Eugenunilones A–H: Rearranged Sesquiterpenoids from *Eugenia uniflora*

Mu Chen,‡^a Jia-Qing Cao,‡^a Song Ang,‡^a Ting-Ni Zeng,^a Ni-Ping Li,^a Tang-Jia Yang,^b Jun-Shan Liu,^b Yan Wu,^a Wen-Cai Ye,^{*a} and Lei Wang^{*a}

^a Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China. Email: chywc@aliyun.com, cpuwanglei@126.com

^b Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China.

‡ These authors contributed equally to this work.

Contents

1. Chiral separation of 2–8	S5
2. Structural elucidation of 9	S8
3. Quantum chemical ECD calculations of 2–9	S10
4. <i>In vivo</i> anti-inflammatory effects of 1–9	S40
5. HPLC-HR-MS analyses of the methanol extract of the fresh f	ruits of <i>Eugenia</i>
uniflora	S41

Figure S20. UV spectrum of 1 in MeOH	S42
Figure S21. IR (KBr disc) spectrum of 1	S42
Figure S22. HR-ESI-MS spectrum of 1	S43
Figure S23–29. 1D and 2D NMR spectra of 1 in CDCl ₃	S43
Figure S30. UV spectrum of 2 in MeOH	S47
Figure S31. IR (KBr disc) spectrum of 2	S47
Figure S32. HR-ESI-MS spectrum of 2	S48
Figure S33–39. 1D and 2D NMR spectra of 2 in CDCl ₃	S48
Figure S40. UV spectrum of 3 in MeOH	S52
Figure S41. IR (KBr disc) spectrum of 3	S52
Figure S42. HR-ESI-MS spectrum of 3	S53
Figure S43–49. 1D and 2D NMR spectra of 3 in CDCl ₃	S54
Figure S50. UV spectrum of 4 in MeOH	S57
Figure S51. IR (KBr disc) spectrum of 4	S57
Figure S52. HR-ESI-MS spectrum of 4	S58
Figure S53-59. 1D and 2D NMR spectra of 4 in CDCl ₃	S59
Figure S60. UV spectrum of 5 in MeOH	S62
Figure S61. IR (KBr disc) spectrum of 5	S62
Figure S62. HR-ESI-MS spectrum of 5	S63
Figure S63–69. 1D and 2D NMR spectra of 5 in CDCl ₃	S64

Figure S70. UV spectrum of 6 in MeOH	S67
Figure S71. IR (KBr disc) spectrum of 6	S67
Figure S72. HR-ESI-MS spectrum of 6	S68
Figure S73–79. 1D and 2D NMR spectra of 6 in CDCl ₃	S68
Figure S80. UV spectrum of 7 in MeOH	S72
Figure S81. IR (KBr disc) spectrum of 7	S72
Figure S82. HR-ESI-MS spectrum of 7	S73
Figure S83-89. 1D and 2D NMR spectra of 7 in CDCl ₃	S74
Figure S90. UV spectrum of 8 in MeOH	S77
Figure S91. IR (KBr disc) spectrum of 8	S77
Figure S92. HR-ESI-MS spectrum of 8	S78
Figure S93–99. 1D and 2D NMR spectra of 8 in CDCl ₃	S78
Figure S100. UV spectrum of 9 in MeOH	S82
Figure S101. IR (KBr disc) spectrum of 9	S82
Figure S102. HR-ESI-MS spectrum of 9	S83
Figure S103–105. 1D NMR spectra of 9 in CDCl ₃	S83
Figure S106. The total ion chromatogram (TIC) for the methanol extract of	the fresh
fruits of Eugenia uniflora	S85
Figure S107. The extracted ion chromatogram (EIC) for m/z 431.1900–431.39	900, peak
A and B	S85
Figure S108. The total ion chromatogram (TIC) for 1	S86
Figure S109. The total ion chromatogram (TIC) for 2	S86
Figure S110. The extracted ion chromatogram (EIC) for m/z 249.0500–249.23	500, peak
C	S87
Figure S111. The total ion chromatogram (TIC) for 3	S87
Figure S112. The extracted ion chromatogram (EIC) for m/z 247.0300–247.2	300, peak
D	S88
Figure S113. The total ion chromatogram (TIC) for 4	S88
Figure S114. The extracted ion chromatogram (EIC) for m/z 233.0500–233.25	500, peak

Е	S89
Figure S115. The total ion chromatogram (TIC) for 5	S89
Figure S116. The extracted ion chromatogram (EIC) for m/z 231.0400–23	31.2400, peak
F	S90
Figure S117. The total ion chromatogram (TIC) for 6	S90
Figure S118. The extracted ion chromatogram (EIC) for m/z 233.0500–23	3.2500, peak
G	S91
Figure S119. The total ion chromatogram (TIC) for 7	S91
Figure S120. The extracted ion chromatogram (EIC) for m/z 231.0400–23	31.2400, peak
Н	S92
Figure S121. The total ion chromatogram (TIC) for 8	S92
Notes and references	S93

1. Chiral separation of 2-8

The racemic mixtures of $(\pm)-2-(\pm)-8$ were subjected to a chiral HPLC column to afford the optical pure enantiomers (+)-2, (-)-2, (+)-3, (-)-3, (+)-4, (-)-4, (+)-5, (-)-5, (+)-6, (-)-6, (+)-7, (-)-7, (+)-8, and (-)-8, respectively.

Figure S1. Chiral HPLC Chromatogram of **2** [column: Phenomenex Amylose-1 ($4.6 \times 250 \text{ mm}$, 5 μ m), mobile phase: CH₃CN/H₂O/HCOOH (68:32:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 210 nm]

Figure S2. Chiral HPLC Chromatogram of **3** [column: Phenomenex Amylose-1 ($4.6 \times 250 \text{ mm}$, 5 μ m), mobile phase: CH₃CN/H₂O/HCOOH (40:60:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 210 nm]

Figure S3. Chiral HPLC Chromatogram of **4** [column: Phenomenex Cellulose-4 ($4.6 \times 250 \text{ mm}$, 5 μ m), mobile phase: CH₃CN/H₂O/HCOOH (35:65:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 210 nm]

Figure S4. Chiral HPLC Chromatogram of **5** [column: Phenomenex Cellulose-4 ($4.6 \times 250 \text{ mm}$, 5 μ m), mobile phase: CH₃CN/H₂O/HCOOH (40:60:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 254 nm]

Figure S5. Chiral HPLC Chromatogram of **6** [column: Industries ChromegaChiral CC4 $(4.6 \times 250 \text{ mm}, 5 \mu \text{m})$, mobile phase: CH₃CN/H₂O/HCOOH (30:70:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 254 nm]

Figure S6. Chiral HPLC Chromatogram of **7** [column: Phenomenex Amylose-2 ($4.6 \times 250 \text{ mm}$, 5 μ m), mobile phase: CH₃CN/H₂O/HCOOH (23:77:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 210 nm]

Figure S7. Chiral HPLC Chromatogram of **8** [column: Industries ChromegaChiral CC4 ($4.6 \times 250 \text{ mm}, 5 \mu \text{m}$), mobile phase: CH₃CN/H₂O/HCOOH (32:68:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 254 nm]

2. Structural elucidation of (±)-9

Figure S8. Chemical structure of compound 9.

Compound **9** was obtained as yellow oil. The molecular formula of **9** was determined to be $C_{15}H_{20}O_2$ via its HR-ESI-MS data at m/z 217.1608 [M + H]⁺ (calcd for $C_{15}H_{21}O$, 217.1587). A comprehensive analysis of the 1D NMR data (Table S1) revealed that **9** possessed the same structure as selina-1,3,7(11)-trien-8-one¹. However, the absolute configuration of **9** has never been reported in previous studies. With the optical rotation value close to zero as well as the absence of a Cotton effect in its ECD spectrum, **9** was assumed to be a racemic mixture. Subsequently, **9** was successfully separated into two enantiomers (+)-**9** and (-)-**9**, in a ratio of 1:1, by an amylose chiral column using acetonitrile-water (60:40) as the mobile phase (Figure S9). The absolute configurations of (+)-**9** and (-)-**9** were further determined by electronic circular dichroism (ECD) calculation methods. The absolute configurations of (+)-**9** and (-)-**9** were deduced to be 5S,10R and 5R,10S, respectively, by a comparison of the experimental ECD spectrum with the calculated ones (Figure S10).

		,			
No.	$\delta_{ m H}$	$\delta_{ m C}$	No.	$\delta_{ m H}$	$\delta_{ m C}$
1	5.33 d (9.4)	131.9	8		204.0
2	5.77 dd (9.4, 5.3)	118.1	9	2.25 m	53.5
3	5.63 d (5.0)	123.1	10		38.6
4		138.4	11		139.7
5	2.00 dd (10.6, 4.7)	46.3	12	1.90 s	22.4
6a	2.46 d (14.5)	29.9	13	1.75 s	21.9
6b	2.66 dd (15.0, 4.7)		14	1.00 s	26.9
7		132.8	15	1.81 s	22.8

Table S1. ¹H and ¹³C NMR data of 9 $(J \text{ in Hz})^a$

^{*a*} Data were recorded in CDCl₃ at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR.

Figure S9. Chiral HPLC Chromatogram of **9** [column: Phenomenex Amylose-2 ($4.6 \times 250 \text{ mm}$, 5 μ m), mobile phase: CH₃CN/H₂O/HCOOH (60:40:0.1, V/V/V), flow rate: 1.0 mL/min, detection wavelength: 254 nm]

Figure S10. Experimental and calculated ECD spectra of 9.

3. Quantum chemical ECD calculations of 2-9

3.1 Chemical calculation details for 2, 3, 4, 6, 7, 8, and 9

The systematic random conformational analysis of **2**, **3**, **4**, **6**, **7**, **8**, and **9** were performed in the SYBYL-X 2.1.1 program by using MMFF94s molecular force field with an energy cutoff of 10 kcal/mol⁻¹ to the global minima, which afforded 9, 7, 16, 4, 4, 3, and 7 conformers, respectively. All of the obtained conformers were further optimized using DFT at the CAM-B3LYP/6-31+G(d) level in gas phase using Gaussian09 software,² which afforded 9, 4, 9, 4, 3, and 7 stable conformers, respectively. The optimized stable conformers were further subjected to ECD calculations at the CAM-B3LYP/6-31+G(d) level with the PCM solvation model of acetonitrile. The first 30 excitations for **2**, **3**, **4**, and **9**, as well as the first 50 excitations for **6**, **7**, and **8** were considered. The overall ECD curves of **2**, **3**, **4**, **6**, **7**, **8**, and **9** were all weighted by Boltzmann distribution, and were subsequently compared with the experimental one. The ECD spectra were produced by SpecDis 1.71 software.³

Figure S11. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of **2**.

