (ddd, J = 9.0, 7.5, 1.1 Hz, 1H), 7.34 (dd, J = 9.0, 4.8

Hz, 1H), 7.23 – 7.16 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.9, 159.4 (d, *J* = 243.4 Hz), 147.5 (d, *J* = 2.1 Hz), 135.1, 134.0 (d, *J* = 2.7 Hz), 130.8, 129.7, 122.0, 121.4, 119.5 (d, *J* = 8.6 Hz), 119.4 (d, *J* = 8.8 Hz), 117.8 (d, *J* = 24.2 Hz), 108.9 (d, *J* = 24.8 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -117.03 – -117.08 (m). These data are in agreement with those reported previously in the literature.⁴

3-methoxy-6H-benzo[c]chromen-6-one (6h): Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (14.5 mg, 0.064 mmol, 32%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.38 – 8.31 (m, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.78 (ddd, J = 8.3, 7.3, 1.5 Hz, 1H), 7.50

 $(ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 6.91 (dd, J = 8.8, 2.6 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H), 3.88 (s, 3H).^{13}C$ NMR (126 MHz, Chloroform-*d*) δ 161.6, 152.8, 135.3, 135.0, 130.7, 127.9, 123.9, 121.2, 120.1, 112.6, 111.3, 101.8, 55.8. These data are in agreement with those reported previously in the literature.⁴

8-methyl-6*H*-benzo[c]chromen-6-one (6i): Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (30.2 mg, 0.144 mmol, 72%).¹H NMR (500 MHz, Chloroform-*d*) $\delta 8.19$ (d, J = 1.8 Hz, 1H), 8.03 - 7.99 (m, 2H), 7.63 (dd, J = 8.1, 1.9 Hz, 1H), 7.45 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.37

- 7.29 (m, 2H), 2.49 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.5, 151.1, 139.4, 136.2, 132.4, 130.5, 130.0, 124.6, 122.7, 121.8, 121.2, 118.3, 117.8, 21.4. These data are in agreement with those reported previously in the literature.⁵

8-fluoro-6*H*-benzo[c]chromen-6-one (6j): Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (30.0 mg, 0.140 mmol, 70%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 (dd, J = 8.9, 4.8 Hz, 1H), 8.04 (dd, J = 8.5, 2.7 Hz, 1H), 8.04 – 7.98 (m, 1H), 7.53 (ddd, J = 8.9, 7.9, 2.8 Hz, 1H), 7.49 – 7.45 (m,

1H), 7.37 – 7.31 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.5 (d, *J* = 251.0 Hz), 160.3 (d, *J* = 3.4 Hz), 150.9, 131.4 (d, *J* = 3.0 Hz), 130.5, 124.9, 124.4 (d, *J* = 7.8 Hz), 123.2 (d, *J* = 22.8 Hz), 122.7,

117.9, 117.5, 116.3 (d, J = 23.3 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.00 – -110.07 (m). These data are in agreement with those reported previously in the literature.⁵

8-chloro-6*H***-benzo[c]chromen-6-one (6k):** Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (33.7 mg, 0.160 mmol, 73%).¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.36 (d, J = 2.3 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 8.01 (dd, J = 7.9, 1.6 Hz, 1H), 7.77 (dd, J = 8.6, 2.3 Hz, 1H), 7.53

- 7.49 (m, 1H), 7.38 – 7.34 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.2, 151.3, 135.3, 135.1, 133.4, 131.0, 130.2, 125.0, 123.6, 122.9, 122.7, 118.0, 117.4. These data are in agreement with those reported previously in the literature.⁵

8-bromo-6*H***-benzo[c]chromen-6-one (41):** Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 30:1 - 10:1) as a white solid (50.0 mg, 0.182 mmol, 91%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 2.0 Hz, 1H), 7.99 – 7.92 (m, 2H), 7.88 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.48 (td, *J* = 7.6, 7.1, 1.5 Hz, 1H), 7.36 – 7.30 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 160.0, 151.2, 138.0, 133.7, 133.2, 131.0, 125.0, 123.6, 122.9, 122.8, 122.8, 118.0, 117.4. These data are in agreement with those reported previously in the literature.⁶

4. NMR Spectra

¹³C NMR of compound 2a (126 MHz in CDCl₃)

¹H NMR of compound **2b** (400 MHz in CDCl₃)

^{13}C NMR of compound 2b (101 MHz in CDCl_3)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 11 (ppm)

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -30(f1 (ppm)

¹³C NMR of compound 2d (126 MHz in CDCl₃)

¹H NMR of compound 2e (500 MHz in CDCl₃)

¹³C NMR of compound 2e (126 MHz in CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹H NMR of compound **2f** (400 MHz in CDCl₃)

¹³C NMR of compound 2g (101 MHz in CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹H NMR of compound 2h (500 MHz in CDCl₃)

¹H NMR of compound 2i (400 MHz in CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 F1 (ppm)

¹H NMR of compound 2j (500 MHz in CDCl₃)

¹³C NMR of compound 2j (126 MHz in CDCl₃)

¹H NMR of compound 4a (500 MHz in CDCl₃)

S32

¹H NMR of compound 4c (500 MHz in CDCl₃)

90 80 70 60 50 40 30 20 10 0 -10 -20

220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)
^1H NMR of compound $4e~(500~\text{MHz}~\text{in}~\text{CDCl}_3)$

