[Supporting Information]

Organocatalytic Difluorobenzylation of 1,2-Diketones via Mild Cleavage of Carbon-Carbon Bonds

Yong Zhang, ^a* Guo-Wei Lai, ^a Long-Jun Nie, ^a Qifang He, ^a Mei-Juan Lin, ^a Rong Chi, ^a Dong-Liang Lu ^a* and Xiaolin Fan ^a*

Table of Contents

General information	1
Synthesis of α -aryl- α , α -difluoroacetophenone 1a	2
Representative procedure for the difluorobenzylation reaction	3
Characterization data of products	3
Control reactions	18
Gram-scale synthesis of 3q	19
Transformations of 3q	19
Single crystal data	23
NMR spectrum	26

General information

Visualization on TLC was achieved by use of UV light (254 nm). NMR spectra were recorded on Bruker Avance-400 spectrometer (¹H 400 MHz, ¹³C 101 MHz and ¹⁹F 376 MHz) in CDCl₃ or DMSO-d₆ with tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in per million (ppm, δ) and coupling constants *J* are given in Hertz (Hz). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR and ¹⁹F NMR MHz are reported in terms of chemical shift (δ , ppm). High resolution mass spectroscopy (HRMS) analysis were performed at Waters G2-Xs QTof and Thermo Scientific LTQ-Orbitrap XL. Unless otherwise noted, all analytical grade solvents and commercially available reagents were used without further purification. *N*-protected isatins were prepared according to the literature procedures.¹⁻³

References

1. Y. C. Lee, S. S. Patil, C. Golz, C. Strohman, S. Ziegler, K. Kumar and H. Waldmann, A ligand-directed divergent catalytic approach to establish structural and functional scaffold diversity, *Nat. Commun.*, **2017**, *8*, 14043.

2. K. Dhara, T. Mandal, I. Das and J. Dash, Synthesis of Carbazole Alkaloids by Ring-Closing Metathesis and Ring Rearrangement–Aromatization, *Angew. Chem. Int. Ed.*, **2015**, 54, 15831.

3. H. H. Ji, Y. Z. Zhu, Y. Shao, J. Liu, Y. Yuan and X. D. Jia, Active sp3 C–H Bond Oxidation Initiated sp³–sp² Consecutive C–H Functionalization of N-Arylglycine Amides: Construction of Isatins, *J. Org. Chem.*, **2017**, 82, 9859.

Synthesis of α -aryl- α , α -difluoroisoxazolacetophenone 1a

2,4-dinitrotoluene (1.82 g, 10.0 mmol), aldehyde (1.59 g, 15.0 mmol) and anhydrous DMF (10 mL) were mixed in a dry flask under N_2 atmosphere, and then

cooled to -20 °C, DBU (300 μ L, 20 mol %) was injected and the mixture were stirred for 48 h under -20 °C. After the reaction was completed, the mixture was poured into water (40 mL) and extracted with ethyl acetate (20 mL x 5). The combined extracts were washed with water (40 mL) and brine (40 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude products were purified by silica gel column chromatography using PE/EA (v/v = 10/1) as eluents to afford 1.76 g of **I** (61 % yield).

To the solution of I (1.76 g, 6.1 mmol) in EtOAc (20 mL), *o*-iodoxybenzoic acid (IBX) (3.42 g, 12.2 mmol) was added and the mixture was refluxed at 80 °C (oil bath) for 10 h. After the reaction was completed (monitored by TLC), it was cooled to room temperature and filtered. The filtrate was concentrated and recrystallized from ethanol to give 1.55 g of II (88% yield).

To the mixture of **II** (1.55 g, 5.37 mmol), DBU (1.77 mL, 2.2 equiv) and 30 mL of anhydrous DMF, selectfluor (4.18 g, 11.80 mmol) was added and the mixture was stirred at room temperature for 2 h. After the reaction was completed (monitored by TLC), it was filtered and washed several times with dichloromethane. The combined organic layers were washed with saturated aqueous ammonium chloride, dried over Na₂SO₄ and concentrated in vacuo. The crude products were purified by silica gel column chromatography using PE/EA (v/v = 30/1) as eluents to give α -aryl- α , α -difluoroacetophenone 1a: white solid; 1.54 g, 89% yield.

TGA-DSC analysis

Figure S1 TGA-DSC analysis of DFAP (1a).

The thermal stability of DFAP (1a) was determined by thermogravimetric analysis-differential scanning calorimetric measurements (TGA-DSC) at a heating rate of 10 K·min⁻¹. DFAP first losses organic solvents or impurities with 6.4136 % weight loss. Then there are four continuous exothermic peaks in the range of 245.1 °C-299.0 °C, which shows DFAP decompose gradually. Meanwhile, $\Delta H = -453.78 \text{ J}\cdot\text{g}^{-1}$ was

calculated by DSC analysis, which indicates an explosion risk with DFAP over 240 °C. Therefore, we recommend using DFAP (1a) below 200 °C.

Representative procedure for the difluorobenzylation reaction

To the mixture of isatin **2a** (0.10 mmol), α -aryl- α , α -difluoroacetophenone **1a** (0.12 mmol) and 0.5 mL MeOH, DBU (10 mol%, 0.010 mmol) was added and the mixture was stirred at room temperature. After the reaction was completed (monitored by TLC), it was concentrated in vacuo, and the product **3a** was purified by silica gel chromatography (PE/acetone = 4/1, v/v) to give good yield.

Characterization data of products

2-(2,4-Dinitrophenyl)-2,2-difluoro-1-phenylethan-1-one (1a): white solid; 1.54 g, 89% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.98 (d, J = 2.0 Hz, 1H), 8.63 (dd, J = 8.4, 2.0 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.16-8.14 (m, 2H), 7.73-7.68 (m, 1H), 7.57(t, J = 7.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃)

 δ (ppm) 187.1 (t, $J_{C-F} = 29.9$ Hz, 1C), 149.3, 147.3, 134.7, 134.5 (t, $J_{C-F} = 25.6$ Hz, 1C), 131.6 (t, $J_{C-F} = 3.1$ Hz, 1C), 130.2 (t, $J_{C-F} = 10.2$ Hz, 1C), 129.9 (t, $J_{C-F} = 3.0$ Hz, 1C), 128.9, 127.8, 121.0, 116.0 (t, $J_{C-F} = 261.3$ Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -94.7 (s, 2F).

2,2-Difluoro-2-(2-fluoro-4-nitrophenyl)-1-phenylethan-1one (1b): white solid; 82% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.14-8.12 (m, 3H), 7.97 (dd, J = 10.0, 0.8 Hz, 1H), 7.87 (dd, J = 8.0, 7.2 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.51 (t, J =

7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 186.1 (t, $J_{C-F} = 31.6$ Hz, 1C), 159.6 (dt, $J_{C-F} = 259.0$, 4.3 Hz, 1C), 150.4 (d, $J_{C-F} = 8.6$ Hz, 1C), 134.8, 131.0 (t, $J_{C-F} = 2.9$ Hz, 1C), 130.1 (t, $J_{C-F} = 2.9$ Hz, 1C), 128.8, 128.8, 128.3 (td, $J_{C-F} = 7.6$, 2.7 Hz, 1C), 127.5 (td, $J_{C-F} = 25.6$, 13.2 Hz, 1C), 119.1 (d, $J_{C-F} = 3.9$ Hz, 1C), 115.4 (td, $J_{C-F} = 259.0$, 2.0 Hz, 1C), 112.2, 111.9. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -97.5 (d, J = 9.4 Hz, 2F), -107.2 (t, J = 9.2 Hz, 1F).

2-(2-Chloro-4-nitrophenyl)-2,2-difluoro-1-phenylethan-1one (1c): pale yellow solid; 79% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.25-8.21 (m, 2H), 8.11 (d, J = 7.6 Hz, 2H), 7.97 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.51 (t, J =

7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 186.7 (t, $J_{C-F} = 31.0$ Hz, 1C), 149.4, 137.8 (t, $J_{C-F} = 24.1$ Hz, 1C), 134.6, 133.8 (t, $J_{C-F} = 3.9$ Hz, 1C), 131.6 (t, $J_{C-F} = 2.7$ Hz, 1C), 129.9 (t, $J_{C-F} = 2.8$ Hz, 1C), 129.9 (t, $J_{C-F} = 2.8$ Hz, 1C), 128.7, 128.7, 128.6 (t, $J_{C-F} = 8.9$ Hz, 1C), 125.6, 121.6, 115.5 (t, $J_{C-F} = 259.4$ Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -97.6 (s, 2F).