Table S2. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 2

HOMO is 117							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs		
1	35495.09248	281.7290871	5.7412	0.0003	H-5->L+1 (11%), H- 4->LUMO (10%), H- 3->L+1 (24%), H- 2->LUMO (23%)		
2	35495.09248	281.7290871	0.2838	0.0003	H-5->LUMO (10%), H-4->L+1 (11%), H- 3->LUMO (22%), H- 2->L+1 (25%)		
3	49529.23648	201.9009521	-7.4458	0.0034	H-1->L+1 (28%), HOMO->LUMO (46%), HOMO->L+3 (10%)		
4	49627.6368	201.5006284	-11.7902	0.0028	H-1->LUMO (37%), HOMO->L+1 (44%)		
5	50223.68464	199.1092464	-33.4028	0.0093	HOMO->L+2 (16%), HOMO->L+3 (42%)		

6	50602.76784	197.6176487	15.3121	0.0808	H-1->L+2 (11%), H- 1->L+3 (31%), HOMO >L+5 (14%)
7	51711.78784	193.3795063	97.4402	0.0683	H-5->L+1 (13%), H- 4->LUMO (13%), H- 1->L+1 (10%), HOMO->LUMO (11%), HOMO->L+2 (10%)
8	51866.64736	192.8021283	-124.7419	0.024	H-5->LUMO (14%), H-4->L+1 (17%), HOMO->L+1 (13%)
9	51943.27056	192.5177197	705.9842	0.476	H-1->L+2 (10%), HOMO->L+13 (14%)
10	52206.20912	191.5480968	67.7118	0.0611	H-5->L+1 (14%), H- 4->LUMO (14%), H- 3->L+4 (13%), HOMO->L+2 (17%)
11	52210.24192	191.5333014	-67.7673	0.0522	H-5->LUMO (12%), H-4->L+1 (12%), H- 3->L+2 (11%), H- 2->L+4 (18%)
12	52363.48832	190.9727621	-302.4767	0.2548	H-1->L+4 (12%), HOMO->L+2 (10%)
13	53849.9784	185.7010958	73.9707	0.0317	H-3->L+2 (12%), H- 2->L+7 (14%), H- 1->L+3 (16%)
14	54105.65792	184.8235542	-92.4528	0.1514	H-3->L+7 (14%), H- 2->L+2 (12%), H- 2->L+3 (20%), H- 1->L+7 (12%)
15	54738.00096	182.6884399	3.8039	0	H-1->L+13 (10%), HOMO->L+3 (18%), HOMO->L+10 (10%), HOMO->L+12 (17%)
16	54779.94208	182.5485683	-39.851	0.0756	H-1->L+3 (13%), HOMO->L+5 (12%), HOMO->L+7 (19%), HOMO->L+13 (10%)
17	55134.02192	181.3762111	-5.5244	0.0604	H-1->LUMO (19%), HOMO->L+1 (17%), HOMO->L+4 (12%)

18	55344.53408	180.6863165	-14.6249	0.003	H-1->L+1 (32%), HOMO->LUMO (15%)
19	55497.78048	180.1873861	-19.1814	0.0922	H-1->LUMO (20%)
20	55556.65936	179.9964237	0.0934	0	H-1->L+5 (10%), HOMO->L+8 (12%)
21	56047.8544	178.4189619	26.8775	0.0397	H-1->L+8 (12%), HOMO->L+4 (10%), HOMO->L+7 (26%)
22	56124.4776	178.1753778	-43.6316	0.012	HOMO->L+6 (32%)
23	56418.872	177.2456564	-102.2654	0.0426	HOMO->L+4 (11%), HOMO->L+7 (19%)
24	56766.49936	176.1602373	0.8033	0.0021	H-1->L+7 (24%), HOMO->L+8 (16%)
25	57192.36304	174.8485194	-9.3255	0.0025	H-1->L+5 (10%), HOMO->L+2 (21%), HOMO->L+6 (12%), HOMO->L+10 (16%)
26	57655.32848	173.4445066	0.1064	0	H-1->L+2 (31%), H- 1->L+10 (11%)
27	58085.22496	172.1608207	26.2049	0.0234	H-1->L+12 (22%), HOMO->L+9 (34%)
28	58199.75648	171.8220248	-4.0683	0.0031	H-1->L+7 (10%), H- 1->L+9 (22%), HOMO->L+12 (13%)
29	58384.45872	171.278457	42.7012	0.0109	
30	58461.08192	171.0539674	1.304	0.0005	H-3->L+5 (18%), H- 2->L+8 (17%)

Table S3. Cartesian coordinate of dominant conformer of 2

Standard orientation:						
Center	Atomic	Atomic	Coordinates	(Angstroms)		
Number	Number	Туре	Χ	Y	Ζ	
1	8	0	4.722157	-1.12922	1.564083	
2	1	0	4.356415	-2.40877	-2.71634	
3	1	0	4.601459	-0.59656	-2.52101	
4	8	0	-4.72181	1.129472	1.564366	
5	1	0	0.049922	2.138143	-2.04483	
6	1	0	-0.04984	-2.138	-2.04487	
7	1	0	-4.35813	2.408438	-2.71564	
8	1	0	-4.60345	0.596327	-2.51967	
9	6	0	2.720316	2.044581	0.162266	

10	1	0	3.290123	2.843754	0.648317
11	6	0	2.014476	1.116575	1.193603
12	6	0	3.763164	-0.44499	1.238363
13	6	0	3.137743	-0.33447	-0.15603
14	6	0	1.63748	-0.06756	0.252109
15	1	0	1.241171	-0.91312	0.812708
16	6	0	1.692586	2.599332	-0.80331
17	6	0	-0.7323	-0.28606	-0.97054
18	1	0	-1.19663	0.183823	-1.85079
19	6	0	3.644295	1.065797	-0.61623
20	1	0	4.69303	1.230515	-0.33701
21	1	0	3.570599	1.212174	-1.69985
22	6	0	-0.7654	-1.76784	-1.31448
23	6	0	-1.63744	0.067618	0.252124
24	1	0	-1.24117	0.913229	0.812678
25	6	0	0.732338	0.286173	-0.97054
26	1	0	1.196653	-0.18369	-1.8508
27	6	0	0.765486	1.76795	-1.31446
28	6	0	1.784771	4.049766	-1.15903
29	1	0	1.010304	4.346043	-1.87406
30	1	0	2.758413	4.269115	-1.60854
31	1	0	1.666755	4.667384	-0.263
32	6	0	-2.01432	-1.11655	1.193668
33	6	0	-3.13775	0.334415	-0.15594
34	6	0	3.042631	0.487133	2.171357
35	1	0	3.727257	1.229422	2.588946
36	1	0	2.559396	-0.09857	2.95889
37	6	0	-1.69244	-2.59927	-0.8033
38	6	0	0.924887	1.806619	2.004759
39	1	0	1.368983	2.545428	2.68239
40	1	0	0.376257	1.089228	2.621494
41	1	0	0.201223	2.347917	1.392234
42	6	0	-2.72013	-2.04461	0.162384
43	1	0	-3.28981	-2.84386	0.648464
44	6	0	3.42949	-1.54982	-1.01076
45	6	0	-3.763	0.445037	1.238526
46	6	0	-3.42988	1.54965	-1.0107
47	6	0	-0.92469	-1.80655	2.004803
48	1	0	-0.37592	-1.08909	2.621329
49	1	0	-0.20117	-2.34804	1.392281
50	1	0	-1.36875	-2.54519	2.682648
51	6	0	-3.64428	-1.06592	-0.616
52	1	0	-4.69295	-1.23071	-0.33659

53	1	0	-3.57074	-1.21232	-1.69963
54	6	0	-3.04248	-0.48715	2.171453
55	1	0	-3.72714	-1.22946	2.588983
56	1	0	-2.55925	0.098482	2.959041
57	6	0	2.880272	-2.8725	-0.5339
58	1	0	3.2671	-3.12158	0.458684
59	1	0	3.151809	-3.69641	-1.20305
60	1	0	1.789842	-2.84689	-0.48148
61	6	0	-1.78466	-4.04967	-1.15909
62	1	0	-1.01058	-4.34581	-1.87459
63	1	0	-2.75854	-4.26909	-1.60806
64	1	0	-1.66609	-4.66734	-0.26317
65	6	0	4.160874	-1.51	-2.13826
66	6	0	-2.88007	2.872328	-0.53453
67	1	0	-3.26538	3.12126	0.458681
68	1	0	-3.1527	3.696293	-1.20315
69	1	0	-1.78957	2.846781	-0.48377
70	6	0	-4.16226	1.509751	-2.13755

Figure S12. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of **3**.