¹H NMR of compound 4g (500 MHz in CDCl₃)

 ^{13}C NMR of compound 4g (126 MHz in CDCl_3)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 r1 (ppm)

^1H NMR of compound 4h (500 MHz in CDCl_3)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹H NMR of compound 4i (500 MHz in CDCl₃)

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -300 F1 (ppm)

¹H NMR of compound 4k (500 MHz in CDCl₃)

¹H NMR of compound 4l (500 MHz in CDCl₃)

^{220 210 200 190 180 170 160 150 140 130 120 110 100} f1 (ppm) -10 -20

¹H NMR of compound **6a** (400 MHz in CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹H NMR of compound **6b** (400 MHz in CDCl₃)

¹H NMR of compound 6c (400 MHz in CDCl₃)

¹⁹F NMR of compound **6c** (471 MHz in CDCl₃)

¹H NMR of compound 6d (500 MHz in CDCl₃)

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -30(f1 (ppm) ¹H NMR of compound **6e** (400 MHz in CDCl₃)

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20} f1 (ppm)

¹H NMR of compound 6f (500 MHz in CDCl₃)

¹³C NMR of compound **6f** (126 MHz in CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm) ¹H NMR of compound 6g (400 MHz in CDCl₃)

8.8.42 8.8.41 8.8.39 8.8.39 8.8.39 8.8.39 8.8.39 8.8.39 8.8.39 7.7.7 7.7.85 7.7.85 7.7.85 7.7.77 7.7.85 7.7.85 7.7.85 7.7.85 7.7.85 7.7.85 7.7.85 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.777 7.75 75 7.7

8.0 11.5 11.0 10.0 9.0 8, 5 7.5 3.0 2.5 0.5 0.0 -0.5 -1 10.5 9.5 7.0 6, 5 6.0 5.5 f1 (ppm) 5.0 4. 0 3.5 2.0 1.5 1.0

^{13}C NMR of compound $6g~(126~\text{MHz}~\text{in}~\text{CDCl}_3)$

zz

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹H NMR of compound 6j (400 MHz in CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹⁹F NMR of compound 6j (471 MHz in CDCl₃)

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

¹H NMR of compound 6k (400 MHz in CDCl₃)

S60

¹H NMR of compound 6l (400 MHz in CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

5. Computational Details

The geometries were optimized in MeCN solvent with the implicit solvent model SMD¹³ at B3LYP-D3¹⁴/TZVP¹⁵ level. Harmonic vibrational frequency analyses were performed at the same level to verify the nature of stationary points (no imaginary frequency for minima and only one imaginary frequency for transition states). The energies were further improved by B3LYP-D3/def2-TZVP single-point calculations with solvent effects of MeCN accounted by the SMD solvent model. Harmonic vibration frequencies at B3LYP-D3/TZVP level were used to correct the singlet-point energies to free energies at 298.15 K, which are used in the main text. The vertical excitation energy of the photocatalyst **PC6** was calculated at TD¹⁶-B3LYP-D3/def2-TZVP level with solvent effects of MeCN accounted by the SMD solvent model. All DFT and TD-DFT calculations were carried out by using Gaussian 09 program.¹⁷ The SET barriers were calculated on the basis of Marcus electron transfer theory.¹⁸

6. Plausible Rationalizations of no Reaction for NO₂- and MeO-substituted 1a.

Figure S7 (A) compares the experimental results for the reactions of **1a**, **1a-NO**₂, and **1a-OMe**. In the case of **1a-NO**₂, the reaction did not occur with 100% substrate recovery. In the case of **1a-OMe**, the reaction took place poorly with 88% substrate recovery. The mixture contained minor Z-**2-OMe** and benzaldehyde side-product. According to the experimental results, we reason that the EnT step for the two substrates could not go smoothly.

Using DFT calculations, we attempted to understand why the reactions of $1a-NO_2$ and 1a-OMe could not take place effectively. We calculated the energetics for SET and EnT processes of the three reactions (see Figure S7). For 1a, because the SET process is endergonic by 11.4 kcal/mol, the substrate would disfavor SET and favor EnT to give the cyclization product. For $1a-NO_2$, the electron withdrawing effect of NO_2 group makes both EnT and SET processes endergonic, which could be the reason for no reaction of the substrate. Compared to 1a, the electron-donating effect of OMe group in 1a-OMe benefits both EnT and SET processes thermodynamically. Because there is no method to estimate the EnT barrier, we were not able to compare the kinetic favorability of the two processes. Nevertheless, the thermodynamics of SET indicates that 1a-OMe could undergo

reversible SET. Thus, we reason that the reversible SET could suppress the EnT process to give the cyclization product.

Figure S7 (A) Comparing the experimental results of 1a, 1a-NO₂ and 1a-OMe. (B) The energetics for the three substrates to undergo SET and EnT processes.

