Supporting Information

Electrophilic N-Trifluoromethylthiophthalimide as a Fluorinated

Reagent in the Synthesis of Acyl Fluorides

Chen Zhu[†], Serik Zhumagazy [†], Huifeng Yue*, and Magnus Rueping*

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST)

[†]These authors contributed equally to this work.

1. General Information

2. General Procedure for the Deoxygenative Fluorination of Carboxylic Acids

- 3. Spectroscopic Data of the Products
- 4. Gram-Scale Reaction and Synthetic Application
- 5. References
- 6. Copies of NMR Spectra

1. General Information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were HPLC grade. Anhydrous and degassed CH₃CN used in reactions was purchased from Sigma-Aldrich in Sure/SealTM bottle. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with F-254 indicator, visualized by irradiation with UV light. Column chromatography was performed on silica gel (particle size 0.043–0.063 mm) by using Interchim PuriFlash[®]430 automatic purification system. ¹H-NMR and ¹³C-NMR were recorded on Bruker DRX-500 and AMX-400 instruments in CDCl₃ and are reported relative to the solvent residual peaks. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (*J*) are in Hertz (Hz). Mass spectra (EI-MS, 70 eV) were conducted on a Agilent 7890 gas chromatograph equipped with 5975C EI-MSD Triple-Axis Detector using DB5MS and HP5MS columns. HRMS analysis was performed using a Thermo LTQ Velos Orbitrap mass spectrometer (Thermo Scientific, Pittsburgh, PA, USA) equipped with an ESI source.

2. General Procedure for the Deoxygenative Fluorination of Carboxylic

Acids

A dry 10 mL vial equipped with a stirring bar was charged with *N*-trifluoromethylthiophthalimide (0.2 mmol, 1 equiv.), carboxylic acid (0.4 mmol, 2 equiv.), TBAI (7.4 mg, 0.02 mmol, 10 mol%) in glovebox. Anhydrous and degassed CH₃CN (2.0 mL) and Et₃N (28 uL, 1 equiv.) was added via syringe. The reaction mixture was stirred at 35 °C for 16 h. After the reaction is completed, the mixture was concentrated under vacuum and the product was purified by flash column chromatography on silica gel using hexane/EtOAc as eluent.

3. Spectroscopic Data of the Products

4-(tert-butyl)benzoyl fluoride (3a)

Yield: 89% (32.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.1 Hz, 2H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 157.5 (d, J = 342.9 Hz), 131.4 (d, J = 4.0 Hz), 126.1, 122.0 (d, J = 60.9 Hz), 35.4, 31.0. ¹⁹F NMR (377 MHz, CDCl₃) δ 17.66. Data in accordance with the literature. ¹

3-methylbenzoyl fluoride (3b)

Yield: 83% (22.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.5 Hz, 2H), 7.53 (d, J = 7.7 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6 (d, J = 344.4 Hz), 139.1, 136.1, 131.9, 128.9, 128.6, 124.9 (d, J = 60.1 Hz), 21.2. ¹⁹F NMR (377 MHz, CDCl₃) δ 18.25. Data in accordance with the literature.¹

3-methoxybenzoyl fluoride (3c)

Yield: 97% (29.9 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.6 Hz, 1H), 7.55 (s, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.26 (dd, J = 8.3, 2.6 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 157.3 (d, J = 344.6 Hz), 130.1, 126.1 (d, J = 60.9 Hz), 123.9 (d, J = 3.4 Hz), 122.0, 115.5 (d, J = 4.3 Hz), 55.6. ¹⁹F NMR (471 MHz, CDCl₃) δ 18.60. Data in accordance with the literature. ²

4-(methylthio)benzoyl fluoride (3d)

Yield: 91% (30.9 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3 (d, J = 341.3 Hz), 149.4, 131.6 (d, J = 3.8 Hz), 125.1,

120.5 (d, J = 61.8 Hz), 14.6. ¹⁹F NMR (471 MHz, CDCl₃) δ 16.63. Data in accordance with the literature.²