2,2-Difluoro-2-(4-nitro-2-(trifluoromethyl)phenyl)-1phenylethan-1-one (1d): pale yellow oil; 72% yield, ¹H NMR **(400 MHz, CDCl₃)** δ (ppm) 8.66 (d, J = 1.6 Hz, 1H), 8.51 (dd, J = 8.4, 2.0 Hz, 1H), 8.16 (d, J = 7.2 Hz, 2H), 8.02 (d, J = 8.8

Hz, 1H), 7.68 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 187.5 (t, $J_{C-F} = 32.0$ Hz, 1C), 149.0, 137.4 (td, $J_{C-F} = 25.6$, 4.0 Hz, 1C), 134.8, 131.1 (t, $J_{C-F} = 3.4$ Hz, 1C), 130.3 (t, $J_{C-F} = 2.6$ Hz, 1C), 130.1, 130.1 (dd, $J_{C-F} = 6.0$, 2.9 Hz, 1C), 129.9, 128.8, 128.8, 126.3, 122.9 (q, $J_{C-F} = 5.9$ Hz, 1C), 122.1 (q, $J_{C-F} = 275.5$ Hz, 1C), 116.7 (t, $J_{C-F} = 261.1$ Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) - 58.5 (t, J = 11.7 Hz, 3F), -94.2 (q, J = 11.7 Hz, 2F). HRMS (ESI) Calcd for [M - H]⁻ C₁₅H₇F₂NO₃, m/z: 344.0354, found: 344.0352.

2-(3-Chloro-4-nitrophenyl)-2,2-difluoro-1-phenylethan-1one (1e): orange solid; 76% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.13 (t, J = 8.0 Hz, 1H), 8.07 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.55-7.49 (m, 4H); ¹³C NMR (101 MHz,

CDCl₃) δ (ppm) 187.3 (t, $J_{C-F} = 31.4$ Hz, 1C), 155.1 (d, $J_{C-F} = 276.9$ Hz, 1C), 140.3 (td, $J_{C-F} = 26.1, 7.8$ Hz, 1C), 138.6 (d, $J_{C-F} = 7.3$ Hz, 1C), 134.9, 131.2 (t, $J_{C-F} = 2.4$ Hz, 1C), 130.2 (t, $J_{C-F} = 3.1$ Hz, 1C), 130.2 (t, $J_{C-F} = 3.1$ Hz, 1C), 128.9, 128.9, 126.5 (d, $J_{C-F} = 2.6$ Hz, 1C), 122.3 (dd, $J_{C-F} = 10.8, 6.1$ Hz, 1C), 116.7 (dt, $J_{C-F} = 23.4, 6.4$ Hz, 1C), 115.5 (td, $J_{C-F} = 258.4, 1.3$ Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -97.8 (s, 2F), -115.5 (s, 1F).

2-(3-Chloro-4-nitrophenyl)-2,2-difluoro-1-phenylethan-1one (1f): yellow solid; 75% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.07 (dd, J = 8.4, 1.2 Hz, 2H), 7.93 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.69-7.62 (m, 2H), 7.53-7.49 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 187.4 (t, $J_{C-F} = 31.5$ Hz, 1C), 149.2, 138.0 (t, $J_{C-F} = 25.9$ Hz, 1C), 134.9, 131.3 (t, $J_{C-F} = 2.3$ Hz, 1C), 130.2 (t, $J_{C-F} = 3.1$ Hz, 1C), 130.2 (t, $J_{C-F} = 3.1$ Hz, 1C), 129.6 (t, $J_{C-F} = 6.5$ Hz, 1C), 128.9, 128.9, 127.5, 125.7, 125.5 (t, $J_{C-F} = 6.2$ Hz, 1C), 115.6 (t, $J_{C-F} = 258.3$ Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -97.7 (s, 2F).

= 6.4 Hz, 1H), 7.54 (t, J = 6.8 Hz, 2H), 4.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 187.5 (t, J_{C-F} = 30.4 Hz, 1C), 164.1, 146.9, 134.3, 134.2, 133.8, 132.7 (t, J_{C-F} = 25.3 Hz, 1C), 132.0 (t, J_{C-F} = 2.8 Hz, 1C), 129.9 (t, J_{C-F} = 2.9 Hz, 1C), 128.9, 128.8, 128.7, 128.7, 126.5, 116.3 (t, J_{C-F} = 259.7 Hz, 1C), 53.0. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -94.9 (s, 2F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₆H₁₁F₂NO₅Na, m/z: 358.0498, found: 358.0498.

2,2-Difluoro-2-(2-nitro-4-(trifluoromethyl)phenyl)-1phenylethan-1-one (1h): white solid; 88% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.44 (s, 1H), 8.18-8.12 (m, 3H), 8.06 (d, J = 8.4 Hz, 1H), 7.68 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.6 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 187.4 (t, $J_{C-F} = 30.2$ Hz, 1C), 147.0, 134.4, 134.3 (dd, $J_{C-F} = 69.8$, 35.7 Hz, 1C), 132.4 (t, $J_{C-F} = 25.6$ Hz, 1C), 131.9 (t, $J_{C-F} = 3.2$ Hz, 1C), 130.3 (q, $J_{C-F} = 3.2$ Hz, 1C), 129.9 (t, $J_{C-F} = 3.0$ Hz, 1C), 129.5 (t, $J_{C-F} = 10.2$ Hz, 1C), 129.0, 128.8, 128.8, 122.9 (q, $J_{C-F} = 3.7$ Hz, 1C), 122.3 (q, $J_{C-F} = 274.3$ Hz, 1C), 116.2 (t, $J_{C-F} = 260.2$ Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.2 (s, 3F), -95.0 (s, 2F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₅H₈F₅NO₃Na, m/z: 368.0317, found: 368.0317.

Ph F F NO_2 F

2,2-Difluoro-2-(4-fluoro-2-nitrophenyl)-1-phenylethan-1-one (1i): white solid; 53% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.15 (dd, J = 8.0, 0.8 Hz, 2H), 7.99 (dd, J = 8.8, 5.2 Hz, 1H), 7.90

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 187.7 (t, $J_{C-F} = 30.9$ Hz, 1C), 163.4 (d, $J_{C-F} = 257.1$ Hz, 1C), 147.8, 134.2, 132.2 (t, $J_{C-F} = 3.2$, 1C), 130.4 (dt, $J_{C-F} = 10.4$, 8.7 Hz, 1C), 129.9 (t, $J_{C-F} = 3.0$ Hz, 1C), 129.9 (t, $J_{C-F} = 3.0$ Hz, 1C), 120.7 (d, $J_{C-F} = 21.3$ Hz, 1C), 116.4 (t, $J_{C-F} = 258.9$ Hz, 1C), 113.7 (d, $J_{C-F} = 27.3$ Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -94.1 (s, 2F), -105.1-(-105.2) (m, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₄H₈F₂NO₃Na, m/z: 318.0348, found: 318.0349.

3-((2,4-Dinitrophenyl)difluoromethyl)-3-hydroxyindolin-2one (3a): pale yellow solid; 36.2 mg, 99% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.73 (s, 1H), 8.81 (s, 1H), 8.61 (d, *J* = 8.4 Hz, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 7.57 (s, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 6.8 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.2 (d, *J*_{C-F} = 5.8 Hz, 1C), 149.1, 149.0, 142.9, 132.5 (t, *J*_{C-F} = 7.0 Hz, 1C), 131.0, 129.2 (t, *J*_{C-F} = 26.9 Hz, 1C), 126.3, 125.6, 125.2, 122.1, 119.1, 119.0 (dd, $J_{C-F} = 255.0$, 251.4 Hz, 1C), 110.2, 77.8 (dd, $J_{C-F} = 32.6$, 27.4 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.9 (d, J = 177.1 Hz, 1F), -103.5 (d, J = 177.1 Hz, 1F). HRMS (ESI) Calcd for [M + H]⁺ C₁₅H₁₀F₂N₃O₆, m/z: 366.0538, found: 366.0530.