Energies and	l Cartesian c	oordinates for all	C -2.810570	2.498784	-0.152874
structures (E	Inergies are	given in Hartree	C -0.850242	3.893542	-0.447550
and coordina	ates in angsti	roms)	C -3.591427	3.635658	-0.012116
			Н -3.260360	1.519672	-0.070915
¹ PC6			C -1.640434	5.024247	-0.309312
B3LYP-D3/T	ZVP SCF end	ergy in MeCN	Н 0.209810	4.002245	-0.632460
solvent: -150	5.008532		C -3.010449	4.899185	-0.090545
B3LYP-D3/d	ef2-TZVP SC	CF energy in MeCN	Н -4.654354	3.536518	0.167015
solvent: -150	5.066551		Н -1.187842	6.005166	-0.376306
B3LYP-D3/d	ef2-TZVP fre	e energy in MeCN	Н -3.623390	5.784810	0.020428
solvent: -1504	4.705572		C -1.671844	-1.947627	-1.284368
			C -2.948353	-1.630491	-1.771309
C -0.735481	-0.891775	-0.929682	C -1.306925	-3.292581	-1.129407
C 0.619000	-1.020095	-0.741228	C -3.836371	-2.642323	-2.101612
C 1.393795	0.103631	-0.436392	Н -3.238944	-0.597119	-1.897127
C 0.752046	1.340865	-0.321282	C -2.202711	-4.297434	-1.459768
C -0.605857	1.427974	-0.504401	Н -0.334917	-3.554847	-0.735351
Н 1.082446	-1.985174	-0.863869	C -3.467643	-3.976513	-1.946583
Н 1.307144	2.222350	-0.044539	Н -4.818421	-2.390226	-2.480700
C -1.430563	2.619292	-0.372367	Н -1.916548	-5.333246	-1.330410

Н -4.164542	-4.764533	-2.202948	С-
C 2.851625	-0.016979	-0.235009	С-
C 3.348418	-0.858600	0.778548	С-
C 3.734691	0.708843	-1.061005	С-
C 4.728162	-0.947205	0.955112	н -
C 5.103950	0.563999	-0.861801	С-
C 5.621627	-0.250916	0.145218	Η
Н 5.111100	-1.577716	1.749492	С -
Н 5.785024	1.101419	-1.512230	Н-
O -1.299885	0.321772	-0.816987	Н-
B -1.936716	-0.800015	2.522481	Н -
F -3.065904	-0.740019	1.682381	С -
F -1.240858	-2.005134	2.294258	С-
F -2.350225	-0.745038	3.869816	С -
F -1.086655	0.291848	2.249290	С -
C 7.106179	-0.352568	0.359248	Н -
Н 7.634624	-0.470863	-0.589093	С -
Н 7.491958	0.555504	0.832348	Н -
Н 7.357394	-1.195765	1.003487	C ·
C 3.243825	1.602559	-2.171087	Н·
Н 2.421864	1.149840	-2.727595	н.
Н 2.886952	2.560720	-1.785735	н.
Н 4.053359	1.812911	-2.870065	С
C 2.440445	-1.633950	1.698998	С
Н 1.581862	-1.044007	2.020243	С
Н 2.052964	-2.534859	1.216844	С
Н 2.988899	-1.948935	2.586700	С

³PC6

B3LYP-D3/TZVP SCF energy in MeCN solvent: -1504.923120 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -1504.981260 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -1504.627941

С	-0.829624	-0.814262	-1.001280
С	0.540955	-0.954241	-0.798315
С	1.364011	0.131171	-0.478986
С	0.715580	1.365742	-0.331704
С	-0.653180	1.512752	-0.528709
Η	0.971365	-1.938066	-0.900072
Н	1.282051	2.230124	-0.021177

С	-1.402721	2.708079	-0.334452
С	-2.818797	2.685882	-0.438091
С	-0.763139	3.941721	-0.034174
С	-3.549224	3.839525	-0.244697
Н	-3.323314	1.756691	-0.655829
С	-1.508012	5.084642	0.150847
Н	0.313143	3.993700	0.042408
С	-2.903984	5.044943	0.049262
Η	-4.628642	3.809807	-0.318666
Η	-1.009303	6.018533	0.375273
Η	-3.482948	5.947056	0.199350
С	-1.740276	-1.856827	-1.319818
С	-3.114946	-1.561537	-1.531675
С	-1.314465	-3.211591	-1.418890
С	-4.005941	-2.568878	-1.831135
Η	-3.456506	-0.540604	-1.457395
С	-2.218792	-4.204017	-1.718259
Η	-0.278841	-3.471734	-1.256511
С	-3.569675	-3.894905	-1.926229
Η	-5.049969	-2.332108	-1.990530
Η	-1.883912	-5.230665	-1.788801
Η	-4.274780	-4.682266	-2.159016
С	2.822108	-0.018171	-0.279663
С	3.314998	-0.879391	0.719576
С	3.718919	0.700528	-1.095275
С	4.694097	-1.003151	0.884397
С	5.088751	0.539475	-0.899379
С	5.597861	-0.304450	0.087010
Η	5.069188	-1.659174	1.662323
Η	5.775340	1.081562	-1.540369
0	-1.408809	0.434405	-0.922946
В	-1.803817	-1.022512	2.569103
F	-3.073749	-0.881950	1.973367
F	-1.228135	-2.246883	2.170957
F	-1.941009	-1.006041	3.973622
F	-0.973946	0.043924	2.169557
С	7.081591	-0.433086	0.301865
Η	7.628234	-0.329957	-0.637263
Η	7.446339	0.346817	0.977795
Η	7.336262	-1.396196	0.746979
С	3.231919	1.614644	-2.190224
Η	2.442490	1.148228	-2.782870
Η	2.825387	2.546996	-1.789669
Η	4.051853	1.877003	-2.859291