Table S4. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 3

HO	HOMO is 67							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs			
1	35070.84192	285.1371525	12.5274	0.0003	H-1->LUMO (44%), HOMO->LUMO (38%)			
2	46521.57424	214.9540329	3.9265	0.0009	H-5->L+2 (17%), H- 2->L+2 (36%)			
3	51387.55072	194.599662	-25.3939	0.0335	H-1->LUMO (36%), HOMO->LUMO (49%)			
4	52529.63968	190.3687149	-31.3053	0.0553	HOMO->L+1 (31%), HOMO->L+2 (12%), HOMO->L+3 (16%), HOMO->L+6 (11%)			
5	53804.81104	185.8569858	67.2801	0.1019	HOMO->L+1 (11%), HOMO->L+4 (24%), HOMO->L+6 (32%)			
6	54033.87408	185.0690918	-68.9496	0.0519	H-1->L+1 (15%), H- 1->L+2 (10%), HOMO->L+2 (19%), HOMO->L+3 (22%)			
7	55498.58704	180.1847675	-2.1243	0.0028	HOMO->L+1 (18%), HOMO->L+2 (45%), HOMO->L+6 (10%)			
8	57104.448	175.1177071	20.1706	0.0129	H-4->L+6 (10%), H- 1->L+4 (15%), H- 1->L+6 (27%)			
9	57964.24096	172.5201578	-0.1611	0.0141	HOMO->L+3 (11%), HOMO->L+5 (47%)			
10	58459.4688	171.0586874	7.1008	0.016	H-1->L+1 (12%), H- 1->L+2 (36%), HOMO->L+5 (17%)			
11	58660.30224	170.4730391	-7.8848	0.0349	H-5->LUMO (25%), H-2->LUMO (35%), HOMO->L+4 (10%)			
12	58975.6672	169.561456	15.725	0.0035	H-2->LUMO (15%), HOMO->L+4 (34%), HOMO->L+6 (12%)			
13	59667.69568	167.594875	21.8128	0.0236	H-4->LUMO (19%), H-3->LUMO (56%)			

14	59923.3752	166.8797855	-0.4797	0.02	H-1->L+1 (15%), H- 1->L+3 (10%), HOMO->L+1 (12%), HOMO->L+9 (13%)
15	60150.01856	166.2509878	-5.3293	0.0049	H-1->L+5 (41%), HOMO->L+8 (10%)
16	60805.75184	164.458126	-11.9072	0.0134	H-1->L+4 (32%)
17	60926.73584	164.1315567	-18.6064	0.0095	H-4->LUMO (50%), H-3->LUMO (23%)
18	61274.3632	163.2003905	21.9111	0.0285	H-2->L+1 (18%)
19	62019.62464	161.2392861	-17.2785	0.0217	H-1->L+1 (23%), H- 1->L+3 (10%)
20	62422.90464	160.1976079	-2.5154	0.0008	H-5->L+6 (10%), H- 2->L+6 (29%)
21	63475.46544	157.5411843	5.9773	0.0346	H-4->L+6 (17%), H- 1->L+6 (13%)
22	63975.53264	156.3097576	-15.4391	0.0225	H-1->L+3 (21%), HOMO->L+9 (13%)
23	64207.01536	155.7462209	-13.8069	0.0056	HOMO->L+7 (26%), HOMO->L+10 (37%)
24	64295.73696	155.5313069	18.1488	0.0081	H-4->L+1 (14%), H- 4->L+2 (35%)
25	64468.3408	155.1148963	8.7532	0.0376	H-3->L+2 (37%)
26	64638.52496	154.7065006	-0.4703	0.0011	H-1->L+5 (10%), HOMO->L+8 (46%)
27	64843.3912	154.2177208	-12.7511	0.009	H-3->L+6 (24%)
28	65013.57536	153.8140295	0.8278	0.0009	H-8->LUMO (25%), H-5->LUMO (11%)
29	65038.57872	153.7548974	-7.9375	0.0169	H-1->L+4 (12%), HOMO->L+9 (13%), HOMO->L+10 (15%)
30	65492.672	152.6888382	5.2641	0.0017	HOMO->L+11 (37%)

Table S5. Cartesian coordinate of dominant conformer of 3

Standard orientation:								
Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Χ	Y	Ζ			
1	6	0	1.694168	0.426139	-0.34119			
2	6	0	0.388513	0.529384	-1.2282			
3	6	0	-0.74587	1.244918	-0.41381			
4	6	0	-0.33258	1.176772	1.09322			
5	6	0	0.894785	2.031086	1.26574			

6	6	0	1.922022	1.64676	0.511623
7	6	0	1.265197	-0.77198	0.579533
8	6	0	0.645526	-1.73736	-0.42425
9	6	0	0.130991	-0.93745	-1.6067
10	6	0	2.367133	-1.42549	1.399467
11	6	0	0.106241	-0.25582	1.492271
12	6	0	2.92868	0.121266	-1.19199
13	1	0	0.590947	1.122004	-2.12604
14	8	0	0.58313	-2.9407	-0.30326
15	6	0	-0.81795	2.711321	-0.88806
16	6	0	-2.1952	0.713384	-0.66634
17	6	0	-2.7414	-0.41742	0.17099
18	8	0	-3.18305	-0.29312	1.290823
19	8	0	-2.7391	-1.60712	-0.46353
20	1	0	-1.16067	1.502672	1.728363
21	1	0	0.918943	2.881063	1.941564
22	1	0	2.888105	2.145828	0.506178
23	1	0	-0.90199	-1.20428	-1.8285
24	1	0	0.718017	-1.22403	-2.48636
25	1	0	2.827301	-0.69605	2.07413
26	1	0	1.950919	-2.2386	2.001584
27	1	0	3.14652	-1.85853	0.765826
28	1	0	0.464558	-0.22451	2.525927
29	1	0	-0.73156	-0.95648	1.493951
30	1	0	3.086392	0.917674	-1.92809
31	1	0	3.825746	0.06651	-0.56748
32	1	0	2.853231	-0.82525	-1.73548
33	1	0	-1.43989	3.312446	-0.21438
34	1	0	0.168065	3.173828	-0.93933
35	1	0	-1.26246	2.759805	-1.88936
36	1	0	-2.87226	1.54422	-0.44981
37	1	0	-2.31212	0.468113	-1.72526
38	1	0	-3.10723	-2.27214	0.146443

Figure S13. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of **4**.

 Table S6. Key transitions and their related rotatory and oscillator strengths of dominant

HOMO is 66							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs		
1	31830.08384	314.1681954	9.0587	0.0006	H-2->LUMO (16%), H-1->LUMO (49%), HOMO->LUMO		
2	32975.39904	303.2563757	1.1243	0.0002	(19%) H-2->L+1 (51%), H- 1->L+1 (23%)		
3	34223.14736	292.1998931	-96.3558	0.0167	H-1->LUMO (12%), HOMO->LUMO (33%), HOMO->L+2 (36%)		
4	43024.33008	232.4266289	21.0448	0.1302	H-1->LUMO (11%), HOMO->LUMO (39%), HOMO->L+2 (33%)		
5	46358.64912	215.7094779	1.969	0.3233	H-3->L+1 (79%), H- 2->L+1 (14%)		
6	49000.13312	204.0810782	68.3997	0.1182	H-4->LUMO (72%)		
7	50321.2784	198.7230913	-0.1672	0.0079	HOMO->L+1 (68%)		
8	50463.23296	198.1640774	21.3841	0.0265	H-2->LUMO (49%), H-1->LUMO (14%), HOMO->L+1 (15%)		
9	52343.32432	191.0463298	-57.0134	0.0453	H-5->LUMO (17%), H-1->L+2 (32%)		

conformer of 4

10	53130.52688	188.215713	-14.1452	0.0088	H-5->LUMO (33%), H-1->L+1 (28%)
11	53635.43344	186.4439114	3.7884	0.0041	H-5->LUMO (16%), H-2->L+1 (10%), H- 1->L+1 (26%), H- 1->L+2 (20%)
12	55068.69056	181.5913888	1.9818	0.0131	H-6->LUMO (53%), H-5->LUMO (15%)
13	55613.11856	179.8136889	4.153	0.0055	H-3->LUMO (70%), H-2->LUMO (10%)
14	56069.63152	178.349665	36.4652	0.0256	HOMO->L+3 (56%), HOMO->L+5 (10%), HOMO->L+6 (10%)
15	56494.68864	177.0077903	-4.356	0.0415	H-6->LUMO (11%), H-4->L+2 (57%)
16	57444.81632	174.080111	-17.3539	0.0303	H-1->L+3 (30%), H- 1->L+4 (11%)
17	57894.8768	172.7268552	-5.8801	0.0015	H-10->L+1 (28%), H- 5->L+1 (10%), H- 4->L+1 (22%)
18	58249.7632	171.6745176	7.7051	0.0079	H-2->L+3 (27%)
19	58757.08944	170.1922286	8.5984	0.0156	H-7->LUMO (64%)
20	59268.44848	168.7238363	-14.0528	0.016	H-3->L+3 (42%), H- 3->L+5 (21%)
21	59589.45936	167.814914	2.981	0.0003	H-4->L+1 (44%)
22	60028.228	166.5882924	-4.5393	0.0423	HOMO->L+5 (30%), HOMO->L+6 (20%)
23	60354.07824	165.6888862	-1.4692	0.0039	H-2->L+2 (30%), H- 1->L+2 (14%)
24	61045.30016	163.8127747	23.5584	0.0094	H-2->L+2 (19%)
25	61534.07552	162.5115827	-8.8329	0.0117	HOMO->L+4 (57%)
26	61761.52544	161.9130993	-1.0745	0.031	H-8->L+1 (10%), H- 7->L+1 (10%), H- 5->L+1 (45%)
27	62743.10896	159.3800525	-0.6534	0.0095	H-11->L+1 (10%)
28	62820.53872	159.1836078	29.2041	0.0598	H-1->L+4 (11%), H- 1->L+5 (18%)
29	62984.2704	158.7697998	-9.9481	0.0147	H-5->L+2 (27%), H- 3->L+2 (17%)
30	63288.34352	158.0069795	-11.9784	0.0177	H-1->L+5 (11%), HOMO->L+6 (12%)

Standard orientation:							
Center	Atomic	Atomic	Coordinate	es (Angstroms))		
Number	Number	Туре	Χ	Y	Ζ		
1	8	0	-1.28226	2.314432	1.833375		
2	8	0	-3.52128	-1.73183	-0.82017		
3	8	0	2.14786	-0.24152	-1.65699		
4	6	0	-0.68831	1.195697	-0.26435		
5	6	0	1.019908	-0.60914	0.417538		
6	1	0	1.109925	-0.04032	1.349293		
7	1	0	1.054298	-1.66569	0.706993		
8	6	0	3.614432	-0.36857	0.172352		
9	6	0	-1.29145	1.318362	1.151582		
10	6	0	-2.79469	0.438104	-1.37538		
11	1	0	-1.96123	2.353353	-1.68181		
12	6	0	-0.29507	-0.30624	-0.30334		
13	1	0	-0.18922	-0.63313	-1.34168		
14	6	0	-1.85721	-0.03631	1.546693		
15	1	0	-2.91891	0.034981	1.802515		
16	1	0	-1.33712	-0.36917	2.452513		
17	6	0	-1.54676	-0.97501	0.354167		
18	6	0	-2.7024	-0.84677	-0.65217		
19	6	0	-1.87186	1.387905	-1.18856		
20	1	0	-3.6434	0.566393	-2.0398		
21	6	0	-1.38751	-2.43249	0.765153		
22	1	0	-0.68905	-2.53855	1.600051		
23	1	0	-1.02947	-3.04365	-0.07008		
24	1	0	-2.35131	-2.84268	1.074251		
25	6	0	4.753795	-0.12379	-0.77637		
26	1	0	4.639755	0.839631	-1.28274		
27	1	0	4.776176	-0.88498	-1.56202		
28	1	0	5.70958	-0.13318	-0.24667		
29	6	0	3.791371	-0.58495	1.479392		
30	6	0	0.392356	2.233657	-0.52926		
31	1	0	1.226828	2.13634	0.170605		
32	1	0	-0.02019	3.237455	-0.39321		
33	1	0	0.782449	2.140156	-1.54574		
34	6	0	2.251564	-0.37823	-0.45095		
35	1	0	2.970649	-0.7682	2.164087		
36	1	0	4.786671	-0.59076	1.914625		

 Table S7. Cartesian coordinate of dominant conformer of 4

Figure S14. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of 6.