4-phenoxybenzoyl fluoride (3e)

Yield: 92% (39.7 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.8 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.12 (d, J = 7.7 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 157.0 (d, J = 340.9 Hz), 154.7, 133.8 (d, J = 4.0 Hz), 130.3, 125.3, 120.6, 118.5 (d, J = 62.0 Hz), 117.4. ¹⁹F NMR (377 MHz, CDCl₃) δ 16.79. Data in accordance with the literature.³

4-chlorobenzoyl fluoride (3f)

Yield: 44% (14.0 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.6 (d, *J* = 343.4 Hz), 142.2, 132.7 (d, *J* = 3.8 Hz), 129.6, 123.4 (d, *J* = 62.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ 18.43. Data in accordance with the literature.⁴

4-bromobenzoyl fluoride (3g)

Yield: 62% (25.3 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.8 (d, *J* = 343.7 Hz), 132.7 (d, *J* = 3.8 Hz), 132.6, 131.0, 123.8 (d, *J* = 62.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ 18.43. Data in accordance with the literature.¹

4-iodobenzoyl fluoride (3h)

Yield: 50% (25.1 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.7 Hz, 8H), 7.76 (d, J = 8.5 Hz, 7H), 7.28 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.1 (d, J = 343.9 Hz), 138.6, 132.5 (d, J = 3.8 Hz), 124.4 (d, J = 62.2 Hz), 104.0. ¹⁹F NMR (471 MHz, CDCl₃) δ 18.28. Data in accordance with the literature.⁵

Tert-butyl (4-(fluorocarbonyl)phenyl)carbamate (3i)

Yield: 99% (47.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 1.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2 (d, J = 340.6 Hz), 152.0, 145.1, 133.0 (d, J = 4.0 Hz), 118.4 (d, J = 61.8 Hz), 117.7, 81.8, 28.2. ¹⁹F NMR (377 MHz, CDCl₃) δ 16.21. HRMS (FDMS) for C₁₂H₁₄FNO₃: calculated for [M]⁺ 239.0952, found 239.0995.

[1,1'-biphenyl]-4-carbonyl fluoride (3j)

Yield: 52% (20.8 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.3 Hz, 2H), 7.77 (d, *J* = 7.9 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 2H), 7.47 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4 (d, *J* = 343.2 Hz), 148.1, 139.3, 132.0 (d, *J* = 3.9 Hz), 129.1, 128.8, 127.7, 127.4, 123.5 (d, *J* = 61.2 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ 18.14. Data in accordance with the literature.¹

[1,1'-biphenyl]-2-carbonyl fluoride (3k)

Yield: 91% (36.4 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 7.9 Hz, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.46 (q, *J* = 7.2, 6.5 Hz, 4H), 7.38 – 7.35 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.6 (d, *J* = 348.1 Hz), 145.5 (d, *J* = 2.5 Hz), 140.1, 133.9, 132.2 (d, *J* = 2.8 Hz), 131.8 (d, *J* = 2.8 Hz), 128.4, 128.3, 127.9, 127.6, 124.2 (d, *J* = 56.9 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ 35.04. Data in accordance with the literature.¹

Benzo[d][1,3]dioxole-5-carbonyl fluoride (31)

Yield: 98% (33.0 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.69 (dd, J = 8.2, 1.6 Hz, 1H), 7.43 (d, J = 1.6 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.12 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.9 (d, J = 340.1 Hz),

153.8, 148.3 (d, J = 2.0 Hz), 128.2 (d, J = 3.9 Hz), 118.4 (d, J = 62.5 Hz), 110.7 (d, J = 4.2 Hz), 108.6, 102.4. ¹⁹F NMR (471 MHz, CDCl₃) δ 16.40. Data in accordance with the literature.⁶

2-naphthoyl fluoride (3m)