С	2.392801	-1.653578	1.626485
Н	1.541988	-1.052634	1.948840
Н	1.990265	-2.541601	1.131415
Η	2.930529	-1.991765	2.512675

¹1a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.456313 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.478237 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.366226

С	2.746779	1.336608	0.000093
С	1.378369	1.117014	0.000099
С	0.866234	-0.190743	0.000000
С	1.768932	-1.264377	-0.000083
С	3.140522	-1.042092	-0.000090
С	3.633271	0.258898	-0.000002
Η	3.128050	2.350211	0.000169
Η	0.703752	1.963187	0.000185
Η	1.384006	-2.277227	-0.000146
Η	3.823405	-1.882552	-0.000159
Η	4.701638	0.436123	-0.000004
С	-1.569322	0.400686	-0.000065
Η	-1.405649	1.469862	-0.000163
С	-0.561468	-0.484491	-0.000001
Η	-0.819604	-1.539293	0.000077
С	-2.963953	-0.051350	0.000011
0	-3.354458	-1.202582	0.000214
0	-3.823238	0.997078	-0.000172
Η	-4.730211	0.642804	-0.000065

³*E*-1a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.372779 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.394645 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.287577

 $C \ 2.107675 \ 0.522198 \ 0.129432$

С	0.887828	0.904411	0.331628
С	0.762511	-0.508049	0.231057
С	1.930197	-1.253946	-0.087748
С	3.142240	-0.622232	-0.288267
С	3.243566	0.768739	-0.180707
Η	2.182399	2.599966	0.210970
Η	0.012402	1.497538	0.567139
Η	1.854762	-2.331730	-0.170721
Η	4.020187	-1.209214	-0.529864
Η	4.195769	1.259482	-0.337752
С	-1.706120	-0.493758	0.794713
Η	-1.988298	-0.381153	1.837535
С	-0.468990	-1.164679	0.433915
Η	-0.498457	-2.247458	0.333922
С	-2.613852	0.031691	-0.203160
0	-2.447097	-0.027314	-1.411241
0	-3.705805	0.621625	0.348660
Η	-4.265874	0.951825	-0.375763

³Z-1a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.372781 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.394645 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.287567

С	-2.109778	-1.522197	-0.126790
С	-0.889343	-0.905647	-0.329356
С	-0.763041	0.506879	-0.231064
С	-1.930424	1.254103	0.085994
С	-3.143037	0.623619	0.286817
С	-3.245313	-0.767457	0.181458
Η	-2.185186	-2.600056	-0.206499
Η	-0.014265	-1.499876	-0.563240
Η	-1.854254	2.331970	0.167209
Η	-4.020697	1.211626	0.526962
Η	-4.197961	-1.257270	0.338714
С	0.468820	1.162603	-0.434172
Η	0.498526	2.245489	-0.335367
С	1.705746	0.491124	-0.794803
Η	1.986506	0.376104	-1.837738
С	2.615514	-0.031202	0.202780

0	2.451485	0.031332	1.411018
0	3.706568	-0.622375	-0.349733
Н	4.268041	-0.950591	0.374499

Z-1a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.447301 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.468961 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.356990

С	-2.072936	-1.491708	0.026334
С	-0.832417	-0.869059	0.054408
С	-0.738487	0.532984	0.027265
С	-1.934395	1.275480	-0.024386
С	-3.171296	0.649083	-0.055436
С	-3.244937	-0.740970	-0.029635
Η	-2.125668	-2.573465	0.048845
Η	0.068917	-1.458486	0.096133
Η	-1.880834	2.357485	-0.043085
Η	-4.076018	1.242696	-0.097997
Η	-4.208089	-1.235886	-0.052183
С	0.494053	1.315163	0.054665
Η	0.284538	2.380858	0.081946
С	1.817787	1.048232	0.044599
Η	2.473084	1.909889	0.064203
С	2.546384	-0.221398	-0.007100
0	2.110594	-1.356850	-0.001207
0	3.882977	0.011960	-0.067008
Н	4.332980	-0.850805	-0.096425

Z-1a⁺⁺

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.213626 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.236980 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.126900

С	-1.718328	-1.544225	0.214456
С	-0.579805	-0.791071	0.310896
С	-0.644178	0.626303	0.137366

С	-1.918209	1.238106	-0.089052
С	-3.048210	0.471131	-0.197375
С	-2.954680	-0.922099	-0.046261
Η	-1.677071	-2.615869	0.352137
Η	0.353549	-1.276793	0.551173
Η	-1.961675	2.313730	-0.197855
Η	-4.008220	0.929774	-0.390467
Η	-3.848020	-1.528547	-0.123350
С	0.479985	1.486500	0.186208
Η	0.258102	2.547202	0.233746
С	1.815311	1.168859	0.146784
Η	2.538105	1.967714	0.276796
С	2.435930	-0.172697	-0.025661
0	2.968627	-0.715116	0.909932
0	2.426512	-0.727605	-1.239083
Η	1.977228	-0.160286	-1.893128

PC6-

B3LYP-D3/TZVP SCF energy in MeCN solvent: -1505.136774 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -1505.193711 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -1504.839965