Table S8. Key transitions and their related rotatory and oscillator strengths of dominantconformer of 6

HOMO is 62							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs		
1	31560.6928	316.8498253	-0.6514	0.0004	H-3->L+1 (16%), H- 1->LUMO (21%), H- 1->L+1 (46%)		
2	32910.06768	303.8583845	1.5736	0.0006	H-3->LUMO (46%), H-1->LUMO (18%), H-1->L+1 (10%)		
3	40694.9848	245.7305255	104.6038	0.2748	HOMO->LUMO (23%), HOMO->L+1 (64%)		
4	43652.64032	229.0812177	122.7842	0.1156	H-2->LUMO (33%), HOMO->LUMO (41%)		
5	44380.964	225.3218294	-178.899	0.2066	H-2->LUMO (45%), HOMO->LUMO (21%), HOMO->L+1 (16%)		
6	45501.27584	219.7740572	3.9006	0.0621	H-3->LUMO (22%), H-1->LUMO (47%), H-1->L+1 (15%)		

					H-3->L+1 (30%), H-
7	47508.80368	210.4873039	-2.528	0.0256	2->L+1 (31%), H-
					1->L+1 (14%)
0	48070 2004	204 2054462	10 7624	0.0102	H-3->L+1 (29%), H-
8	48970.2904	204.2034462	-18./034	0.0102	2->L+1 (51%)
9	51840.83744	192.8981184	12.4294	0.1727	H-4->LUMO (84%)
10	52767.57488	189.51032	-18.1968	0.0257	H-5->LUMO (71%)
11	53620.1088	186.4971971	-19.0656	0.0684	H-4->L+1 (83%)
12	54552 40216	183 3006822	5 4701	0.002	H-1->L+2 (10%),
12	54552.47210	185.5070822	5.7/01	0.002	HOMO->L+2 (52%)
13	54856.56528	182.293586	3.2565	0.004	H-5->L+1 (60%)
					H-5->L+1 (11%), H-
14	54979 1624	181 8870926	-5 6197	0.0175	1->L+2 (27%), H-
17	54777.1024	101.0070920	-5.0177	0.0175	1->L+4 (16%),
					HOMO->L+2 (10%)
15	56072.0512	178.3419687	-89.2173	0.0263	H-6->LUMO (47%)
					H-3->L+2 (15%), H-
16	57011.6936	175.4026125	57.7844	0.0393	3->L+4 (12%), H-
					1->L+5 (11%)
17	57398.03584	174.2219895	19.4142	0.0334	H-7->L+1 (18%)
18 58239.27792		171.7054256	-56.0037	0.0453	H-7->L+1 (12%),
	58239.27792				HOMO->L+3 (17%),
					HOMO->L+4 (28%)
10	58355 17756	171 3636807	1 9663	0.0463	H-2->L+2 (43%), H-
19	36333.42230	1/1.5050807	4.9003	0.0403	2->L+5 (21%)
					H-7->L+1 (15%), H-
20	58709.5024	170.3301781	26.2937	0.0211	1->L+3 (12%), H-
					1->L+4 (15%)
21	59312 00272	168 5000383	45 4061	0.015	HOMO->L+3 (26%),
21	57512.00272	100.5777505	1001	0.015	HOMO->L+5 (10%)
22	59653.98416	167.6333968	-26.5586	0.0127	H-1->L+3 (16%)
23	60750 0992	164 6087847	-40 9044	0.0396	HOMO->L+3 (12%),
23	00750.0772	104.0007047	10.7011	0.0570	HOMO->L+4 (10%)
24	60925 12272	164 1359025	-42 1525	0.0224	H-1->L+3 (21%), H-
27	00723.12272	104.1557025	-42.1323	0.0224	1->L+6 (10%)
25	61459.06544	162.7099262	4.3184	0.0206	H-1->L+4 (10%)
					H-2->L+3 (32%), H-
26	61624.41024	162.2733583	3.5165	0.0692	2->L+4 (19%), H-
					2->L+11 (11%)
27	62093 0216	161 0486934	-3 9474	0.0068	H-6->L+1 (23%), H-
	02075.0210	101.0700754	5.7474	0.0000	1->L+10 (13%)
28	62269.65824	160.5918562	14.849	0.009	H-1->L+5 (13%)
29	62785.05008	159.2735848	12.5731	0.0324	H-7->LUMO (20%)

30	63147.19552	158.3601602	2.6972	0.0491	H-1->L+5 (10%)
31	63459.33424	157.5812309	-7.8622	0.0328	
22	62504 82622	157 2454712	20.282	0.0066	H-2->L+3 (22%), H-
32	05594.85052	137.2434712	30.282	0.0000	2->L+4 (36%)
33	63965.04736	156.3353802	-11.5843	0.0254	HOMO->L+9 (25%)
34	64157.8152	155.8656567	-7.8661	0.002	H-8->L+1 (27%)
25	64227 1028	155 1552525	1 21 24	0.0116	H-8->L+1 (18%), H-
55	04327.1928	155.4552525	-4.3124	0.0110	3->L+2 (17%)
36	64595.77728	154.808881	-4.2368	0.0103	HOMO->L+6 (22%)
					HOMO->L+6 (15%),
37	64841.77808	154.2215574	-13.5155	0.0044	HOMO->L+7 (15%),
					HOMO->L+11 (17%)
20	65106 22076	152 5049069	2 1261	0.0014	H-2->L+2 (12%), H-
30	03100.32970	155.5948908	5.4504	0.0014	2->L+5 (14%)
39	65508.8032	152.6512394	13.9712	0.005	H-1->L+6 (18%)
40	65756.41712	152.0764123	11.339	0.0091	H-1->L+6 (11%)
41	65975.80144	151.5707241	-5.4627	0.0087	H-1->L+9 (31%)
42	66192.76608	151.0739102	21.1108	0.014	
43	66274.22864	150.8882141	31.2293	0.0246	H-4->L+3 (11%)
11	66621 04044	150 102700	2 6501	0.0004	H-1->L+9 (13%),
44	00021.04944	130.102709	2.0301	0.0094	HOMO->L+8 (17%)
15	66702 65228	140 7149722	17 9207	0.0225	H-9->LUMO (18%),
43	00795.05528	149./140233	1/.039/	0.0233	HOMO->L+8 (11%)
46	66889.63392	149.4999959	38.8431	0.0228	H-9->L+1 (13%)
47	67197.73984	148.8145289	-6.2406	0.0159	HOMO->L+8 (13%)
48	67374.37648	148.4243792	-7.2259	0.0066	H-2->L+6 (12%)
49	67615.53792	147.8950003	1.5549	0.0015	H-2->L+6 (12%)
50	68034.14256	146.9850229	-15.5205	0.0386	H-1->L+8 (19%)

Table S9. Cartesian coordinate of dominant conformer of 6

Standard orientation:									
Center	Atomic	Atomic	Coordinates (Angstroms)						
Number	Number	Туре	Χ	Y	Ζ				
1	8	0	1.912076	-0.83386	-2.66965				
2	8	0	-1.02685	-2.59716	0.115579				
3	6	0	1.620543	-0.28343	-1.61919				
4	6	0	0.954031	-1.47346	0.680056				
5	1	0	1.299904	-2.38503	1.160064				
6	6	0	1.975367	-0.90224	-0.30799				
7	1	0	2.884793	-1.49301	-0.37619				
8	6	0	1.012955	1.054219	-1.59705				
9	1	0	0.871265	1.512715	-2.57208				

10	6	0	0.693125	1.702879	-0.46858
11	6	0	-0.58884	0.75234	1.468695
12	1	0	-0.4478	0.359448	2.484784
13	1	0	-1.1681	1.669138	1.573276
14	6	0	-0.52211	-1.52457	0.410056
15	6	0	0.817355	1.073411	0.902022
16	1	0	1.269097	1.823198	1.564339
17	6	0	-2.53496	-0.11662	0.07609
18	6	0	-1.30515	-0.27337	0.613448
19	6	0	1.681842	-0.1936	0.980676
20	6	0	2.727738	-0.18928	2.072695
21	1	0	2.269777	-0.02713	3.055829
22	1	0	3.463991	0.605382	1.906191
23	1	0	3.263885	-1.14291	2.107973
24	6	0	0.130689	3.095504	-0.50963
25	1	0	0.140498	3.499091	-1.52485
26	1	0	0.710265	3.766798	0.135707
27	1	0	-0.90338	3.120867	-0.14746
28	6	0	-3.19758	-1.12789	-0.82441
29	1	0	-3.91874	-0.6255	-1.47781
30	1	0	-3.74711	-1.86551	-0.22786
31	1	0	-2.48895	-1.69086	-1.43086
32	6	0	-3.40117	1.093265	0.312415
33	1	0	-3.03752	1.773381	1.082378
34	1	0	-4.40657	0.766854	0.604069
35	1	0	-3.52018	1.658252	-0.62082

Figure S15. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of **7**.