3-((2,4-Dinitrophenyl)difluoromethyl)-5-fluoro-3hydroxyindolin-2-one (3b): pale yellow solid; 34.5 mg, 90% yield, ¹H NMR **(400 MHz, DMSO-***d***₆)** δ (ppm) 10.79 (s, 1H), 8.82 (s, 1H), 8.61 (d, *J* = 8.4 Hz, 1H), 8.18 (d, *J* = 8.8 Hz, 1H), 7.76 (s, 1H), 7.20 (t, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 6.8 Hz, 1H), 6.89 (dd, *J* = 8.0, 4.0 Hz, 1H); ¹³C NMR **(101 MHz, DMSO-***d*₆**)** δ (ppm) 173.2 (d, *J*_{C-F} = 5.2 Hz, 1C), 158.0 (d, *J*_{C-F} = 239.3 Hz, 1C), 149.2, 149.0, 139.2, 132.6 (t, *J*_{C-F} = 6.0 Hz, 1C), 128.9 (t,

 $J_{C-F} = 26.8$ Hz, 1C), 127.1 (d, $J_{C-F} = 7.8$ Hz, 1C), 125.3, 119.2, 118.9 (dd, $J_{C-F} = 254.9$, 252.3 Hz, 1C), 117.5 (d, $J_{C-F} = 23.7$ Hz, 1C), 113.9 (d, $J_{C-F} = 24.9$ Hz, 1C), 111.3 (d, $J_{C-F} = 7.9$ Hz, 1C), 78.1 (dd, $J_{C-F} = 32.6$, 28.4 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.8 (d, J = 177.5 Hz, 1F), -103.5 (d, J = 177.5 Hz, 1F), -120.8-(-120.9) (m, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₅H₉F₃N₃O₆Na, m/z: 406.0257, found: 406.0281.

5-Chloro-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3c): pale yellow solid; 39.2 mg, 98% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.91 (s, 1H), 8.83 (s, 1H), 8.61 (d, *J* = 8.0, 1H), 8.18 (d, *J* = 8.4, 1H), 7.76 (s, 1H), 7.42 (d, *J* = 7.6, 1H), 7.16 (s, 1H), 6.91 (d, *J* = 8.0, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 172.7 (d, *J*_{C-F} = 6.1 Hz, 1C), 149.1, 148.9, 141.8, 132.5 (t, *J*_{C-F} = 7.0 Hz, 1C), 130.8, 128.7 (t, *J*_{C-F} = 26.8 Hz, 1C), 127.4, 126.1 (d, *J*_{C-F} = 1.4 Hz,

1C), 126.1, 125.2, 119.1, 118.8 (dd, $J_{C-F} = 256.6$, 250.8 Hz, 1C), 111.8, 77.9 (dd, $J_{C-F} = 33.2$, 26.9 Hz, 1C). ¹⁹**F NMR (376 MHz, DMSO-***d*₆) δ (ppm) -99.0 (d, J = 266.2 Hz, 1F), -103.9 (d, J = 266.2 Hz, 1F). **HRMS (ESI)** Calcd for [M + H]⁺ C₁₅H₉ClF₂N₃O₆, m/z: 400.0148, found: 400.0141.

5-Bromo-3-((2,4-dinitrophenyl)difluoromethyl)-3-

Br F NO₂N HO F N N hydroxyindolin-2-one (3d): pale yellow solid; 36.8 mg, 83% yield, ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 10.92 (s, 1H), 8.83 (d, J = 2.0 Hz, 1H), 8.61 (dd, J = 8.0, 2.0 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 1.6 Hz, 1H), 7.55 (dd, J = 8.4, 2.0 Hz, 1H), 7.29 (s, 1H), 6.87 (d, J = 8.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ (ppm) 172.7 (d, $J_{C-F} = 6.2$ Hz, 1C), 149.2,

149.0, 142.3, 133.8, 132.6 (t, $J_{C-F} = 7.0$ Hz, 1C), 128.9, 128.9 (t, $J_{C-F} = 26.8$ Hz, 1C), 127.9, 125.3, 119.2, 118.9 (dd, $J_{C-F} = 257.6$, 250.8 Hz, 1C), 113.7, 112.4, 77.9 (dd, $J_{C-F} = 33.3$, 26.3 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -98.7 (d, J = 176.0 Hz, 1F), -103.9 (d, J = 175.6 Hz, 1F). HRMS (ESI) Calcd for [M + H]⁺ C₁₅H₉BrF₂N₃O₆, m/z: 443.9643, found: 443.9638.

3-((2,4-Dinitrophenyl)difluoromethyl)-3-hydroxy-5-(trifluoromethoxy)indolin-2-one (3e): pale yellow solid; 42.7 mg, 95% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.94 (s, 1H), 8.81 (d, *J* = 2.4 Hz, 1H), 8.62 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 7.81 (s, 1H), 7.37 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.00 (s, 1H), 6.99 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.1 (d, *J*_{C-F} = 5.4 Hz,

1C), 149.2, 148.8, 143.2, 142.2, 132.5 (t, $J_{C-F} = 6.8$ Hz, 1C), 128.6 (t, $J_{C-F} = 26.7$ Hz, 1C), 127.1, 125.4, 124.5, 120.2 (q, $J_{C-F} = 256.5$ Hz, 1C), 119.7, 119.2, 118.8 (dd, $J_{C-F} = 255.9$, 252.2 Hz, 1C), 111.4, 77.9 (dd, $J_{C-F} = 32.0$, 27.6 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -57.4 (s, 3F), -100.4 (d, J = 177.1 Hz, 1F), -103.4 (d, J = 177.1 Hz, 1F). HRMS (ESI) Calcd for [M + H]⁺ C₁₆H₉F₅N₃O₇, m/z: 450.0361, found: 450.0357.

3-((2,4-Dinitrophenyl)difluoromethyl)-3-hydroxy-5methoxyindolin-2-one (**3f**): pale yellow solid; 36.4 mg, 92 % yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.57 (s, 1H), 8.81 (s, 1H), 8.60 (s, 1H), 8.19 (s, 1H), 7.60 (s, 1H), 6.91–6.72 (m, 3H), 3.68 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.0 (d, *J*_{C-F} = 5.5 Hz, 1C), 154.9, 149.1, 149.0, 136.1, 132.6 (t, *J*_{C-F} = 6.5 Hz, 1C), 129.2 (t, *J*_{C-F} = 26.5 Hz, 1C), 126.7, 125.2, 119.1, 119.0 (dd, *J*_{C-F} = 254.8, 252.9

Hz, 1C), 115.8, 112.9, 110.7, 78.2 (dd, $J_{C-F} = 31.5$, 25.6 Hz, 1C), 55.6. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.8 (d, J = 177.1 Hz, 1F), -103.6 (d, J = 177.1 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₆H₁₁F₂N₃O₇Na, m/z: 418.0457, found: 418.0451.

3-((2,4-Dinitrophenyl)difluoromethyl)-3-hydroxy-5methylindolin-2-one (3g): pale yellow solid; 36.8 mg, 97% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.62 (s, 1H), 8.79 (s, 1H), 8.60 (s, 1H), 8.18 (s, 1H), 7.51 (s, 1H), 7.14 (s, 1H), 7.01 (s, 1H), 6.78 (s, 1H), 2.25 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.1 (d, *J*_{C-F} = 6.2 Hz, 1C), 149.0, 149.0, 140.4, 132.5 (t, *J*_{C-F} = 7.0 Hz, 1C), 131.0, 131.0, 129.3 (t, *J*_{C-F} = 27.1 Hz, 1C), 126.8, 125.7, 125.0, 119.0, 118.9 (dd,

 $J_{C-F} = 258.0, 256.1 \text{ Hz}, 1\text{C}$), 109.8, 77.9 (dd, $J_{C-F} = 33.6, 27.0 \text{ Hz}, 1\text{C}$), 20.5. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.1 (d, J = 176.0 Hz, 1F), -103.7 (d, J = 175.6 Hz, 1F). HRMS (ESI) Calcd for [M + H]⁺ C₁₆H₁₂F₂N₃O₆, m/z: 380.0694, found: 380.0685.