С	-0.773217	-0.772150	-1.055929
С	0.569521	-0.932107	-0.862289
С	1.393436	0.144613	-0.479589
С	0.762157	1.390546	-0.290799
С	-0.579659	1.548672	-0.489161
Η	1.002739	-1.908371	-1.017546
Η	1.340471	2.238103	0.044812
С	-1.357143	2.761034	-0.295996
С	-2.761720	2.728538	-0.364396
С	-0.733089	3.995832	-0.034577
С	-3.507984	3.884567	-0.171006
Η	-3.264854	1.792321	-0.558062
С	-1.485274	5.142687	0.158435
Η	0.345663	4.060283	0.011198
С	-2.879021	5.097570	0.091674
Η	-4.588978	3.834428	-0.223362
Η	-0.982280	6.081302	0.357350
Н	-3.462620	5.997195	0.242191

С	-1.731835	-1.791190	-1.447416
С	-3.064670	-1.445547	-1.734403
С	-1.363787	-3.147287	-1.535850
С	-3.985470	-2.417069	-2.106409
Н	-3.373734	-0.412718	-1.667275
С	-2.288000	-4.108781	-1.909689
Н	-0.353402	-3.453503	-1.301179
С	-3.606638	-3.752659	-2.198539
Н	-5.006272	-2.126634	-2.324172
Н	-1.981986	-5.146293	-1.968374
Н	-4.326282	-4.508592	-2.487013
С	2.848874	-0.025895	-0.273025
С	3.329703	-0.919036	0.704279
С	3.767502	0.706222	-1.056239
С	4.707429	-1.060648	0.881023
С	5.133503	0.529697	-0.849766
С	5.626552	-0.347784	0.116548
Н	5.068108	-1.740709	1.645309
Н	5.831380	1.086365	-1.466582
0	-1.347729	0.474669	-0.895274
В	-1.924043	-1.165978	2.705531
F	-3.170546	-1.061676	2.053898
F	-1.188804	-2.233336	2.151924
F	-2.135722	-1.409216	4.080673
F	-1.207198	0.036512	2.549217
С	7.108368	-0.502043	0.331273
Η	7.629306	-0.683940	-0.612025
Н	7.539616	0.404708	0.765914
Н	7.325861	-1.330924	1.006161
С	3.304378	1.651782	-2.135306
Η	2.518590	1.205696	-2.748088
Η	2.896939	2.576186	-1.718861
Η	4.136141	1.922181	-2.786888
С	2.394980	-1.707828	1.585691
Η	1.554912	-1.101890	1.926705
Η	1.973030	-2.569087	1.061477
Н	2.926737	-2.084541	2.460223

\mathbf{O}_2

B3LYP-D3/TZVP SCF energy in MeCN solvent: -150.386380 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -150.394051 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -150.410325

0	0.000000	0.000000	0.603839
0	0.000000	0.000000	-0.603839

O_2

B3LYP-D3/TZVP SCF energy in MeCN solvent: -150.501262 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -150.505831 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -150.522951

0	0.000000	0.000000	0.675344
0	0.000000	0.000000	-0.675344

HO₂·

B3LYP-D3/TZVP SCF energy in MeCN solvent: -150.980104 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -150.986798 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -150.995048

0	0.055639	-0.609904	0.000000
Н	-0.890231	-0.880162	0.000000
0	0.055639	0.719924	0.000000

²IM1

B3LYP-D3/TZVP SCF energy in MeCN solvent: -497.777471 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -497.799668 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -497.701772

С	1.736182	-1.536099	-0.087398
С	0.566987	-0.804151	-0.106342
С	0.607453	0.608385	-0.021878
С	1.871205	1.241973	0.062361

С	3.036737	0.501300	0.082156
С	2.973335	-0.890573	0.007875
Η	1.695355	-2.615830	-0.149352
Η	-0.373762	-1.325512	-0.191581
Η	1.910080	2.322622	0.117907
Н	3.995210	0.998677	0.153299
Η	3.884928	-1.474553	0.022732
С	-0.546576	1.454941	-0.022600
Н	-0.328848	2.518491	-0.016717
С	-1.879846	1.129736	0.009086
Η	-2.599787	1.936392	-0.079072
С	-2.484161	-0.227007	0.092261
0	-2.694455	-0.564840	-1.115960
0	-2.739429	-0.839075	1.122167

²TS1

B3LYP-D3/TZVP SCF energy in MeCN solvent: -497.770339 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -497.791986 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -497.690999

С	1.543958	-1.375450	0.510709
С	0.442145	-0.510405	0.774477
С	0.488256	0.843609	0.291669
С	1.626399	1.305656	-0.356994
С	2.687521	0.439292	-0.602054
С	2.631850	-0.906296	-0.180199
Η	1.517696	-2.388394	0.889941
Н	-0.140692	-0.700300	1.666321
Η	1.662989	2.328315	-0.711076
Η	3.559286	0.795518	-1.135565
Η	3.474878	-1.557575	-0.373117
С	-0.729156	1.620727	0.399251
Η	-0.653063	2.696092	0.521805
С	-1.932160	1.035235	0.275295
Η	-2.845338	1.609337	0.362778
С	-2.115321	- 0.364109	-0.193113
0	-3.214156	-0.733365	-0.607289
0	-1.090432	-1.180703	-0.234627