HOMO is 63							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs		
1	35866.11008	278.8147356	-0.3848	0.0002	H-2->LUMO (26%), H-1->LUMO (50%), HOMO->LUMO (11%)		
2	51138.32368	195.5480602	83.7691	0.1854	HOMO->L+1 (38%), HOMO->L+2 (17%), HOMO->L+3 (11%)		
3	51998.9232	192.3116746	-18.6854	0.0265	H-2->LUMO (50%), H-1->LUMO (12%), HOMO->LUMO (27%)		
4	52231.21248	191.4564017	-120.2375	0.2076	H-1->L+1 (33%), H- 1->L+3 (28%), HOMO->L+3 (10%)		
5	52826.45376	189.2990971	-40.0667	0.0137	H-1->LUMO (20%), HOMO->LUMO (28%), HOMO->L+2 (18%)		
6	53238.60592	187.8336186	22.0059	0.0228	H-1->LUMO (10%), HOMO->LUMO (21%), HOMO->L+1 (14%), HOMO->L+2 (13%)		
7	54217.76976	184.4413749	89.2516	0.1235	H-1->L+1 (10%), H- 1->L+2 (24%), HOMO->L+2 (11%)		
8	55905.89984	178.8719979	16.0291	0.0351	H-3->L+1 (14%), H- 1->L+2 (16%), H- 1->L+3 (13%)		
9	56205.1336	177.919691	1.5472	0.0557	H-2->L+1 (22%), H- 1->L+5 (15%)		
10	57210.10736	174.7942883	10.3839	0.0204	H-1->L+3 (13%), HOMO->L+3 (25%), HOMO->L+4 (23%)		
11	58786.93216	170.1058319	50.6828	0.0235	HOMO->L+4 (16%)		
12	58841.77824	169.9472772	-8.557	0.0088	H-1->L+4 (22%)		
13	59067.61504	169.2975075	-84.6227	0.0387	H-2->L+3 (20%), H- 1->L+6 (11%)		

 Table S10. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 7

14	59262 80256	168 7399105	-0 3076	0.0219	HOMO->L+5 (11%),
17	57202.00250	100.7577105	-0.3070	0.0217	HOMO->L+6 (31%)
15	59585 42656	167 8262719	13 8611	0.0172	H-1->L+1 (15%), H-
10	27202.12020	107.0202717	15.0011	0.0172	1->L+4 (13%)
					H-3->LUMO (12%),
16	59811 26336	167 1925895	1 7335	0.0211	H-1->L+5 (10%), H-
10	2000	107.1720070	1.7555	0.0211	1->L+6 (22%),
					HOMO->L+5 (14%)
17	60046.77888	166.5368266	-0.8883	0.0555	H-4->LUMO (12%),
		100.00000000000	0.0002		H-3->LUMO (23%)
18	60324.23552	165.7708534	-10.6952	0.0156	H-1->L+5 (23%),
		1000000	1010702	010100	HOMO->L+5 (16%)
19	60996.1	163.944908	-15.3636	0.011	H-5->LUMO (19%),
					H-4->LUMO (53%)
20	61738.1352	161.974442	-13.3042	0.0179	
21	62100.28064	161.0298681	-3.6247	0.0045	H-1->L+9 (17%)
22	62447.10144	160.135535	-10.2558	0.004	H-1->L+10 (15%),
					H-1->L+11 (10%)
23	62801.98784	159.2306286	-1.8943	0.0277	H-2->L+1 (18%)
24	62986.69008	158.7637005	-15.6118	0.0179	HOMO->L+12 (10%)
25	63218.1728	158.1823637	51.4176	0.0258	H-4->L+1 (19%)
26	63274.632	158.0412194	-7.6405	0.0144	H-5->LUMO (38%),
		10000112171	,		H-3->LUMO (12%)
27	63583.54448	157.2733965	20.0468	0.0134	HOMO->L+7 (21%),
					HOMO->L+11 (10%)
28	63651.29552	157.1059932	9.6455	0.0186	H-1->L+10 (11%),
		10,1100,002	,	010100	HOMO->L+10 (39%)
29	64084.41824	156.0441723	-2.2113	0.0379	H-1->L+8 (16%)
					HOMO->L+8 (12%),
30	64398.97664	155.2819706	2.6376	0.0043	HOMO->L+9 (21%),
					HOMO->L+13 (12%)
31	64940.1784	153.9878739	-28.8006	0.0101	H-1->L+10 (11%)
32	65034.54592	153.7644318	7.4633	0.0243	H-2->L+2 (16%)
33	65211.18256	153.3479322	8.6626	0.0147	H-6->LUMO (31%)
34	65545 0984	152 5667097	7 5822	0.0054	H-3->L+2 (13%), H-
51	00010.0001	152.5007057	1.5022	0.0051	2->L+3 (13%)
35	65739.47936	152.1155947	-6.5638	0.0022	H-6->LUMO (33%)
36	65885.46672	151.7785408	-16.6649	0.0191	H-1->L+11 (12%)
37	66283.90736	150.8661815	-17.7378	0.0162	H-2->L+6 (17%)
					H-3->L+1 (11%), H-
38	66512.9704	150.3466157	-32.4641	0.0244	2->L+4 (10%), H-
					1->L+7 (15%)
39	66777.52208	149.7509894	57.903	0.0278	H-2->L+9 (10%)

40	66877.53552	149.5270411	7.5165	0.019	H-2->L+4 (13%)
41	67107.40512	149.0148514	1.1211	0.0085	
42	67363.8912	148.4474816	-5.7733	0.0101	
43	67611 50512	147 9038217	-7.0602	0.0113	H-8->LUMO (19%),
-ТЈ	07011.30312	147.9030217	-7.0002	0.019 0.0085 0.0101 0.0113 0.0039 0.0065 0.0047 0.0108 0.0031 0.0165 0.0052	H-7->LUMO (10%)
44	67649.41344	147.8209417	-0.7393	0.0039	HOMO->L+12 (14%)
45	68112.37888	146.8161906	-24.5363	0.0065	H-4->L+2 (12%)
46	68483.39648	146.020795	-4.1257	0.0047	H-3->L+4 (10%)
17	60775 26110	145 5066956	17.0220	0.0100	H-4->L+1 (11%), H-
4/	08/23.30448	143.3000830	-17.0229	0.0108	3->L+1 (10%)
48	68946.36192	145.0402853	0.5726	0.0031	H-1->L+12 (13%)
40	60164 02069	144 5910222	10 1/66	0.0165	HOMO->L+7 (10%),
49	09104.93908	144.3819232	-18.1400	0.0165	HOMO->L+18 (10%)
50	69273.01872	144.356348	9.804	0.0052	H-1->L+14 (13%)

Table S11. Cartesian coordinate of dominant conformer of 7

Standard orientation:								
Center	Atomic	Atomic	Coordinates	(Angstroms)				
Number	Number	Туре	Χ	Y	Ζ			
1	8	0	-1.16327	-1.64084	-2.28753			
2	1	0	-1.89531	-1.04324	-2.49978			
3	8	0	2.708323	1.882814	0.239481			
4	6	0	-2.15219	-0.40213	0.858545			
5	6	0	-0.73477	1.182008	-0.48732			
6	6	0	0.373605	2.2444	-0.37727			
7	1	0	0.592913	2.697458	-1.35166			
8	1	0	0.147397	3.061816	0.316947			
9	6	0	-0.73518	-1.38085	-0.9449			
10	1	0	-0.07246	-2.22455	-0.72151			
11	6	0	1.590079	1.45409	0.083005			
12	6	0	0.07836	-0.07882	-0.87009			
13	1	0	0.587436	0.040724	-1.83309			
14	6	0	-1.91037	-1.3915	-0.00456			
15	1	0	-2.56916	-2.25521	-0.07294			
16	6	0	-1.85917	1.628585	-1.41104			
17	1	0	-2.27891	2.581987	-1.06865			
18	1	0	-2.68092	0.908318	-1.44977			
19	1	0	-1.48666	1.781786	-2.43022			
20	6	0	1.09467	0.024068	0.313656			
21	6	0	-1.16698	0.747847	0.937326			
22	1	0	-1.5901	1.580037	1.510698			
23	6	0	0.164648	0.223225	1.552948			

24	1	0	0.002266	-0.7229	2.071497
25	1	0	0.604921	0.918408	2.275559
26	6	0	-3.31344	-0.39463	1.807585
27	1	0	-3.93271	-1.28942	1.699344
28	1	0	-3.94672	0.48627	1.642669
29	1	0	-2.96712	-0.3416	2.847846
30	6	0	2.184677	-1.00897	0.397631
31	6	0	2.475407	-1.66787	1.52025
32	6	0	2.971337	-1.23618	-0.86807
33	1	0	2.334121	-1.61167	-1.6773
34	1	0	3.772161	-1.96209	-0.70592
35	1	0	3.425702	-0.30138	-1.21426
36	1	0	1.942543	-1.50961	2.451532
37	1	0	3.286049	-2.39056	1.547194

Figure S16. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of 8

HO	MO is 62				
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs
1	32931.03824	303.6648868	13.136	0.0011	H-3->LUMO (14%), H-2->LUMO (23%), H-1->LUMO (38%), HOMO->LUMO (18%)
2	35938.70048	278.2515747	7.1872	0.0002	H-3->L+1 (32%), HOMO->L+1 (59%)
3	43994.62176	227.3005108	-44.1236	0.3088	H-2->LUMO (54%), H-1->LUMO (41%)
4	45654.52224	219.0363519	21.959	0.0393	H-2->LUMO (13%), HOMO->LUMO (77%)
5	51101.22192	195.6900368	0.5803	0.0024	H-3->LUMO (31%), H-3->L+1 (17%), H- 1->L+1 (14%), HOMO->L+1 (22%)
6	52245.73056	191.4031997	-2.5906	0.0118	H-3->LUMO (43%), H-3->L+1 (11%), H- 1->L+1 (14%)
7	52733.69936	189.6320592	43.5546	0.1856	H-4->LUMO (10%), HOMO->L+2 (44%), HOMO->L+3 (27%)
8	53049.87088	188.5018726	6.6987	0.0544	H-5->LUMO (13%), H-4->LUMO (58%)
9	55029.97568	181.7191426	-9.1979	0.0963	HOMO->L+2 (13%), HOMO->L+3 (23%), HOMO->L+4 (22%), HOMO->L+6 (11%)
10	55350.98656	180.6652532	-33.7496	0.033	H-5->LUMO (56%), H-4->LUMO (14%)
11	55875.25056	178.9701147	-18.9821	0.0428	H-3->L+1 (25%), H- 1->L+1 (44%)
12	56518.07888	176.9345349	-18.9799	0.0051	H-2->L+2 (10%), H- 1->L+2 (22%)
13	56751.98128	176.205302	-11.6453	0.0299	H-2->L+1 (65%), H- 1->L+1 (12%)