3-((2,4-Dinitrophenyl)difluoromethyl)-6-fluoro-3hydroxyindolin-2-one (**3h**): pale yellow solid; 35.7 mg, 93% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.89 (s, 1H), 8.80 (d, J = 2.4 Hz, 1H), 8.61 (dd, J = 8.8, 2.0 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H), 7.62 (s, 1H), 7.09 (dd, J = 8.0, 5.6 Hz, 1H), 6.82-6.77 (m, 1H), 6.72 (dd, J = 8.8, 2.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.4 (d, $J_{C-F} = 5.5$ Hz, 1C), 163.7 (d, $J_{C-F} = 246.5$ Hz, 1C), 149.1, 148.9, 144.8 (d, $J_{C-F} =$

12.6 Hz, 1C), 132.4 (t, $J_{C-F} = 7.1$ Hz, 1C), 128.9 (t, $J_{C-F} = 27.0$ Hz, 1C), 128.0 (d, $J_{C-F} = 10.0$ Hz, 1C), 125.2, 121.5 (d, $J_{C-F} = 2.6$ Hz, 1C), 119.1, 118.8 (dd, $J_{C-F} = 255.3$, 252.4 Hz, 1C), 108.4 (d, $J_{C-F} = 22.7$ Hz, 1C), 98.5 (d, $J_{C-F} = 27.4$ Hz, 1C), 77.4 (dd, $J_{C-F} = 32.4$, 28.1 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -100.5 (d, J = 265.1 Hz, 1F), -103.3 (d, J = 265.1 Hz, 1F), -108.8 (s, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₅H₈F₃N₃O₆Na, m/z: 406.0257, found: 406.0281.

6-Chloro-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3i): pale yellow solid; 37.5 mg, 94% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.92 (s, 1H), 8.81 (s, 1H), 8.60 (d, J = 7.2 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.70 (s, 1H), 7.06 (d, J = 6.0 Hz, 2H), 6.92 (s, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.2 (d, $J_{C-F} = 5.5$ Hz, 1C), 149.2, 148.9, 144.4, 135.3, 132.5 (t, $J_{C-F} = 7.0$ Hz, 1C), 128.8 (t, $J_{C-F} = 26.8$ Hz, 1C), 127.8, 125.3, 124.4, 122.0, 119.2, 118.8

(dd, $J_{C-F} = 254.3$, 252.0 Hz, 1C), 110.3, 77.5 (dd, $J_{C-F} = 31.7$, 28.5 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -100.3 (d, J = 180.5 Hz, 1F), -103.3 (d, J = 176.0 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₅H₈ClF₂N₃O₆Na, m/z: 421.9962, found: 421.9956.

6-Bromo-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3j): pale yellow solid; 41.2 mg, 93% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.89 (s, 1H), 8.80 (d, *J* = 2.4 Hz, 1H), 8.60 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.17 (d, *J* = 8.8 Hz, 1H), 7.68 (s, 1H), 7.19 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.05 (d, *J* = 1.6 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.1 (d, *J*_{C-F} = 5.5 Hz, 1C), 149.2, 149.0, 144.5, 132.5 (t, *J*_{C-F} = 7.0 Hz, 1C), 128.9

(t, $J_{C-F} = 27.0$ Hz, 1C), 128.1, 125.3, 124.9, 124.9, 123.8, 119.2, 118.8 (dd, $J_{C-F} = 255.4$, 252.2 Hz, 1C), 113.1, 77.6 (dd, $J_{C-F} = 32.4$, 28.1 Hz, 1C). ¹⁹F NMR (376 MHz, DMSOd₆) δ (ppm) -100.1 (dd, J = 265.8, 158.3 Hz, 1F), -103.5 (dd, J = 265.5, 85.0 Hz, 1F). HRMS (ESI) Calcd for [M +H]⁺ C₁₅H₉BrF₂N₃O₆, m/z: 443.9643, found: 443.9638.

3-((2,4-Dinitrophenyl)difluoromethyl)-3-hydroxy-6methoxyindolin-2-one (3k): pale yellow solid; 35.2 mg, 89% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.65 (s, 1H), 8.79 (d, *J* = 2.0 Hz, 1H), 8.59 (d, *J* = 8.8 Hz, 1H), 8.17 (d, *J* = 8.8 Hz, 1H), 7.42 (s, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.53 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.41 (d, *J* = 2.0 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.7 (d, *J*_{C-F} = 5.8 Hz, 1C), 161.5, 149.0, 148.9, 144.3, 132.4

(t, $J_{C-F} = 6.9$ Hz, 1C), 129.3 (t, $J_{C-F} = 27.0$ Hz, 1C), 127.3, 125.1, 119.1, 118.9 (dd, $J_{C-F} = 254.8$, 251.4 Hz, 1C), 117.2, 106.9, 96.8, 77.5 (dd, $J_{C-F} = 32.3$, 27.8 Hz, 1C), 55.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -100.3 (d, J = 264.7 Hz, 1F), -103.1 (d, J = 264.7 Hz, 1F). HRMS (ESI) Calcd for [M +H]⁺ C₁₆H₁₂F₂N₃O₆, m/z: 396.0646, found: 396.0634.

3-((2,4-Dinitrophenyl)difluoromethyl)-7-fluoro-3hydroxyindolin-2-one (3l): white solid; 37.9 mg, 99% yield, ¹H **NMR (400 MHz, DMSO-***d*₆) δ (ppm) 11.31 (s, 1H), 8.82 (s, 1H), 8.61 (d, *J* = 5.6 Hz, 1H), 8.18 (d, *J* = 4.8 Hz, 1H), 7.75 (s, 1H), 7.29 (s, 1H), 7.03 (s, 1H), 6.97 (s, 1H); ¹³C **NMR (101 MHz, DMSO-***d*₆) δ (ppm) 173.0 (d, *J*_{C-F} = 5.1 Hz, 1C), 149.1, 148.9, 146.4 (d, *J*_{C-F} = 244.2 Hz, 1C), 132.4 (t, *J*_{C-F} = 6.8 Hz, 1C), 130.0 (d, *J*_{C-F} = 13.0 Hz, 1C), 128.8 (d, *J*_{C-F} = 5.7 Hz, 1C), 128.4 (d, *J*_{C-F} = 3.3 Hz, 1C), 125.2, 123.1 (d, *J*_{C-F} = 5.8 Hz, 1C), 122.3, 119.1,

118.7 (dd, $J_{C-F} = 255.8$, 252.0 Hz, 1C), 118.0 (d, $J_{C-F} = 17.2$ Hz, 1C), 77.9 (dd, $J_{C-F} = 30.0$, 28.4 Hz, 1C). ¹⁹**F NMR (376 MHz, DMSO-***d*₆) δ (ppm) -99.9 (d, J = 176.0 Hz, 1F), -103.5 (d, J = 176.0 Hz, 1F), -132.5 (s, 1F). **HRMS (ESI)** Calcd for [M + H]⁺ C₁₅H₉F₃N₃O₆, m/z: 384.0443, found: 384.0434.

7-Chloro-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3m): pale yellow solid; 38.3 mg, 96% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 11.23 (s, 1H), 8.83 (d, *J* = 2.0 Hz, 1H), 8.62 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.18 (d, *J* = 8.8 Hz, 1H), 7.76 (s, 1H), 7.43 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.09-7.01 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.2 (d, *J*_{C-F} = 5.8 Hz, 1C), 149.2, 149.0, 140.6, 132.5 (t, *J*_{C-F} = 7.2 Hz, 1C), 130.9, 128.8 (t, *J*_{C-F} = 26.8 Hz, 1C), 127.5, 125.3, 124.9, 123.6, 119.2,

118.8 (dd, $J_{C-F} = 256.3$, 251.8 Hz, 1C), 114.4, 78.3 (dd, $J_{C-F} = 32.7$, 27.7 Hz, 1C). ¹⁹**F NMR (376 MHz, DMSO-***d*₆**)** δ (ppm) -99.8 (d, J = 177.5 Hz, 1F), -103.5 (d, J = 177.5 Hz, 1F). **HRMS (ESI)** Calcd for [M + H]⁺ C₁₅H₉F₂ClN₃O₆, m/z: 400.0148, found: 400.0143.