Yield: 95% (33.1 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.65 (s, 1H), 8.02 (d, J = 17.8 Hz, 2H), 7.99 – 7.92 (m, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.7 (d, J = 343.6 Hz), 136.5, 134.0 (d, J = 3.2 Hz), 132.3, 129.71, 129.66, 129.1, 128.0, 127.4, 125.6 (d, J = 4.2 Hz), 122.0 (d, J = 60.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ 18.08. Data in accordance with the literature.¹ **1-naphthoyl fluoride (3n)**

Yield: 92% (32.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 8.7 Hz, 1H), 8.38 (d, J = 7.4 Hz, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.2 Hz, 1H), 7.64 (t, J = 7.3 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.4 (d, J = 344.5 Hz), 136.7, 133.9 (d, J = 4.0 Hz), 133.7 (d, J = 2.0 Hz), 132.1 (d, J = 7.2 Hz), 129.2, 129.0, 127.0, 125.2, 124.5, 120.3 (d, J = 55.8 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ 29.91. Data in accordance with the literature.¹

Cinnamoyl fluoride (5a)

Yield: 72% (21.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 16.0 Hz, 1H), 7.59 (dd, J = 7.9, 1.7 Hz, 2H), 7.54 – 7.43 (m, 3H), 6.40 (dd, J = 16.0, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1 (d, J = 338.5 Hz), 151.4 (d, J = 6.1 Hz), 133.1, 131.9, 129.2, 128.8, 112.1 (d, J = 67.2 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ 25.61. Data in accordance with the literature.⁷

(*E*)-3-(4-methoxyphenyl)acryloyl fluoride (5b)

Yield: 97% (34.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 15.8 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 6.23 (dd, J = 15.9, 7.3 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 157.6 (d, J = 336.6 Hz), 151.1 (d, J = 6.3 Hz), 130.7, 125.9, 114.6, 109.1 (d, J = 67.1 Hz), 55.5. ¹⁹F NMR (377 MHz, CDCl₃) δ 24.39. Data in accordance with the literature.⁷

(*E*)-3-(3,4-dimethoxyphenyl)acryloyl fluoride (5c)

Yield: 93% (39.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 15.8 Hz, 1H), 7.17 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.07 (d, *J* = 1.7 Hz, 1H), 6.91 (d, *J* = 8.3 Hz, 1H), 6.23 (dd, *J* = 15.8, 7.3 Hz, 1H), 3.94 (d, *J* = 3.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (d, *J* = 336.5 Hz), 152.5, 151.4 (d, *J* = 6.2 Hz), 149.4, 126.1, 124.0, 111.1, 109.9, 109.3 (d, *J* = 67.2 Hz), 56.1, 56.0. ¹⁹F NMR (377 MHz, CDCl₃) δ 24.49. Data in accordance with the literature.⁸

(E)-3-(4-fluorophenyl)acryloyl fluoride (5d)

Yield: 60% (20.2 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 16.0 Hz, 1H), 7.60 (dd, J = 8.7, 5.3 Hz, 2H), 7.16 (t, J = 8.6 Hz, 2H), 6.32 (d, J = 23.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.8 (d, J = 254.1 Hz), 157.0 (d, J = 338.3 Hz), 150.0 (d, J = 6.1 Hz), 130.8 (d, J = 8.8 Hz), 129.5 (d, J = 3.3 Hz), 116.5 (d, J = 22.1 Hz), 111.9 (dd, J = 67.8, 2.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ 25.61, -106.62. GC-MS (EI): m/z = 168.2 (M⁺).