 Table S12. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 8

					H-3->L+2 (20%), H-
14	56952.00816	175.5864336	1.6659	0.0778	1->L+3 (14%),
					HOMO->L+6 (19%)
					H-2->L+2 (31%), H-
15	57724.69264	173.2360891	-1.4753	0.0127	2->L+3 (21%), H-
					1->L+2 (11%)
16	5070(105(170 1001 (50	42.007	0.0406	H-1->L+3 (22%),
16	58/86.1256	1/0.1081658	43.997	0.0406	HOMO->L+6 (12%)
17	59024.0608	169.4224332	-15.7637	0.0103	
10	50012 07640	167 1000004	6 0 4 9 7	0.0078	HOMO->L+5 (49%),
18	39812.87048	107.1880804	-0.048/	0.0078	HOMO->L+7 (11%)
					H-2->L+3 (10%), H-
19	60308.10432	165.8151937	-9.296	0.0232	2->L+9 (11%), H-
					2->L+10 (13%)
					HOMO->L+2 (13%),
20	60510.55088	165.2604357	-12.4292	0.0298	HOMO->L+4 (15%),
					HOMO->L+9 (10%)
21	60537 16736	165 1877753	5 5860	0.0456	H-7->LUMO (20%),
21	00557.10750	103.18///33	-5.5809	0.0430	H-6->LUMO (44%)
22	61518.75088	162.5520651	-15.6817	0.0627	H-4->L+1 (71%)
22	62075 27728	161 0047205	7 1101	0.0142	H-7->LUMO (35%),
23	02073.27728	101.0947293	-/.1101	0.0142	H-6->LUMO (15%)
24	62224 40088	160 7084262	11 7019	0.0078	H-3->L+2 (11%), H-
24	02224.49088	100.7084202	11./910	0.0078	3->L+3 (20%)
					H-2->L+2 (12%), H-
					2->L+3 (15%), H-
25	62499.52784	160.0012087	-10.0028	0.0067	2->L+5 (12%), H-
					2->L+8 (11%), H-
					1->L+5 (11%)
26	62510 81968	159 9723064	0.9452	0.0202	HOMO->L+9 (13%),
20	02310.01700	157.7725004	0.7432	0.0202	HOMO->L+11 (12%)
27	62719.71872	159.4394905	-5.9229	0.0445	H-8->LUMO (51%)
28	62952.008	158.851168	-13.2081	0.0166	
29	63405.29472	157.7155353	5.2035	0.0104	H-2->L+5 (14%)
30	63577.89856	157.2873628	38.6079	0.0298	HOMO->L+6 (15%)
					H-1->L+4 (12%),
31	63827.93216	156.67122	0.6978	0.0069	HOMO->L+8 (10%),
					HOMO->L+10 (11%)
32	64019.08688	156.2034151	-2.9762	0.0042	H-5->L+1 (72%)
33	64325 57968	155 4591500	-2 0997	0.0055	H-2->L+4 (11%), H-
55	07525.57700	100.4071007	2.0771	0.0055	2->L+6 (27%)
34	64438 49808	155 1867331	10.24	0.045	HOMO->L+10 (11%),
5-1	07750.77000	155.1007551	10.4 ⁻ T		HOMO->L+11 (12%)

35	65157 1/30/	153 4751147	1 3584	0.0015	H-1->L+4 (11%),
55	03137.14304	155.4/5114/	1.5564	0.0015	HOMO->L+12 (18%)
26	65422 70212	152 8262212	21 7156	0.0147	H-2->L+4 (10%), H-
30	03433.79312	152.8202515	21./130	0.0147	2->L+5 (14%)
37	65528.16064	152.6061452	-19.436	0.011	H-3->L+2 (10%)
20	65822 55504	151 0226072	15 7652	0.0046	H-6->L+1 (15%), H-
30	03822.33304	131.9230072	-13.7032	0.0040	6->L+3 (11%)
20	66172 60208	151 1100452	10 5051	0.0108	H-6->L+1 (24%),
39	00172.00208	151.1199452	19.3031	0.0198	HOMO->L+9 (14%)
40	66407.31104	150.5858292	20.8907	0.0105	H-6->L+1 (44%)
41	66554.91152	150.2518713	-0.5191	0.0064	HOMO->L+7 (34%)
42	66870.27648	149.5432728	-1.4429	0.0015	HOMO->L+8 (12%)
12	(7)72 55(10	149 6469164	1 2724	0.005	H-9->LUMO (12%),
43	07275.55048	148.0408104	-1.2/34	0.005	H-7->L+1 (27%)
44	67534.88192	148.0716293	-22.8142	0.0299	
15	67629 1216	147 9456107	0 2747	0.0191	H-3->L+5 (12%),
43	07038.1210	14/.843019/	0.3/4/	0.005 0.0299 0.0181	HOMO->L+11 (13%)
16	67910 5076	147 4500040	2 1717	0.0001	H-2->L+6 (12%), H-
40	0/819.39/0	147.4300049	3.4/1/	0.0091	2->L+11 (17%)
					H-11->LUMO (11%),
47	68106.73296	146.8283614	6.7372	0.0024	H-9->LUMO (24%),
					H-7->L+1 (25%)
10	(9209 25052	146 6005055	24.0626	0.014	H-2->L+7 (12%), H-
40	08208.33932	140.0093933	-34.0020	0.014	1->L+7 (18%)
49	68530.98352	145.9194	-4.0725	0.0189	H-2->L+7 (13%)
50	69900 24672	145 220205	1 2000	0.0112	H-4->L+2 (11%),
50	00009.240/2	143.329303	-4.3070	0.0112	HOMO->L+14 (12%)

Table S13. Cartesian coordinate of dominant conformer of 8

Standard orientation:								
Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Χ	Y	Ζ			
1	8	0	2.532745	1.980311	-0.53733			
2	8	0	-0.27845	-2.17521	1.83386			
3	6	0	1.003325	0.063514	-0.32533			
4	6	0	-0.67948	-1.29321	1.076031			
5	6	0	-1.32094	0.686752	-0.80317			
6	1	0	-1.75021	1.39711	-1.32476			
7	6	0	-2.24095	-0.49899	-0.60247			
8	6	0	2.114223	-0.94757	-0.41175			
9	6	0	-0.01943	0.159336	-1.49804			
10	1	0	-0.16761	-0.7094	-1.90314			

11	1	0	0.287914	0.777969	-2.17888
12	6	0	1.451746	1.530953	-0.22831
13	6	0	-0.80083	1.204635	0.553025
14	6	0	0.084546	0.004907	0.943068
15	1	0	0.596406	0.19608	1.756297
16	6	0	0.254227	2.300717	0.295297
17	1	0	-0.06239	2.940597	-0.36152
18	1	0	0.474188	2.771366	1.114237
19	6	0	-1.89746	-1.43675	0.285325
20	1	0	-2.43751	-2.18516	0.399666
21	6	0	-1.85087	1.615682	1.576851
22	1	0	-2.35779	2.356234	1.235987
23	1	0	-1.41751	1.873592	2.393808
24	1	0	-2.43918	0.876251	1.746498
25	6	0	2.293938	-1.74343	-1.45755
26	1	0	1.716009	-1.59167	-2.01916
27	6	0	3.023565	-1.01854	0.784515
28	1	0	3.341007	-0.13805	0.997986
29	1	0	3.770236	-1.58827	0.585568
30	1	0	2.539867	-1.37458	1.533354
31	6	0	-3.43441	-0.59501	-1.49013
32	1	0	-3.99737	0.170362	-1.35291
33	1	0	-3.92422	-1.39401	-1.28198
34	1	0	-3.15004	-0.62331	-2.4063
35	1	0	3.056701	-2.39394	-1.49111

Figure S17. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of 9

HO	MO is 59				
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs
1	32967.33344	303.3305687	-0.8798	0.0009	H-2->LUMO (70%), H-2->L+1 (12%)
2	37345.34112	267.7710178	-123.6907	0.159	HOMO->LUMO (63%), HOMO->L+1 (35%)
3	40649.81744	246.0035648	116.8801	0.108	H-1->LUMO (44%), HOMO->LUMO (14%), HOMO->L+1 (32%)
4	43546.1744	229.6412977	-78.1932	0.1647	H-1->LUMO (35%), HOMO->LUMO (20%), HOMO->L+1 (31%)
5	46223.14704	216.3418253	4.2576	0.0048	HOMO->L+2 (64%), HOMO->L+5 (18%)
6	50112.37936	199.5514906	0.6581	0.0043	HOMO->L+4 (31%), HOMO->L+5 (43%)
7	51004.43472	196.0613828	-2.4115	0.0252	HOMO->L+3 (61%), HOMO->L+5 (16%)
8	51360.12768	194.7035658	9.7298	0.0099	H-1->L+1 (36%), HOMO->L+4 (13%)
9	51844.06368	192.8861144	2.99	0.04	H-1->L+1 (30%), HOMO->L+2 (10%), HOMO->L+4 (16%), HOMO->L+6 (12%)
10	53106.33008	188.3014696	-23.5454	0.0114	H-2->LUMO (12%), H-2->L+1 (45%)
11	53655.59744	186.373845	-7.5124	0.0148	H-2->L+1 (12%), H- 1->L+2 (30%)
12	54216.15664	184.4468627	-12.015	0.0028	H-4->LUMO (15%), H-3->LUMO (29%), H-3->L+1 (10%), H- 1->L+1 (17%)
13	54938.02784	182.0232796	14.1234	0.0306	HOMO->L+7 (20%), HOMO->L+8 (37%), HOMO->L+9 (10%)