²TS1a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.202441 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -648.790337 B3LYP-D3/def2-TZVP free energy in MeCN

solvent: -648.681274

С	1.508568	-1.439458	0.385787
С	0.437407	-0.531400	0.702693
С	0.547007	0.852949	0.266486
С	1.737357	1.309414	-0.271451
С	2.780863	0.414631	-0.511849
С	2.645807	-0.959685	-0.197687
Η	1.418040	-2.474602	0.685393
Η	-0.037452	-0.681484	1.669041
Η	1.831225	2.350054	-0.554224
Η	3.694774	0.769026	-0.969188
Η	3.472859	-1.628840	-0.396019
С	-0.641331	1.652564	0.317019
Η	-0.544844	2.731704	0.345169
С	-1.871943	1.094600	0.227972
Η	-2.767848	1.700622	0.250065
С	-2.012338	-0.301557	-0.120108
0	-1.074550	-1.141993	-0.136213
0	-3.175846	-0.765164	-0.524204
Η	-3.851973	-0.061572	-0.540075

²IM1a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -498.212018 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -498.236372 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -498.120886 C -1.358129 -1.504117 0.124357

-			
С	-0.520508	0.874820	0.127282
С	-1.825629	1.295586	-0.111031
С	-2.851023	0.370973	-0.227584
С	-2.594246	-1.031444	-0.153242
Н	-1.139877	-2.562436	0.179003
Н	-2.019064	2.350477	-0.261143
Н	-3.855225	0.710793	-0.442707

Η	-3.405677	-1.721352	-0.344720
С	0.603400	1.707392	0.087019
Н	0.474783	2.778033	-0.012590
С	1.873064	1.165144	0.104714
Н	2.761939	1.779578	0.084123
С	2.006903	-0.222515	-0.048691
С	-0.276587	-0.557982	0.491110
Н	-0.143488	-0.602833	1.586040
0	1.003256	-1.055210	-0.046332
0	3.135883	-0.834982	-0.299195
Н	3.870033	-0.197871	-0.387389

²IM2

B3LYP-D3/TZVP SCF energy in MeCN solvent: -497.787392 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -497.810108 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -497.707488

С	-1.338523	-1.490421	0.146942
С	-0.468437	0.867732	0.112461
С	-1.765039	1.303355	-0.125012
С	-2.814279	0.398416	-0.218949
С	-2.571945	-1.006434	-0.125797
Η	-1.139832	-2.552730	0.209799
Η	-1.942271	2.360036	-0.289169
Η	-3.815471	0.751626	-0.427349
Η	-3.394187	-1.690281	-0.297122
С	0.678722	1.695816	0.096358
Η	0.555996	2.772081	0.047447
С	1.921962	1.142997	0.109128
Η	2.818673	1.746072	0.116782
С	2.119343	-0.290849	-0.080684
0	3.200296	-0.801923	-0.306391
С	-0.219740	-0.566419	0.476988
Η	-0.060361	-0.600275	1.569497
0	1.015338	-1.087038	-0.103421

²TS2

B3LYP-D3/TZVP SCF energy in MeCN solvent: -648.742459 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -648.771441 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -648.664042

С	1.509249	0.523457	-1.398991
С	0.674241	-0.763291	0.611813
С	2.026260	-0.898455	1.022713
С	3.036373	-0.356514	0.287440
С	2.771065	0.333403	-0.961695
Н	1.292372	1.015220	-2.338620
Н	2.236440	-1.469561	1.919044
Н	4.063916	-0.474630	0.605453
Н	3.610197	0.672771	-1.555269
С	-0.413235	-1.330379	1.244787
Н	-0.274319	-1.893574	2.159605
С	-1.687550	-1.188119	0.697882
Н	-2.566831	-1.576905	1.190043
С	-1.883213	-0.658032	-0.629519
0	-2.927418	-0.681215	-1.247712
С	0.387984	0.134610	-0.556621
Н	0.084089	1.284121	0.081447
0	-0.776570	-0.152815	-1.294992
0	-1.649246	1.888267	1.051681
Н	-1.593001	1.496214	1.943753
0	-0.319253	2.216547	0.751984

2a

B3LYP-D3/TZVP SCF energy in MeCN solvent: -497.243004 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -497.267593 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -497.173962

С	-1.293203	-1.484538	-0.000111
С	-0.473198	0.809705	-0.000626
С	-1.799522	1.269486	-0.000237
С	-2.850994	0.371390	-0.000332
С	-2.594319	-1.004449	0.000329
Η	-1.081142	-2.545584	0.000763
Н	-1.980744	2.337349	-0.000532
Η	-3.872028	0.729977	-0.000022
Н	-3.418434	-1.706553	0.000311
С	0.672039	1.674288	0.000334

Η	0.513440	2.746113	0.000503
С	1.920716	1.164931	0.000392
Η	2.800772	1.792083	0.001023
С	2.152951	-0.264848	0.000006
0	3.232161	-0.815546	-0.000545
С	-0.244201	-0.573439	0.000507
0	1.029905	-1.075521	0.000093

$H_2O_2 \\$

B3LYP-D3/TZVP SCF energy in MeCN solvent: -151.624639 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -151.630402 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -151.626022

0	0.000000	-0.727517	-0.062798
Η	-0.768637	-0.914998	0.502385
0	0.000000	0.727517	-0.062798
Η	0.768637	0.914998	0.502385

1a-NO₂

B3LYP-D3/TZVP SCF energy in MeCN solvent: -703.034177 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -703.070807 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -702.961426