(E)-3-(benzo[d][1,3]dioxol-5-yl)acryloyl fluoride (5e)

Yield: 90% (35.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 15.8 Hz, 1H), 7.11 – 7.04 (m, 2H),

6.87 (d, J = 8.2 Hz, 1H), 6.18 (dd, J = 15.8, 7.2 Hz, 1H), 6.07 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4 (d, J = 336.9 Hz), 151.1, 151.0, 148.7, 127.6, 126.1, 109.7 (d, J = 67.3 Hz), 108.8, 106.7, 102.0. ¹⁹F NMR (377 MHz, CDCl₃) δ 24.77. Data in accordance with the literature.⁹

(E)-3-(naphthalen-1-yl)acryloyl fluoride (5f)

Yield: 75% (30.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* = 15.7 Hz, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 7.2 Hz, 1H), 7.68 – 7.52 (m, 3H), 6.50 (dd, *J* = 15.7, 7.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0 (d, *J* = 339.0 Hz), 148.3 (d, *J* = 6.3 Hz), 133.7, 132.2, 131.3, 130.2, 129.0, 127.6, 126.6, 125.9, 125.4, 122.9, 114.3 (d, *J* = 66.8 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ 25.96. Data in accordance with the literature.¹⁰

(E)-3-(furan-3-yl)acryloyl fluoride (5g)

Yield: 60% (16.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 15.3 Hz, 2H), 7.51 (s, 1H), 6.65 (s, 1H), 6.10 (dd, J = 15.8, 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1 (d, J = 337.3 Hz), 146.3, 145.1, 141.4 (d, J = 6.3 Hz), 122.2, 111.7 (d, J = 67.6 Hz), 107.2. ¹⁹F NMR (377 MHz, CDCl₃) δ 24.17. Data in accordance with the literature.¹¹

(E)-3-(thiophen-2-yl)acryloyl fluoride (5h)

Yield: 70% (21.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 15.6 Hz, 1H), 7.55 (d, J = 5.0 Hz, 1H), 7.40 (d, J = 3.6 Hz, 1H), 7.18 – 7.11 (m, 1H), 6.16 (dd, J = 15.6, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1 (d, J = 336.4 Hz), 143.4 (d, J = 6.5 Hz), 138.3, 133.3, 131.1, 128.6, 110.3 (d, J = 68.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ 24.30. Data in accordance with the literature.¹²

(E)-3-(thiophen-3-yl)acryloyl fluoride (5i)

Yield: 64% (20.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 15.8 Hz, 1H), 7.68 (d, *J* = 2.5 Hz, 1H), 7.42 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.35 (d, *J* = 5.1 Hz, 1H), 6.20 (dd, *J* = 15.8, 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (d, *J* = 337.6 Hz), 144.5 (d, *J* = 6.2 Hz), 136.6, 131.0, 127.8, 125.1, 111.5 (d, *J* = 67.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ 24.70. Data in accordance with the literature.¹²

(2E,4E)-5-phenylpenta-2,4-dienoyl fluoride (5j)

Yield: 64% (22.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 15.2, 10.9 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.42 (q, J = 5.3 Hz, 3H), 7.07 (d, J = 15.6 Hz, 1H), 6.95 (dd, J = 15.5, 10.9 Hz, 1H), 5.94 (dd, J = 15.2, 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2 (d, J = 337.2 Hz), 151.2 (d, J = 6.0 Hz), 144.2, 135.3, 130.1, 129.0, 127.7, 125.2, 114.6 (d, J = 67.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ 24.46. Data in accordance with the literature.¹³

4. Gram-Scale Reaction and Synthetic Application

4.1 Gram-Scale Reaction

A dry 100 mL flask equipped with a stirring bar was charged with N-trifluoromethylthiophthalimide (5.0 mmol, 1.23 g, 1 equiv.), carboxylic acid **1i** (10 mmol, 2.37 g, 2 equiv.), TBAI (185.0 mg, 0.5 mmol, 10 mol%) in glovebox. Anhydrous and degassed CH₃CN (50 mL) and Et₃N (0.7 mL, 1 equiv.) was added via syringe. The reaction mixture was stirred at 35 °C for 16 h. After the reaction is completed, the mixture was concentrated under vacuum and the product was purified by flash column chromatography on silica gel using hexane/EtOAc as eluent to give the product **3i** in 98% yield.