Table S14. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 9

					H-5->LUMO (17%),
					H-5->L+1 (10%), H-
14	55280.00928	180.89722	37.8643	0.0451	4->LUMO (17%), H-
					3->L+1 (15%), H-
					2->L+2 (12%)
					H-2->L+2 (20%), H-
15	55928.48352	178.7997702	-8.2652	0.009	2->L+4 (11%),
					HOMO->L+10 (16%)
					HOMO->L+8 (15%),
16	56143.83504	178.113946	-13.9279	0.0219	HOMO->L+9 (13%),
					HOMO->L+10 (18%)
17	5(200 22272	177 2410066	20.2296	0.0276	H-4->L+1 (19%),
1/	30388.22272	1//.3419900	29.3280	0.0570	HOMO->L+10 (12%)
10	56662 25069	176 4011000	14 1006	0.0241	HOMO->L+9 (11%),
10	50005.25908	170.4011989	14.1000	0.0341	HOMO->L+10 (20%)
10	56778 50776	176 1227011	65 0286	0 1192	HOMO->L+9 (17%),
19	30778.39770	1/0.122/011	-03.0280	0.1183	HOMO->L+11 (13%)
20	57242.36976	174.6957724	31.7555	0.0395	
21	58009.40832	172.38583	-19.0005	0.0286	HOMO->L+12 (15%)
					H-5->LUMO (10%),
22	50107 65000	171 9577501	17 8626	0.0422	H-5->L+1 (22%), H-
	38187.03808	1/1.83//301	17.8020	0.0455	4->LUMO (12%), H-
					3->L+1 (14%)
23	58732.89264	170.2623445	-24.6078	0.0197	H-1->L+5 (18%)
					H-1->L+4 (26%), H-
24	59268.44848	168.7238363	-11.6766	0.0099	1->L+6 (11%),
					HOMO->L+11 (10%)
					H-1->L+3 (18%), H-
25	60154.85792	166.2376132	-3.8192	0.05	1->L+5 (17%),
					HOMO->L+13 (11%)
26	60227.44832	166.0372518	3.9066	0.0065	HOMO->L+13 (28%)
27	60574 26012	165 0865077	6 7600	0.0424	H-3->LUMO (10%),
27	00374.20912	105.0805977	0.7009	0.0424	HOMO->L+13 (13%)
28	60958.19168	164.046861	32.8707	0.1048	HOMO->L+6 (13%)
20	61400 94256	162 6522027	10 1222	0 1222	H-2->L+3 (10%), H-
29	01400.84230	102.0322927	-10.1323	0.1323	2->L+5 (30%)
20	61722 20504	161 0971204	2 244	0.025	H-2->L+3 (29%), H-
50	01/33.29384	101.90/1394	2.244	0.023	2->L+5 (10%)

Standard orientation:								
Center	Atomic	Atomic	Coordinate	es (Angstroms	3)			
Number	Number	Туре	X	Y	Ζ			
1	6	0	2.602051	-0.57228	-1.51631			
2	6	0	2.906479	0.735064	-0.93131			
3	6	0	2.151569	1.2412	0.056034			
4	6	0	0.915323	0.472803	0.489255			
5	6	0	1.149334	-1.05116	0.435846			
6	6	0	1.75519	-1.41215	-0.90747			
7	6	0	-0.25785	0.919152	-0.41672			
8	6	0	-1.55452	0.17618	-0.17197			
9	6	0	-1.38042	-1.30389	-0.09678			
10	6	0	-0.17401	-1.79621	0.677854			
11	6	0	2.41522	2.56694	0.703866			
12	8	0	-2.17083	-2.09861	-0.57804			
13	6	0	-2.77062	0.744491	-0.04439			
14	6	0	-3.01312	2.229832	-0.13049			
15	6	0	-4.04306	-0.02561	0.204373			
16	6	0	2.140295	-1.48559	1.53404			
17	1	0	3.090286	-0.85451	-2.4454			
18	1	0	3.757425	1.293127	-1.3153			
19	1	0	0.664539	0.738455	1.525926			
20	1	0	1.543074	-2.39471	-1.32383			
21	1	0	-0.39075	1.99489	-0.29549			
22	1	0	0.049305	0.760367	-1.45841			
23	1	0	-0.06064	-2.86743	0.484226			
24	1	0	-0.44167	-1.68891	1.739817			
25	1	0	3.258745	3.084783	0.238301			
26	1	0	1.536926	3.222636	0.643067			
27	1	0	2.638383	2.442013	1.771405			
28	1	0	-2.14757	2.812288	-0.44454			
29	1	0	-3.82287	2.425991	-0.84394			
30	1	0	-3.35434	2.616366	0.83827			
31	1	0	-3.87782	-1.03503	0.577304			
32	1	0	-4.6756	0.523526	0.911861			
33	1	0	-4.61206	-0.12039	-0.72869			
34	1	0	3.115801	-1.01197	1.395673			
35	1	0	1.760052	-1.21435	2.526749			
36	1	0	2.284211	-2.571	1.512444			

Table S15. Cartesian coordinate of dominant conformer of 9
4.2 Chemical calculation details for 5

The systematic random conformational analysis of **5** were performed in the SYBYL-X 2.1.1 program by using MMFF94s molecular force field with an energy cutoff of 10 kcal/mol⁻¹ to the global minima, which afforded 3 conformers, respectively. All of the obtained conformers were further optimized using DFT at the B3LYP/6-31+G(d) level in gas phase using Gaussian09 software,² which afforded 3 stable conformers. The optimized stable conformers were further subjected to ECD calculations at the B3LYP/6-31+G(d) level with the PCM solvation model of acetonitrile, with the consideration of the first 30 excitations. The overall ECD curves of **5** were weighted by Boltzmann distribution, and were subsequently compared with the experimental ones. The ECD spectra were produced by SpecDis 1.71 software.³

Figure S18. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of **5**

HOMO is 63						
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs	
1	29821.74944	335.3257333	-2.6145	0.0004	H-2->LUMO (24%), HOMO->LUMO (72%)	
2	36115.33712	276.890673	-1.0265	0.0134	H-2->LUMO (72%), HOMO->LUMO (26%)	
3	37998.65472	263.1672114	67.4833	0.2653	H-1->LUMO (90%)	
4	42508.13168	235.2491066	12.2345	0.0557	H-3->LUMO (89%)	
5	44263.20624	225.9212752	0.6586	0.0241	H-4->LUMO (91%)	
6	46187.6584	216.5080532	-22.9543	0.033	H-1->L+1 (11%), HOMO->L+1 (82%)	
7	47104.71712	212.2929637	-7.6551	0.0043	H-1->L+1 (82%)	
8	48371.82288	206.7319238	-56.7318	0.0786	H-5->LUMO (30%), H-2->L+1 (46%)	
9	48638.79424	205.5972019	49.0976	0.0335	H-5->LUMO (64%), H-2->L+1 (18%)	
10	49392.12128	202.46144	-75.8582	0.0304	H-1->L+2 (31%), HOMO->L+2 (54%)	
11	49453.41984	202.2104848	13.7384	0.0365	H-1->L+2 (61%), HOMO->L+2 (21%)	
12	50486.6232	198.0722688	20.3633	0.0062	H-2->L+2 (34%), HOMO->L+3 (37%)	
13	50674.55168	197.3377103	26.7871	0.0049	H-2->L+2 (32%), HOMO->L+3 (40%)	
14	51695.65664	193.4398487	14.2139	0.0547	H-3->L+1 (70%)	
15	52009.40848	192.2729039	-4.386	0.0285	H-2->L+3 (14%), H- 1->L+3 (10%), HOMO->L+4 (45%)	
16	52159.42864	191.7198915	28.2423	0.0257	H-1->L+3 (79%)	
17	52516.73472	190.4154943	-27.4594	0.0132	H-2->L+3 (48%), HOMO->L+4 (17%)	
18	52728.05344	189.6523643	7.5066	0.0051	H-6->LUMO (84%)	
19	52810.32256	189.3569195	-10.1566	0.0305	HOMO->L+5 (64%)	
20	53070.03488	188.4302511	2.2335	0.0036	H-1->L+4 (82%)	
21	53409.59664	187.2322697	32.953	0.0101	H-7->LUMO (66%)	
22	53590.26608	186.6010515	-21.5805	0.0128	H-2->L+4 (73%)	
23	53815.29632	185.8207737	-6.3	0.0121	H-1->L+5 (61%)	

Table S16. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 5

24	54007.2576	185.1602996	1.7233	0.0052	H-1->L+5 (10%),
					H-4->L+1 (10%) H-
25	54892.86048	182.1730533	-38.4676	0.034	$2 \rightarrow L+5 (66\%)$
26	55501.81328	180.1742936	0.8487	0.0139	H-4->L+1 (82%)
					H-2->L+6 (19%),
27	55889.76864	178.9236249	9.6528	0.0087	HOMO->L+6 (21%),
					HOMO->L+7 (33%)
28	56094.63488	178.2701683	-10.0182	0.0352	H-2->L+6 (29%), H-
					1->L+6 (18%),
					HOMO->L+7 (34%)
29	56366.4456	177.4105125	-40.6063	0.069	H-2->L+6 (15%), H-
					1->L+6 (66%)
30	56405.96704	177.2862079	21.446	0.0182	H-3->L+2 (69%)

Table S17. Cartesian coordinate of dominant conformer of 5

Standard orientation:						
Center Atomic A		Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Ζ	
1	6	0	2.100775	-0.56281	-1.18261	
2	6	0	1.586389	0.824278	-1.42171	
3	6	0	0.928448	1.571641	-0.51609	
4	6	0	0.614666	1.068348	0.890045	
5	6	0	1.25814	-0.26487	1.266935	
6	6	0	1.890709	-1.12417	0.191132	
7	6	0	-0.91083	0.93427	1.13896	
8	6	0	-1.59027	-0.14507	0.309139	
9	6	0	-0.70109	-1.29688	-0.09118	
10	6	0	0.52146	-1.47851	0.735351	
11	6	0	1.838851	-0.33405	2.653056	
12	8	0	-0.9094	-2.05604	-1.02575	
13	6	0	-2.88541	-0.09408	-0.0916	
14	6	0	0.494639	2.973908	-0.84833	
15	6	0	-3.55523	-1.16961	-0.91642	
16	6	0	-3.82983	1.030267	0.263624	
17	1	0	0.999654	1.829502	1.582977	
18	8	0	3.506773	-0.51812	-1.42512	
19	1	0	2.684346	-1.81466	0.459965	
20	1	0	0.479009	-2.36213	1.365563	
21	1	0	1.672166	-1.2437	-1.92515	
22	1	0	1.784547	1.226836	-2.41283	
23	1	0	-1.36817	1.913223	0.968035	

24	1	0	-1.07835	0.692892	2.197394
25	1	0	2.657371	0.385617	2.756626
26	1	0	1.075698	-0.0995	3.402044
27	1	0	2.236859	-1.32881	2.880712
28	1	0	0.880091	3.304308	-1.81894
29	1	0	-0.59637	3.044289	-0.88744
30	1	0	0.86501	3.675396	-0.09383
31	1	0	-3.30861	-2.17303	-0.55643
32	1	0	-4.64685	-1.09267	-0.85788
33	1	0	-3.27663	-1.07163	-1.97033
34	1	0	-3.42608	1.74029	0.987627
35	1	0	-4.10412	1.586353	-0.63882
36	1	0	-4.74474	0.626746	0.711948
37	1	0	3.867627	0.157868	-0.82618

4. In vivo anti-inflammatory effects of compounds 1–9

wound model

CuSO₄ model

Figure S19. Anti-inflammatory effects of compounds **1–9**. The neutrophil number (red fluorescence) in inflammatory sites (red rectangle or ellipse marked) in wound (top panel) and CuSO₄ (down panel) models was observed by fluorescence microscopy (MVX10, Olympus, Japan).