7-Bromo-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3n): pale yellow solid; 39.9 mg, 90% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.91(s, 1H), 8.81 (s, 1H), 8.61 (d, *J* = 8.8 Hz, 1H), 8.16 (d, *J* = 8.8 Hz, 1H), 7.69 (s, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.05 (s, 1H), 7.01 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.0 (d, *J*_{C-F} = 5.1 Hz, 1C), 149.2, 148.9, 144.5, 132.4 (t, *J*_{C-F} = 6.7 Hz, 1C), 128.8 (t, *J*_{C-F} = 26.4 Hz, 1C), 128.0, 125.3, 124.9, 124.9, 123.8, 119.2, 118.8 (dd, *J*_{C-F} = 256.1, 251.9 Hz, 1C), 113.1, 77.5 (dd, *J*_{C-F} = 31.9,

27.9 Hz, 1C). ¹⁹**F NMR (376 MHz, DMSO-***d*₆**)** δ (ppm) -100.0 (dd, J = 260.2, 156.8 Hz, 1F), -103.5 (dd, J = 265.5, 86.1 Hz, 1F). **HRMS (ESI)** Calcd for $[M + H]^+$ C₁₅H₉BrF₂N₃O₆, m/z: 443.9643, found: 443.9646

O₂N NO₂ CI HO F F O H

4-Chloro-3-((2,4-dinitrophenyl)difluoromethyl)-3-

hydroxyindolin-2-one (3o): pale yellow solid; 36.7 mg, 92% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.90 (s, 1H), 8.78 (s, 1H), 8.58 (s, 1H), 8.17 (s, 1H), 7.56 (s, 1H), 7.33 (s, 1H), 6.99 (s, 1H), 6.85 (s, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 173.2 (d, $J_{C-F} = 4.8$ Hz, 1C), 149.1, 148.7, 145.1, 133.0 (t, $J_{C-F} = 6.8$ Hz, 1C), 132.4, 132.2, 129.7 (t, $J_{C-F} = 26.2$ Hz, 1C), 125.1, 123.7, 122.1, 119.1 (dd, $J_{C-F} = 254.6$, 251.8 Hz, 1C), 119.0, 109.1, 79.6 (t, $J_{C-F} = 6.8$ Hz,

= 30.3 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -96.6 (d, *J* = 175.2 Hz, 1F), -101.7 (d, *J* = 175.2 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₅H₈ClF₂N₃O₆Na, m/z: 421.9962, found: 421.9956.

4,7-Dichloro-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3p): pale yellow solid; 41.6 mg, 96% yield, ¹H NMR **(400 MHz, DMSO-***d***₆)** δ (ppm) 11.37 (s, 1H), 8.80 (s, 1H), 8.59 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.75 (s, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H); ¹³C NMR **(101 MHz, DMSO-***d*₆**)** δ (ppm) 173.2 (d, $J_{C-F} = 4.5$ Hz, 1C), 149.3, 148.8, 142.6, 133.0 (t, $J_{C-F} = 7.0$ Hz, 1C), 132.2, 130.8, 129.4 (t, $J_{C-F} = 26.7$ Hz, 1C), 125.2, 124.9, 123.6, 119.2, 119.0 (dd, $J_{C-F} = 259.8$,

254.6 Hz, 1C), 113.4, 80.4 (t, $J_{C-F} = 30.6$ Hz, 1C); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -97.1 (d, J = 174.8 Hz, 1F), -101.5 (d, J = 175.2 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₅H₇Cl₂F₂N₃O₆Na, m/z: 455.9572, found: 455.9570.

3-((2,4-Dinitrophenyl)difluoromethyl)-3-hydroxy-1methylindolin-2-one (**3q**): pale yellow solid; 35.6 mg, 94% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.80 (s, 1H), 8.62 (d, *J* = 8.4 Hz, 1H), 8.20 (d, *J* = 8.8, 1H), 7.63 (s, 1H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 6.8, 1H), 7.10 (d, *J* = 7.2 Hz, 2H), 3.14 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.7 (d, *J*_{C-F} = 5.7 Hz, 1C), 149.2, 149.0, 144.4, 132.6 (t, *J*_{C-F} = 5.3 Hz, 1C), 131.2, 129.3 (t, *J*_{C-F} = 27.0 Hz, 1C), 125.9, 125.3, 125.1, 122.9, 119.2,

119.1 (dd, $J_{C-F} = 257.7$, 238.2 Hz, 1C), 109.2, 77.8 (dd, $J_{C-F} = 32.3$, 28.8 Hz, 1C), 26.3. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -100.1 (d, J = 264.7 Hz, 1F), -103.2 (d, J = 264.7 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₆H₁₁F₂N₃O₆, m/z: 402.0508, found: 402.0493.

3-((2,4-Dinitrophenyl)difluoromethyl)-1-ethyl-3hydroxyindolin-2-one (**3r**): pale yellow solid; 38.5 mg, 98% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.80 (d, *J* = 2.0 Hz, 1H), 8.61 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.18 (d, *J* = 8.8 Hz, 1H), 7.63 (d, *J* = 2.0 Hz, 1H), 7.44 (td, *J* = 8.0, 1.2 Hz, 1H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 3.78-3.60 (m, 2H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz,

DMSO-*d*₆) δ (ppm) 171.1 (d, $J_{C-F} = 6.7$ Hz, 1C), 149.0, 148.8, 143.2, 132.5 (t, $J_{C-F} = 6.3$ Hz, 1C), 131.0, 129.1 (t, $J_{C-F} = 26.0$ Hz, 1C), 126.0, 125.1, 125.1, 122.6, 119.1, 118.9 (dd, $J_{C-F} = 257.4$, 251.5 Hz, 1C), 109.1, 77.5 (dd, $J_{C-F} = 33.0$, 27.8 Hz, 1C), 34.4, 12.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.5 (d, J = 265.1 Hz, 1F), -104.0 (d, J = 265.1 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₇H₁₃F₂N₃O₆Na, m/z: 416.0665, found: 416.0684.

1-Allyl-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3s): pale yellow solid; 37.2 mg, 92% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.83 (s, 1H), 8.63 (s, 1H), 8.20 (s, 1H), 7.74 (s, 1H), 7.42 (s, 1H), 7.20-7.03 (m, 2H), 5.82 (s, 1H), 5.19 (d, *J* = 6.4 Hz, 2H), 4.36 (s, 1H), 4.26 (s, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.4 (d, *J*_{C-F} = 5.9 Hz, 1C), 149.2, 149.0, 143.4, 132.5 (t, *J*_{C-F} = 7.6 Hz, 1C), 131.2, 131.0, 129.1 (t, *J*_{C-F} = 25.7 Hz, 1C), 126.0, 125.3, 125.0, 122.9, 119.2, 118.9 (dd, *J*_{C-F} = 251.7, 250.0 Hz, 1C), 117.2, 109.7, 77.7 (dd, *J*_{C-F} = 32.7,

27.4 Hz, 1C), 41.8. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.9 (d, J = 176.7 Hz, 1F), -103.2 (d, J = 177.1 Hz, 1F). HRMS (ESI) Calcd for $[M + Na]^+ C_{18}H_{13}F_2N_3O_6Na$, m/z: 428.0665, found: 428.0667

3-((2,4-Dinitrophenyl)difluoromethyl)-3-hydroxy-1phenylindolin-2-one (**3t**): pale yellow solid; 42.8 mg, 97% yield, ¹H NMR (**400 MHz, DMSO-***d*₆) δ (ppm) 8.84 (s, 1H), 8.64 (s, 1H), 8.24 (s, 1H), 7.89 (s, 1H), 7.61–7.19 (m, 8H), 6.82 (s, 1H); ¹³C NMR (**101 MHz, DMSO-***d*₆) δ (ppm) 171.0 (d, *J*_{C-F} = 5.8 Hz, 1C), 149.1, 148.8, 144.0, 133.5, 132.5 (t, *J*_{C-F} = 5.8 Hz, 1C), 131.1, 129.8, 129.8, 129.0 (t, *J*_{C-F} = 26.4 Hz, 1C), 128.4, 126.3, 126.3, 126.3, 125.3, 124.9, 123.4, 119.2, 118.9 (dd, *J*_{C-F} = 257.8, 250.6 Hz,

1C), 109.5, 77.7 (dd, $J_{C-F} = 32.2$, 27.5 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -98.9 (d, J = 176.3 Hz, 1F), -103.5 (d, J = 177.1 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₂₁H₁₃F₂N₃O₆Na, m/z: 464.0665, found :464.0664.