4.2 Synthetic Application

4-methoxybenzoyl fluoride (7)

Acyl fluoride was synthesized according to the general procedure for the deoxygenative fluorination of carboxylic acids. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 157.3 (d, J = 339.8 Hz), 133.8 (d, J = 4.0 Hz), 116.9 (d, J = 61.8 Hz), 114.4, 55.7. ¹⁹F NMR (377 MHz, CDCl₃) δ 15.98. Data in accordance with the literature.¹ **1-methoxy-4-(3-(p-tolyl)propyl)benzene (9)**

A dry 20 mL high pressure tube equipped with a stirring bar was charged with $Pd(acac)_2$ (6.1 mg, 0.02 mmol, 10 mol %), dppe (12.0 mg, 0.03 mmol, 15 mol %), KF (17.4 mg, 0.3 mmol, 1.5 equiv.), toluene (0.8 mL), and DMSO (0.2 mL) in glovebox and the reaction mixture was stirred for 2 min at room temperature. Then alkyl 9-BBN **8** (0.32 mmol in 1 mL toluene, 1.6 equiv., generated from the reaction of 0.16 mmol 9-BBN-dimer and 0.32 mmol alkene in dry toluene at 80 °C for 3 h) and acyl fluoride 7 (30.8 mg, 0.2 mmol, 1.0 equiv.) were added sequentially. The reaction mixture was stirred at 140 °C for 5 h. After the mixture was cooled to room temperature, quenched with saturated NH₄Cl, and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO4, and

evaporated under vacuum to obtain the crude product which was purified by column chromatography (EtOAc:hexane) on silica gel to afford the desired products **9** in 52% yield (25.1 mg).¹⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.09 (m, 6H), 6.88 (d, *J* = 8.5 Hz, 2H), 3.84 (s, 3H), 2.64 (td, *J* = 7.7, 4.5 Hz, 4H), 2.37 (s, 3H), 1.96 (p, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 139.3, 135.1, 134.5, 129.3, 129.0, 128.4, 113.7, 55.3, 35.0, 34.5, 33.3, 21.0. HRMS (APPI FT-ICR MS) for C₁₇H₂₀O: calculated for [M]⁺ 240.15087, found 240.15090.

4-(3-(p-tolyl)propyl)-1,1'-biphenyl (10)

A dry 20 mL high pressure tube equipped with a stirring bar was charged with NiCl₂(PCy₃)₂ (13.8 mg, 0.02 mmol, 10 mol %), PCy₃ (11.2 mg, 0.04 mmol, 20 mol %), aryl methyl ether 9 (48.0 mg, 0.2 mmol, 1 equiv.), and toluene (1.4 mL) in glovebox. Then PhMgBr (0.6 ml, 0.6 mmol, 3 equiv., 1 M in THF) was added and the reaction mixture was stirred at 100 °C for 16 h. After the mixture was cooled to room temperature, quenched with saturated NH₄Cl, and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, and evaporated under vacuum to obtain the crude product which was purified by column chromatography (EtOAc:hexane) on silica gel to afford the desired products **10** in 63% yield (36.2 mg).¹⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.6 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.16 (s, 4H), 2.73 (dt, *J* = 15.5, 7.7 Hz, 4H), 2.39 (s, 3H), 2.04 (p, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 141.2, 139.2, 138.7, 135.2, 129.1, 128.92, 128.86, 128.76, 128.4, 127.1, 127.0, 35.1, 33.1, 21.6, 21.1. HRMS (APPI FT-ICR MS) for C₂₂H₂₂: calculated for [M]⁺ 286.1716, found 286.1717.