С	-1.595344	-1.146318	-0.048793
С	-0.220960	-1.006514	-0.034945
С	0.369580	0.265897	0.029175
С	-0.460409	1.395384	0.082978
С	-1.839269	1.270700	0.068906
С	-2.387864	-0.002990	0.002166
Η	-2.051050	-2.123934	-0.097227
Н	0.392927	-1.895382	-0.072856
Η	-0.014781	2.380447	0.135311
Н	-2.476775	2.141159	0.109522
С	1.815770	0.474087	0.037540
Н	2.103217	1.517390	0.131509
С	4.210595	-0.239565	0.000531
0	5.001283	-1.132362	0.215496

0	4.680953	1.014092	-0.194543
Η	3.973520	1.629689	-0.446822
N	-3.848755	-0.149899	-0.011312
0	-4.535638	0.867232	0.033750
0	-4.317537	-1.283671	-0.066732
С	2.755158	-0.476702	-0.050414
Η	2.498185	-1.526276	-0.106885

1a-NO2*+

B3LYP-D3/TZVP SCF energy in MeCN solvent: -702.787198 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -702.824929 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -702.716097

С	1.578995	-1.156871	0.010789
С	0.214599	-1.025703	-0.013224
С	-0.379073	0.273518	-0.049356
С	0.460048	1.427313	-0.070624
С	1.825365	1.295515	-0.060345
С	2.355053	0.004188	-0.010779
Η	2.049063	-2.128651	0.041517
Η	-0.40183	-1.912237	-0.006294
Η	0.003207	2.407358	-0.094058
Η	2.476798	2.156852	-0.078212
С	-1.778441	0.486419	-0.043094
Η	-2.107098	1.519507	-0.081308
С	-4.184009	-0.204351	-0.042170
0	-4.827586	-0.659950	-0.956836
0	-4.739259	0.573346	0.882379
Η	-4.099376	0.837797	1.570133
N	3.826239	-0.143675	0.024596
0	4.490687	0.717372	-0.532135
0	4.277371	-1.115785	0.611439
С	-2.730951	-0.505813	0.017639
Η	-2.483649	-1.560053	0.004256

³1a-NO₂

B3LYP-D3/TZVP SCF energy in MeCN solvent: -702.957786

B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -702.994140 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -702.889283

С	1.210984	-1.011901	-0.299107
С	-0.10134	-0.633923	-0.448252
С	-0.486081	0.732735	-0.329745
С	0.526849	1.694293	-0.048778
С	1.838903	1.317369	0.099765
С	2.175204	-0.035234	-0.026850
Η	1.503314	-2.047444	-0.389560
Η	-0.854379	-1.382236	-0.658816
Η	0.249382	2.736398	0.043383
Η	2.606341	2.047186	0.309776
С	-1.818642	1.143175	-0.481063
Η	-2.040024	2.205431	-0.392876
С	-3.795472	-0.375293	0.156453
0	-4.738034	-1.080844	-0.156319
0	-3.535646	-0.166459	1.471313
Η	-2.755113	0.403525	1.585606
Ν	3.562297	-0.435930	0.129961
0	4.397004	0.432424	0.395045
0	3.848383	-1.627597	-0.007996
С	-2.924491	0.261020	-0.816947
Н	-3.174733	0.075009	-1.856430

1a-OMe

B3LYP-D3/TZVP SCF energy in MeCN solvent: -613.029984 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -613.058258 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -612.919354

U	1./99004	-1.3/048/	-0.020240
С	0.437860	-1.162675	-0.029474
С	-0.097584	0.140199	-0.013623
С	0.801063	1.214342	0.004376
С	2.176136	1.020952	0.009736
С	2.684306	-0.279990	-0.005433
Η	2.208537	-2.372795	-0.039564
Η	-0.221897	-2.020355	-0.046051

Η	0.412880	2.225973	0.015895
Η	2.834166	1.877157	0.025030
С	-1.521852	0.419235	-0.012511
Η	-1.781455	1.472700	-0.021117
С	-3.937757	-0.117872	0.010669
0	-4.847368	-0.927501	0.057587
0	-4.180685	1.216293	-0.038145
Η	-5.145197	1.339950	-0.018771
С	-2.524418	-0.478543	0.002916
Η	-2.342639	-1.545096	0.019689
0	4.001648	-0.587970	-0.002378
С	4.952984	0.482571	0.029160
Η	5.930832	0.007428	0.030025
Η	4.856558	1.119069	-0.853321
Η	4.837042	1.083002	0.934205

1a-OMe*+

B3LYP-D3/TZVP SCF energy in MeCN solvent: -612.819438 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -612.848718 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -612.708119

С	-1.763799	1.388729	-0.028719
С	-0.422640	1.175527	-0.022755
С	0.099681	-0.154075	0.009906
С	-0.815605	-1.249530	0.041988
С	-2.164325	-1.052736	0.038869
С	-2.661132	0.278624	-0.002580
Η	-2.181899	2.385719	-0.055699
Η	0.249337	2.021277	-0.043860
Н	-0.41774	-2.255417	0.070078
Η	-2.842625	-1.891923	0.063255
С	1.493433	-0.450302	0.006715
Η	1.757164	-1.500838	0.023379
С	3.924670	0.116741	-0.000312
0	4.803158	0.947692	0.091419
0	4.161218	-1.203379	-0.094472
Η	5.124209	-1.349977	-0.062560
С	2.493356	0.471084	-0.013066
Н	2.303253	1.535251	-0.019285
0	-3.932363	0.585086	-0.019753
С	-4.955350	-0.449727	0.001561