1-Benzyl-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (3u): pale yellow solid; 44.6 mg, 98% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.82 (s, 1H), 8.62 (d, *J* = 8.8 Hz, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 7.84 (s, 1H), 7.38-7.32 (m, 5H), 7.30-7.25 (m, 2H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 4.93 (dd, *J* = 36.0, 16.0 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.8 (d, *J*_{C-F} = 5.9 Hz, 1C), 149.1, 149.1, 143.3, 135.6, 132.5 (t, *J*_{C-F} = 7.2 Hz, 1C), 131.0, 129.5, 129.1, 129.1 (t, *J*_{C-F} = 27.0 Hz, 1C), 128.6, 127.6, 127.3, 126.1,

125.2, 125.0, 122.9, 119.2, 119.0 (dd, $J_{C-F} = 256.0$, 252.6 Hz, 1C), 109.8, 77.8 (dd, $J_{C-F} = 32.4$, 27.6 Hz, 1C), 43.0. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.7 (d, J = 265.5 Hz, 1F), -103.3 (d, J = 265.1 Hz, 1F). HRMS (ESI) Calcd for [M + H]⁺ C₂₂H₁₆F₂N₃O₆, m/z: 456.1007, found: 456.1002.

2-((2,4-Dinitrophenyl)difluoromethyl)-2hydroxyacenaphthylen-1(2H)-one (4a): pale yellow solid; 35.2 mg, 88% yield, ¹H NMR (400 MHz, DMSO d_6) δ (ppm) 8.84 (d, J = 2.0 Hz, 1H), 8.67 (dd, J = 8.8, 2.0 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 8.8 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 6.8 Hz, 1H),

7.89 (t, J = 7.6 Hz, 1H), 7.81 (s, 1H), 7.76 (t, J = 7.8 Hz, 1H), 7.48 (t, J = 6.8 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 196.5, 149.2, 148.5, 137.4, 135.9, 133.0 (d, $J_{C-F} = 1.7$ Hz, 1C), 132.5 (t, $J_{C-F} = 6.5$ Hz, 1C), 131.8, 130.3, 129.3, 128.8 (d, $J_{C-F} = 4.6$ Hz, 1C), 128.2 (t, $J_{C-F} = 27.3$ Hz, 1C), 127.2, 124.9, 124.6, 123.7, 119.8 (dd, $J_{C-F} =$ 254.7, 252.1 Hz, 1C), 118.8, 79.9 (dd, $J_{C-F} = 27.5$, 26.4 Hz, 1C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -96.1 (d, J = 253.8 Hz, 1F), -101.7 (d, J = 254.2 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₉H₁₀F₂N₂O₆Na, m/z: 423.0414, found: 423.0399.

10-((2,4-Dinitrophenyl)difluoromethyl)-10-

hydroxyphenanthren-9(10H)-one (4b): pale yellow solid; 35.1 mg, 82% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.70 (d, J = 2.0 Hz, 1H), 8.52 (dd, J = 8.8, 2.0 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 7.87 (dd, J = 7.6, 0.8 Hz, 1H), 7.83-7.78 (m, 2H), 7.56-7.50 (m, 2H), 7.36 (s, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 198.7 (d, $J_{C-F} = 3.8$ Hz, 1C), 149.3, 148.7,

141.9, 134.6, 132.6, 132.6, 132.5 (t, $J_{C-F} = 7.9$ Hz, 1C), 130.6, 130.2, 129.3 (t, $J_{C-F} = 27.8$ Hz, 1C), 129.0, 129.0, 128.9, 126.7, 125.5, 123.1, 122.3, 119.4 (dd, $J_{C-F} = 251.4$, 250.2 Hz, 1C), 119.3, 81.0 (dd, $J_{C-F} = 31.5$, 27.1 Hz, 1C). ¹⁹F NMR (376 MHz, DMSOd₆) δ (ppm) -98.3 (d, J = 265.8 Hz, 1F), -101.3 (d, J = 265.8 Hz, 1F). HRMS (ESI) [M + Na]⁺ Calcd for C₂₁H₁₂F₂N₂O₆Na, m/z: 449.0571, found: 449.0556.

Methyl (E)-2-((2,4-dinitrophenyl)difluoromethyl)-2hydroxy-4-phenylbut-3-enoate (4c): pale yellow oil; 20.8 mg, 51% yield, ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 8.80 (d, J = 2.4 Hz, 1H), 8.52 (dd, J = 8.8, 2.0 Hz, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.43 (s, 1H), 7.35 (t, J = 7.2 Hz, 2H), 7.31-7.27 (m, 1H), 6.68 (d, J = 16.0 Hz, 1H), 6.52 (d,

J = 16.0 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 168.9, 149.1, 148.7, 135.2, 133.3, 132.4 (t, $J_{C-F} = 6.5$ Hz, 1C), 129.1 (t, $J_{C-F} = 27.0$ Hz, 1C), 128.7, 128.7, 128.5, 127.0, 127.0, 125.1, 122.8 (d, $J_{C-F} = 4.1$ Hz, 1C), 119.4 (t, $J_{C-F} = 258.5$ Hz, 1C), 119.0, 79.9 (t, $J_{C-F} = 27.7$ Hz, 1C), 53.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -97.3 (d, J = 258.7 Hz, 1F), -101.4 (d, J = 258.3 Hz, 1F). HRMS (ESI) [M + H]⁺ Calcd for C₁₈H₁₅F₂N₂O₇, m/z: 409.0832, found: 409.0842.

Methyl 2-((2,4-dinitrophenyl)difluoromethyl)-2-hydroxy-4-phenylbut-3-ynoate (4d): pale yellow solid; 26.9 mg, 66% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.87 (d, *J* = 2.4 Hz, 1H), 8.63 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 8.16 (s, 1H), 7.51-7.41 (m, 5H), 3.81 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 166.3, 149.3, 148.9, 132.2 (t, *J*_{C-F} = 6.5 Hz, 1C), 131.7, 131.7, 129.8, 128.8, 128.8, 128.7 (t,

 $J_{C-F} = 26.8$ Hz, 1C), 125.4, 120.3, 119.3, 117.9 (t, $J_{C-F} = 259.0$ Hz, 1C), 87.4, 83.1 (d, $J_{C-F} = 5.3$ Hz, 1C), 74.8 (dd, $J_{C-F} = 31.9$, 29.5 Hz, 1C), 53.9. ¹⁹F NMR (376 MHz, **DMSO-***d*₆) δ (ppm) -98.2 (d, J = 255.7 Hz, 1F), -101.0 (d, J = 255.7 Hz, 1F). HRMS (ESI) [M + H]⁺ Calcd for C₁₈H₁₃F₂N₂O₇, m/z: 407.0691, found: 407.0685.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5a): pale yellow oil; 6.8 mg, 20% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 7.88-7.84 (m, 1H), 7.79-7.76 (m, 3H), 7.43-7.39 (m, 2H), 7.06-7.03 (m, 3H), 3.11 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.9 (d, *J*_{C-F} = 6.1 Hz, 1C), 148.8 (t, *J*_{C-F} = 2.6 Hz, 1C), 144.2, 132.3, 130.7, 130.6, 130.2 (t, *J*_{C-F} = 7.2 Hz, 1C), 125.6, 125.4, 123.5 (t, *J*_{C-F} = 26.6 Hz, 1C), 123.5, 122.5, 119.3 (t, *J*_{C-F} = 253.4 Hz, 1C), 108.8, 77.7 (t, *J*_{C-F} =

30.6 Hz, 1C), 26.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -99.9 (d, J = 263.2 Hz, 1F), -101.7 (d, J = 263.2 Hz, 1F). HRMS (ESI) Calcd for $[M + H]^+ C_{16}H_{13}F_2N_2O_4$, m/z: 335.0829, found: 335.0838.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5b): pale yellow solid; 33.0 mg, 99% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.27 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.8 Hz, 2H), 7.40 (td, *J* = 7.6, 1.2 Hz, 1H), 7.37 (s, 1H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.08 (td, *J* = 7.6, 0.8 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 3.05 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 172.0, 148.7, 144.0, 138.5 (t, *J*_{C-F} = 26.0 Hz, 1C), 130.8, 128.7 (t, *J*_{C-F} = 6.4 Hz, 1C), 128.7 (t, *J*_{C-F} = 6.4 Hz, 1C), 125.8, 125.4, 122.7, 122.7, 122.6, 119.7 (d, *J*_{C-F} = 253.3 Hz, 1C), 108.9, 77.3 (dd, *J*_{C-F} = 30.2, 28.6 Hz,