5. HPLC-HR-MS analyses of the methanol extract of the fresh fruits of *Eugenia uniflora*

In order to verify that compounds 1-9 are indeed naturally occurring in plants, the identification of these compounds in the methanol extract of the fresh fruits of *E*. *uniflora* was conducted using HPLC-ESI-MS. Ion peaks with the identical retention times and exact mass data of compounds 1-9 were presented in the extracted-ion chromatogram (EIC) for the methanol extract, shown in Figures S106–121. The above results suggested that compounds 1-9 are presented in the plant itself.

Preparation of sample solution: The fresh fruits (20 g) of *E. uniflora* were smashed into crude powders and extracted using MeOH by ultrasonic extraction in dark for 60

minutes. Then the extract was concentrated in vacuo and filtered for further HPLC-HRESIMS analysis.

HPLC conditions: HPLC analyses were performed on an SCIEX Integrated System Shimadzu Nexera Prominence LC. All the separations were carried out at 35 °C on an Agilent Poroshell 120 EC-C18 column (4.6 mm × 150 mm, 4 μ m). A gradient program with the mobile phase CH₃CN/H₂O was used as eluent.

MS conditions: ESI-MS analysis was performed using a SCIEX X500R Q-TOF mass spectrometer equipped with an ESI source. The mass range was set at m/z 50–1000. The Q-TOF MS data were acquired in positive mode and conditions of MS analysis were as follows: CAD gas flow-rate, 7 L/min; drying gas temperature, 550 °C; Ion source gas pressure, 60 psi; Ion spray voltage, 5500 V; Declustering potential, 80 V. Software generated data file: SCIEX OS 1.0.

Figure S20. UV spectrum of 1 in MeOH

Figure S21. IR spectrum of 1 (KBr disc)

Figure S25. ¹³C NMR and DEPT-135 Spectra of 1 in CDCl₃

Figure S26. ¹H-¹H COSY spectrum of 1 in CDCl₃

Figure S27. HSQC spectrum of 1 in CDCl₃

Figure S29. NOESY spectrum of 1 in CDCl₃

Figure S30. UV spectrum of 2 in MeOH

Figure S31. IR spectrum of 2 (KBr disc)

Figure S33. ¹H NMR spectrum of 2 in CDCl₃

Figure S35. ¹³C NMR and DEPT-135 Spectra of 2 in CDCl₃

Figure S37. HSQC spectrum of 2 in CDCl₃

Figure S38. HMBC spectrum of 2 in CDCl₃

Figure S40. UV spectrum of 3 in MeOH

Figure S41. IR spectrum of 3 (KBr disc)

Figure S42. HR-ESI-MS spectrum of 3

Figure S44. ¹³C NMR spectrum of 3 in CDCl₃

Figure S46. ¹H-¹H COSY spectrum of 3 in CDCl₃

Figure S49. NOESY spectrum of 3 in CDCl₃

Figure S50. UV spectrum of 4 in MeOH

Figure S51. IR spectrum of 4 (KBr disc)

Figure S52. HR-ESI-MS spectrum of 4

Figure S54. ¹³C NMR spectrum of 4 in CDCl₃

Figure S56. ¹H-¹H COSY spectrum of 4 in CDCl₃

Figure S58. HMBC spectrum of 4 in CDCl₃

Figure S59. NOESY spectrum of 4 in CDCl₃

Figure S60. UV spectrum of 5 in MeOH

Figure S61. IR spectrum of 5 (KBr disc)

Figure S62. HR-ESI-MS spectrum of 5

Figure S64. ¹³C NMR spectrum of 5 in CDCl₃

Figure S66. ¹H–¹H COSY spectrum of 5 in CDCl₃

Figure S69. NOESY spectrum of 5 in CDCl₃

Figure S70. UV spectrum of 6 in MeOH

Figure S71. IR spectrum of 6 (KBr disc)

Figure S73. ¹H NMR spectrum of 6 in CDCl₃

Figure S75. ¹³C NMR and DEPT-135 Spectra of 6 in CDCl₃

Figure S77. HSQC spectrum of 6 in CDCl₃

Figure S79. NOESY spectrum of 6 in CDCl₃

Figure S80. UV spectrum of 7 in MeOH

Figure S81. IR spectrum of 7 (KBr disc)

Figure S82. HR-ESI-MS spectrum of 7

Figure S84. ¹³C NMR spectrum of 7 in CDCl₃

Figure S86. ¹H-¹H COSY spectrum of 7 in CDCl₃

Figure S89. NOESY spectrum of 7 in CDCl₃

Figure S90. UV spectrum of 8 in MeOH

Figure S91. IR spectrum of 8 (KBr disc)

Figure S93. ¹H NMR spectrum of 8 in CDCl₃

Figure S95. ¹³C NMR and DEPT-135 Spectra of 8 in CDCl₃

Figure S97. HSQC spectrum of 8 in CDCl₃

Figure S99. NOESY spectrum of 8 in CDCl₃

Figure S100. UV spectrum of 9 in MeOH

Fig.S101 IR spectrum of 9 (KBr disc)

Figure S103. ¹H NMR spectrum of 9 in CDCl₃

Figure S105. ¹³C NMR and DEPT-135 Spectra of 9 in CDCl₃

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm \times 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S107. The extracted ion chromatogram (EIC) for 431.1900 to 431.3900 (calcd for $C_{30}H_{39}O_2$: 431.2945), Peak A and B: retention time: 56.911 min; *m/z* 431.2923

Figure S108. The total ion chromatogram (TIC) for eugenunilone A (1), Peak 1: retention time: 57.150 min; m/z 431.2932 [M+H]⁺.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm \times 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S109. The total ion chromatogram (TIC) for eugenunilone B (2), Peak 2: retention time: 56.766 min; m/z 431.2924 [M+H]⁺.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm \times 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S110. The extracted ion chromatogram (XIC) for 249.0500 to 249.2500 (calcd for $C_{15}H_{21}O_3$: 249.1485), Peak C: retention time: 22.367 min; *m/z* 249.1472 [M+H]⁺.

Figure S111. The total ion chromatogram (TIC) for eugenunilone C (3), Peak 3: retention time: 22.386 min; m/z 249.1470 [M+H]⁺.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm × 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S112. The extracted ion chromatogram (XIC) for 247.0300 to 247.2300 (calcd for C₁₅H₁₉O₃: 247.1329), Peak **D**: retention time: 31.756 min; *m/z* 247.1318 [M+H]⁺.

Figure S113. The total ion chromatogram (TIC) for eugenunilone D (4), Peak 4: retention time: $31.756 \text{ min}; m/z \ 247.1312 \ [M+H]^+$.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm × 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S114. The extracted ion chromatogram (XIC) for 233.0500 to 233.2500 (calcd for $C_{15}H_{21}O_2$: 233.1536), Peak E: retention time: 18.343 min; *m/z* 233.1527 [M+H]⁺.

Figure S115. The total ion chromatogram (TIC) for eugenunilone E (5), Peak 5: retention time: 18.324 min; m/z 233.1525 [M+H]⁺.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm \times 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S116. The extracted ion chromatogram (XIC) for 231.0400 to 231.2400 (calcd for $C_{15}H_{19}O_2$: 231.1380), Peak F: retention time: 18.249 min; *m/z* 231.1364 [M+H]⁺.

Figure S117. The total ion chromatogram (TIC) for eugenunilone F (6), Peak 6: retention time: 18.230 min; m/z 231.1367 [M+H]⁺.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm \times 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S118. The extracted ion chromatogram (XIC) for 233.0500 to 233.2500 (calcd for $C_{15}H_{21}O_2$: 233.1536), Peak G: retention time: 19.460 min; *m/z* 233.1526 [M+H]⁺.

Figure S119. The total ion chromatogram (TIC) for eugenunilone G (7), Peak 7: retention time: 19.441 min; m/z 233.1528 [M+H]⁺.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm \times 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Figure S120. The extracted ion chromatogram (XIC) for 231.0400 to 231.2400 (calcd for $C_{15}H_{19}O_2$: 231.1380), Peak **H**: retention time: 19.460 min; *m/z* 231.1364 [M+H]⁺.

Figure S121. The total ion chromatogram (TIC) for eugenunilone H (8), Peak 8: retention time: 19.441 min; m/z 231.1363 [M+H]⁺.

The analysis was performed on SCIEX X500R Q-TOF mass spectrometer using a Poroshell 120 EC-C18 column (4.6 mm \times 150 mm, 4 μ m). A linear gradient program with the mobile phase (20% to 80% CH₃CN at 0–40 min, 80% CH₃CN at 40–75 min, 100% CH₃CN at 75–85 min) was used as eluent at flow rate of 0.4 mL/min.

Notes and references

- Weyerstahl P.; Marschall-Weyerstahl H.; Christiansen C.; Oguntimein B.; Adeoye
 A.; Volatile Constituents of *Eugenia uniflora* Leaf Oil. *Planta medica*, **1988**, 54, 546–549.
- Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.
- 3 Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Pescitelli, G. SpecDis version 1.71, Berlin, Germany, 2017, http://specdis-software.jimdo.com.