Н -5.895980	0.089247	-0.036034
Н -4.844845	-1.091963	-0.870698
Н -4.876718	-1.022582	0.924230

³1a-OMe

B3LYP-D3/TZVP SCF energy in MeCN solvent: -612.943402 B3LYP-D3/def2-TZVP SCF energy in MeCN solvent: -612.971633 B3LYP-D3/def2-TZVP free energy in MeCN solvent: -612.838011

С	-1.745891	1.360760	-0.000091
С	-0.402133	1.126462	0.000048
С	0.124516	-0.224030	0.000151
С	-0.855933	-1.290018	0.000237
С	-2.198772	-1.044225	0.000131
С	-2.672942	0.291422	-0.000077

Н	-2.131354	2.372797	-0.000204
Н	0.276903	1.966757	0.000037
Н	-0.497557	-2.311916	0.000366
Н	-2.893952	-1.871501	0.000183
С	1.474737	-0.527400	0.000128
Η	1.761315	-1.570769	0.000149
С	3.923505	0.154623	-0.000034
0	4.823307	0.997140	0.000190
0	4.212415	-1.182390	-0.000444
Н	5.180270	-1.267705	-0.000460
С	2.526810	0.456460	0.000114
Η	2.297754	1.512122	0.000338
0	-3.973016	0.637666	-0.000291
С	-4.972206	-0.394928	0.000011
Н	-5.926972	0.124020	-0.000354
Н	-4.888985	-1.014349	-0.894770
Η	-4.889214	-1.013545	0.895367
7. References

1. Metternich, J. B.; Artiukhin, D. G.; Holland, M. C.; von Bremen-Kühne, M.; Neugebauer, J.; Gilmour, R., Photocatalytic $E \rightarrow Z$ Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. *J. Org. Chem.* **2017**, *82*, 9955-9977.

2. Metternich, J. B.; Gilmour, R., A Bio-Inspired, Catalytic $E \rightarrow Z$ Isomerization of Activated Olefins. J. Am. Chem. Soc. 2015, 137, 11254-11257.

3. Metternich, J. B.; Gilmour, R., One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (–)-Riboflavin. J. Am. Chem. Soc. **2016**, *138*, 1040-1045.

4. Li, Y.; Ding, Y.-J.; Wang, J.-Y.; Su, Y.-M.; Wang, X.-S., Pd-Catalyzed C–H Lactonization for Expedient Synthesis of Biaryl Lactones and Total Synthesis of Cannabinol. *Org. Lett.* **2013**, *15*, 2574-2577.

5. Morack, T.; Metternich, J. B.; Gilmour, R., Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via (-)-Riboflavin-Mediated Electron Transfer. *Org. Lett.* **2018**, *20*, 1316-1319.

6. Xia, S.; Hu, K.; Lei, C.; Jin, J., Intramolecular Aromatic C-H Acyloxylation Enabled by Iron Photocatalysis. *Org. Lett.* **2020**, *22*, 1385-1389.

7. Zhao, Y.; Huang, B.; Yang, C.; Li, B.; Gou, B.; Xia, W., Photocatalytic Cross-Dehydrogenative Amination Reactions between Phenols and Diarylamines. *ACS Catal.* **2017**, *7*, 2446-2451.

8.Michaudel, Q.; Chauviré, T.; Kottisch, V.; Supej, M. J.; Stawiasz, K. J.; Shen, L.; Zipfel, W. R.; Abruña, H. D.; Freed, J. H.; Fors, B. P., Mechanistic Insight into the Photocontrolled Cationic Polymerization of Vinyl Ethers. *J. Am. Chem. Soc.* 2017, *139*, 15530-15538.

9. Alfonzo, E.; Alfonso, F. S.; Beeler, A. B., Redesign of a Pyrylium Photoredox Catalyst and Its Application to the Generation of Carbonyl Ylides. *Org. Lett.* **2017**, *19*, 2989-2992.

10. Zhao, B.; Xu, B., Visible-light promoted oxidative cyclization of cinnamic acid derivatives using xanthone as the photocatalyst. *Org. Bio. Chem.* **2021**, *19*, 568-573.

11. Wang, Z.; Li, X.; Wang, L.; Li, P., Photoinduced cyclization of alkynoates to coumarins with N-Iodosuccinimide as a free-radical initiator under ambient and metal-free conditions. *Tetrahedron* **2019**, *75*, 1044-1051.

12. Cruché, C.; Neiderer, W.; Collins, S. K., Heteroleptic Copper-Based Complexes for Energy-Transfer Processes: $E \rightarrow Z$ Isomerization and Tandem Photocatalytic Sequences. *ACS Catal.* **2021**, *11*, 8829-8836.

13. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Chem. Phys.* **1994**, *98*, 11623-11627.

14. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

15. Davidson, E. R.; Feller, D., Basis set selection for molecular calculations. *Chem. Rev.* **1986**, *86*, 681-696.

16. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. *J. Chem. Phys.* **1998**, *109*, 8218-8224.

17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;

Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*: Wallingford, CT, 2016.

18. Marcus, R. A., Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). *Angew. Chem. Int. Ed.*, **1993**, *32*, 1111-1222.