1C), 26.0. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -105.6 (d, J = 250.0 Hz, 1F), -107.3 (d, J = 250.4 Hz, 1F). HRMS (ESI) Calcd for [M - H]⁻ C₁₆H₁₁F₂N₂O₄, m/z: 333.0682, found: 333.0692.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5c): white solid; 30.8 mg, 87% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.16 (s, 2H), 7.74 (s, 1H), 7.41 (d, *J* = 22.8 Hz, 2H), 7.38 (s, 1H), 7.10 (d, *J* = 18.8 Hz, 2H), 3.13 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.8 (d, *J* = 5.4 Hz, 1C), 159.2 (d, *J*_{C-F} = 259.6 Hz, 1C), 149.8 (d, *J*_{C-F} = 9.1 Hz, 1C), 144.2, 131.9 (t, *J*_{C-F} = 7.4 Hz, 1C), 130.8, 126.0, 125.3, 122.6, 119.6 (t, *J*_{C-F} = 255.1 Hz, 1C), 118.4 (d, *J*_{C-F} = 2.5 Hz, 1C), 112.2, 111.9, 108.9, 77.3 (dd, *J*_{C-F} = 32.7, 27.7 Hz, 1C), 26.2. ¹⁹F NMR (376 MHz,

DMSO-*d*₆) δ (ppm) -102.7 (dd, J = 259.8, 21.8 Hz, 1F), -105.6 (dd, J = 260.2, 29.3 Hz, 1F), -106.3 (dd, J = 29.0, 22.2 Hz, 1F). **HRMS (ESI)** Calcd for [M - H]⁻C₁₆H₁₀F₃N₂O₄, m/z: 351.0598, found: 351.0598.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5d): pale yellow solid; 29.2 mg, 79% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.28 (d, *J* = 12.4 Hz, 1H), 8.27 (s, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.35 (s, 1H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.09 (dd, *J* = 14.0, 7.2 Hz, 2H), 3.13 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.9 (d, *J* = 5.6 Hz, 1C), 148.9, 144.2, 135.5 (t, *J*_{C-F} = 24.7 Hz, 1C), 133.4, 132.8 (t, *J*_{C-F} = 8.3 Hz, 1C), 130.8, 126.0, 125.6, 125.3, 122.6, 121.0, 119.9 (dd, *J*_{C-F} = 255.8, 253.8 Hz, 1C), 108.9, 77.6 (dd, *J*_{C-F} = 31.9,

28.1 Hz, 1C), 26.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -100.4 (d, J = 258.7 Hz, 1F), -102.5 (d, J = 258.7 Hz, 1F). HRMS (ESI) Calcd for [M - H]⁻ C₁₆H₁₀ClF₂N₂O₄, m/z: 367.0300, found: 367.0303.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5e): white solid; 30.2 mg, 75% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.72 (d, *J* = 8.8 Hz, 1H), 8.52 (d, *J* = 2.0 Hz, 1H), 8.31 (d, *J* = 8.8 Hz, 1H), 7.52 (d, *J* = 0.8 Hz, 1H), 7.45 (dt, *J* = 7.6, 0.8 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.12-7.07 (m, 2H), 3.12 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.8 (d, *J*_{C-F} = 6.4 Hz, 1C), 148.5, 144.2, 136.5 (dd, *J*_{C-F} = 28.0, 25.9 Hz, 1C), 133.7 (t, *J*_{C-F} = 7.8 Hz, 1C), 130.9, 128.2 (d, *J*_{C-F} = 33.5 Hz, 1C), 126.5, 125.6, 125.5, 122.6, 122.1 (d, *J*_{C-F} =

275.8 Hz, 1C), 121.7 (q, $J_{C-F} = 7.2$ Hz, 1C), 119.5 (dd, $J_{C-F} = 254.3$, 252.3 Hz, 1C), 109.0, 77.6 (dd, $J_{C-F} = 32.9$, 28.2 Hz, 1C), 26.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -57.0 (dd, J = 27.1, 15.8 Hz, 3F), -97.8 (dq, J = 263.8, 15.0 Hz, 1F), -102.1 (dq, J = 264.0, 27.1 Hz, 1F). HRMS (ESI) Calcd for [M - H]⁻ C₁₇H₁₀F₅N₂O₄, m/z: 401.0564, found: 401.0566.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5f): pale yellow solid; 30.4 mg, 86% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.24 (t, *J* = 8.2 Hz, 1H), 7.49 (dd, *J* = 12.0, 1.6 Hz, 1H), 7.45-7.41 (m, 3H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.11 (dt, *J* = 7.2, 0.8 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 3.09 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.8 (d, *J*_{C-F} = 4.0 Hz, 1C), 153.5 (d, *J*_{C-F} = 262.7 Hz, 1C), 144.1, 139.8 (d, *J*_{C-F} = 8.0 Hz, 1C), 138.0-137.9 (m, 1C), 130.9, 125.8, 125.7 (d, *J*_{C-F} = 2.3 Hz, 1C), 125.2, 124.2-124.0 (m, 1C), 122.7, 119.0 (t, *J*_{C-F} = 253.0 Hz, 1C),

117.5 (dt, $J_{C-F} = 23.3$, 6.5 Hz, 1C), 109.0, 77.1 (dd, $J_{C-F} = 31.3$, 28.2 Hz, 1C), 26.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -105.3 (d, J = 251.5 Hz, 1F), -107.4 (d, J = 251.9 Hz, 1F), -119.0 (s, 1F). HRMS (ESI) Calcd for [M - H]⁻ C₁₆H₁₀F₃N₂O₄, m/z: 351.0595, found: 351.0598.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5g): white solid; 36.2 mg, 98% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.16 (d, J = 8.4 Hz, 1H), 7.66 (s, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.46 (s, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 7.2 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 3.10 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.8 (d, J = 4.7 Hz, 1H), 148.6, 144.1, 137.5 (t, $J_{C-F} = 26.3$ Hz, 1C), 130.9, 130.2 (t, $J_{C-F} = 6.6$ Hz, 1C), 127.6 (t, $J_{C-F} = 255.7$, 251.4 Hz, 1C), 109.0,

77.1 (dd, $J_{C-F} = 31.9$, 28.0 Hz, 1C), 26.1. ¹⁹F NMR (376 MHz, DMSO- d_6) δ (ppm) - 104.7 (d, J = 253.0 Hz, 1F), -107.7 (d, J = 252.7 Hz, 1F). HRMS (ESI) Calcd for [M - H]⁻ C₁₆H₁₀ClF₂N₂O₄, m/z: 367.0300, found: 367.0303.

1- Benzyl-3-((2,4-dinitrophenyl)difluoromethyl)-3hydroxyindolin-2-one (5h): white solid; 35.4 mg, 90% yield, ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 8.31 (d, J = 10.4 Hz, 1H), 8.30 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.55 (s, 1H), 7.43 (td, J = 7.6, 1.2 Hz, 1H), 7.13-7.05 (m, 3H), 3.93 (s, 3H), 3.13 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ (ppm) 171.7 (d, $J_{C-F} = 5.5$ Hz, 1C), 164.0, 149.0, 144.2, 133.2, 131.3 (t, $J_{C-F} = 7.0$ Hz, 1C), 130.9, 130.9, 127.6 (d, $J_{C-F} = 26.7$ Hz, 1C), 125.7, 125.2, 124.0, 122.7, 119.1 (dd, $J_{C-F} = 255.1, 251.9$ Hz, 1C), 109.0, 77.7 (dd, $J_{C-F} = 32.0$,

28.3 Hz, 1C), 53.0, 26.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) -100.0 (d, J = 264.0 Hz, 1F), -102.8 (d, J = 264.0 Hz, 1F). HRMS (ESI) Calcd for [M + H]⁺ C₁₈H₁₅F₂N₂O₆, m/z: 393.0904, found: 393.0893.