5. References

- 1. Y. Liang, Z. Zhao, A. Taya and N. Shibata, Acyl Fluorides from Carboxylic Acids, Aldehydes, or Alcohols under Oxidative Fluorination, *Org. Lett.*, 2021, **23**, 847-852.
- 2. Y. Ogiwara, Y. Sakurai, H. Hattori and N. Sakai, Palladium-catalyzed reductive conversion of acyl fluorides via ligand-controlled decarbonylation, *Org. Lett.*, 2018, **20**, 4204-4208.
- 3. S. T. Keaveney and F. Schoenebeck, Palladium-Catalyzed Decarbonylative Trifluoromethylation of Acid Fluorides, *Angew. Chem. Int. Ed.*, 2018, **57**, 4073-4077.
- 4. T. Scattolin, K. Deckers and F. Schoenebeck, Direct synthesis of acyl fluorides from carboxylic acids with the bench-stable solid reagent (Me4N) SCF3, *Org. Lett.*, 2017, **19**, 5740-5743.
- Q. Y. Meng, N. Döben and A. Studer, Cooperative NHC and Photoredox Catalysis for the Synthesis of β-Trifluoromethylated Alkyl Aryl Ketones, *Angew. Chem. Int. Ed.*, 2020, 59, 19956-19960.
- 6. Z. Wang, X. Wang and Y. Nishihara, Nickel-catalysed decarbonylative borylation of aroyl fluorides, *Chem. Commun.*, 2018, **54**, 13969-13972.
- C. J. Smedley, A. S. Barrow, C. Spiteri, M. C. Giel, P. Sharma and J. E. Moses, Sulfur–Fluoride Exchange (SuFEx)-Mediated Synthesis of Sterically Hindered and Electron-Deficient Secondary and Tertiary Amides via Acyl Fluoride Intermediates, *Chem. Eur. J.*, 2017, 23, 9990-9995.
- 8. A. Levens, C. Zhang, L. Candish, C. M. Forsyth and D. W. Lupton, Enantioselective Nheterocyclic carbene catalyzed diene regenerative (4+ 2) annulation, *Org. Lett.*, 2015, **17**, 5332-5335.
- 9. D. Hadjipavlou-Litina, G. E. Magoulas, M. Krokidis and D. Papaioannou, Syntheses and evaluation of the antioxidant activity of acitretin analogs with amide bond (s) in the polyene spacer, *European journal of medicinal chemistry*, 2010, **45**, 298-310.
- 10. X. Wang, F. Wang, F. Huang, C. Ni and J. Hu, Deoxyfluorination of Carboxylic Acids with CpFluor: Access to Acyl Fluorides and Amides, *Org. Lett.*, 2021, **23**, 1764-1768.
- 11. E. Bappert, P. Müller and G. C. Fu, Asymmetric [3+2] annulations catalyzed by a planar-chiral derivative of DMAP, *Chem. Commun.*, 2006, 2604-2606.
- 12. F. Tellier and R. Sauvêtre, Stereoselective synthesis of 1-bromo-(or 1-chloro-) 1, 1-difluoro-2-alkenes, *J. Fluorine Chem.*, 1996, **76**, 79-82.
- L. Candish, C. M. Forsyth and D. W. Lupton, N-tert-Butyl Triazolylidenes: Catalysts for the Enantioselective (3+ 2) Annulation of α, β-Unsaturated Acyl Azoliums, *Angew. Chem. Int. Ed.*, 2013, **52**, 9149-9152.
- 14. L. Fu, Q. Chen, Z. Wang and Y. Nishihara, Palladium-Catalyzed Decarbonylative Alkylation of Acyl Fluorides, *Org. Lett.*, 2020, **22**, 2350-2353.
- J. W. Dankwardt, Nickel-Catalyzed Cross-Coupling of Aryl Grignard Reagents with Aromatic Alkyl Ethers: An Efficient Synthesis of Unsymmetrical Biaryls, *Angew. Chem. Int. Ed.*, 2004, 43, 2428-2432.

6. Copies of NMR Spectra

60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -16 f1 (ppm)

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15c f1 (ppm)

8.0 7.5 7.0 5.5 5.0 4.5 f1 (ppm) 9.5 9.0 8.5 6.0 0.0 6.5 4.0 3.0 2.5 1.5 1.0 0.5 3.5 2.0

-158.72 -158.72 -18.830 -18.232 -18.2323 -18.2525 -1125565 -11255655 -114.00 -114.00 -114.00

0