3-(Difluoro(2-nitro-4-(trifluoromethyl)phenyl)methyl)-3hydroxy-1-methylindolin-2-one (5i): pale yellow solid; 27.5 mg, 68% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.43 (s, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 1.6 Hz, 1H), 7.44 (td, *J* = 7.6, 1.2 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.0 Hz, 2H), 3.13 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 171.6 (d, *J*_{C-F} = 6.2 Hz, 1C), 149.0, 144.2, 132.5, 132.1, 132.0 (d, *J*_{C-F} = 6.9 Hz, 1C), 131.0, 127.5 (dd, *J*_{C-F} = 28.4, 25.6 Hz, 1C), 125.7, 125.1, 122.7, 122.6 (q, *J*_{C-F} = 274.6 Hz, 1C)

1C), 121.0 (d, $J_{C-F} = 3.6$ Hz, 1C), 118.9 (dd, $J_{C-F} = 256.0$, 250.4 Hz, 1C), 109.0, 77.6 (dd, $J_{C-F} = 32.7$, 27.6 Hz, 1C), 26.2. ¹⁹F NMR (376 MHz, DMSO- d_6) δ (ppm) -61.7 (s, 3F), -99.6 (d, J = 264.7 Hz, 1F), -103.5 (d, J = 264.7 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₇H₁₁F₅N₂O₄Na, m/z: 425.0532, found: 425.0531.

3-(Difluoro(4-fluoro-2-nitrophenyl)methyl)-3-hydroxy-1methylindolin-2-one (5j): white solid; 21.6 mg, 61% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.02 (d, J = 7.6 Hz, 2H), 7.98 (d, J = 8.8 Hz, 1H), 7.80-7.76 (m, 2H), 7.64 (t, J = 7.8 Hz, 2H), 7.53 (dd, J = 8.8, 2.4 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 187.3 (t, $J_{C-F} = 31.6$ Hz, 1C), 161.7, 147.5, 134.6, 131.7 (t, $J_{C-F} = 2.5$ Hz, 1C), 131.3 (d, $J_{C-F} = 295.5$ Hz, 1C), 129.6 (t, $J_{C-F} = 9.6$ Hz, 1C), 129.4 (t, $J_{C-F} = 2.5$ Hz, 1C), 129.1, 129.1, 128.4 (t, $J_{C-F} = 152.1$ Hz, 1C), 119.5, 118.6 (t, $J_{C-F} = 2.5$

25.5 Hz, 1C), 116.2 (t, $J_{C-F} = 256.0$ Hz, 1C), 111.4, 56.5. ¹⁹F NMR (376 MHz, DMSO d_6) δ (ppm) -59.1 (s, 1F), -93.0 (s, 2F). HRMS (ESI) Calcd for $[M + H]^+ C_{16}H_{12}F_3N_2O_4$, m/z: 353.0746, found: 353.0744.

Control reactions

GC-MS Spectrum and the characterization data of 7

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -115.6 (s, 1F), -115.8 (s, 1F).

Gram-scale synthesis of 3q

To a solution of **1a** (1.40 g, 4.34 mmol), **2q** (0.58 g, 3.62 mmol) and 18 mL MeOH, DBU (542 μ L, 10 mol%) was added at room temperature and the mixture was stirred for 12 h at the same temperature. Subsequently, the reaction mixture was concentrated and purified by gel chromatography (PE/acetone = 4/1, v/v) to afford product **3q**.

Transformations of 3q

(a) To the solution of **3q** (76 mg, 0.20 mmol) in 2.0 mL ethanol, Pd/C (6 mg, 3 mol%, 10 wt% in charcoal) was added, the reaction was performed at 0 °C under 1 atm H₂ for 1 h. Then the mixture was filtered and concentrated in vacuum. The crude product was purified by flash chromatography (PE/Acetone = 2/1) to give a yellow solid. **3-(Difluoro(4-(hydroxyamino)-2-nitrophenyl)methyl)-3-hydroxy-1-methylindolin-2-one (8)**: yellow solid; 59.0 mg, 81 % yield, ¹H NMR (400 MHz, Acetone-*d*₆) δ (ppm) 8.58 (s, 1H), 8.25 (s, 1H), 7.70 (d, *J* = 8.8, 1H), 7.39 (dt, *J* = 7.8,

1.2 Hz, 1H), 7.16 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 7.2 Hz, 1H), 7.08 (d, J = 2.0 Hz, 1H), 7.03 (dt, J = 7.4, 0.4 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.11 (s, 1H), 3.16 (s, 3H); ¹³C **NMR (101 MHz, Acetone-***d*₆**)** δ (ppm) 172.5, 154.9, 150.6, 145.0, 131.1 (t, $J_{C-F} = 6.9$ Hz, 1C), 131.0, 126.1, 125.8, 122.7, 125.1, 120.1, 114.4 (t, $J_{C-F} = 27.2$ Hz, 1C), 113.7, 108.7, 106.8, 78.6 (t, $J_{C-F} = 31.4$ Hz, 1C), 25.9. ¹⁹F NMR (376 MHz, Acetone-*d*₆) δ (ppm) -101.0 (s, 2F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₆H₁₃F₂N₃O₅Na, m/z: 388.0727, found: 388.0716.

(b) The mixture of **3q** (38 mg, 0.10 mmol), Pd/C (10 mg, 10 mol %, 10 wt % in charcoal) and ethanol (1.0 mL) was stirred at room temperature under 1 atm H₂ for 3 h. The mixture was filtered and concentrated in vacuum. The crude product was purified by flash chromatography (PE/Acetone = 1/1) to give a yellow solid. **3-Amino-11-methyl-5,11-dihydro-6H-indolo[3,2-c]quinolin-6-one (9):** yellow solid; 20.0 mg, 76 % yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 11.11 (s, 1H), 8.18 (d, *J* = 7.2, 1H), 8.10 (d, *J* = 8.4, 1H), 7.65 (d, *J* = 8.4 Hz,1H), 7.33-7.29 (m, 1H), 7.23-7.19 (m, 1H), 6.59 (s, 1H), 6.58 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.77 (s, 2H), 4.19 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) 159.8, 149.9, 141.8, 140.8, 139.0, 124.1, 124.0, 122.7, 120.8, 120.1, 110.2, 109.5, 103.4, 102.5, 98.2, 33.1. HRMS (ESI) Calcd for [M + Na]⁺ C₁₆H₁₃N₃ONa, m/z: 286.0955, found: 286.0951.

2D NMR spectrums of 9

H-H COSY of **9** in DMSO- d_6

(c) To the mixture of **3q** (38 mg, 0.10 mmol), DMAP (2.4 mg, 20 mol%), TEA (21 μ L, 1.5 equiv) and anhydrous DCM (0.5 mL), Ac₂O (12 μ L, 1.2 equiv) was added and stirred at room temperature for 5 min. The mixture was washed with saturated aqueous ammonium chloride, dried over Na₂SO₄ and concentrated in vacuo. The crude product

was purified by silica gel chromatography (PE/Acetone = 4/1) to give a colourless oil. **3-((2,4-dinitrophenyl)difluoromethyl)-1-methyl-2-oxoindolin-3-yl acetate (10):** colourless oil; 41.6 mg, 99 % yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.48-8.44 (m, 2H), 7.94 (d, J = 8.4 Hz, 1H), 7.45 (td, J = 8.0, 1.2 Hz, 1H), 7.38 (d, J = 7.2 Hz, 1H), 7.12 (td, J = 7.6, 0.4 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 3.26 (s, 3H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 168.6 (d, J = 6.3 Hz, 1C), 167.4, 149.8, 149.1, 145.2, 132.3 (dd, J = 8.9, 6.8 Hz, 1C), 131.7, 129.6 (t, J = 27.3 Hz, 1C), 125.3 (t, J =2.9 Hz, 1C), 124.6, 123.2, 121.0, 119.4, 117.5 (dd, J = 260.1, 249.6 Hz, 1C), 108.9, 80.5 (dd, J = 38.9, 25.4 Hz, 1C), 26.8, 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -98.5 (d, J = 273.4 Hz, 1F), -103.2 (d, J = 273.0 Hz, 1F). HRMS (ESI) Calcd for [M + Na]⁺ C₁₈H₁₃F₂N₃O₇Na, m/z: 444.0612, found: 444.0614.

(d) To the solution of **3q** (38 mg, 0.10 mmol) in 0.5 mL anhydrous DMF, DBU (30 μ L, 2.0 equiv) was added, the reaction performed at room temperature for 5 min. Then the mixture was washed with saturated aqueous ammonium chloride, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel chromatography (PE/Acetone = 4/1) to give a pale yellow solid. **3,3-difluoro-1'-methyl-6-nitro-3H-spiro[benzofuran-2,3'-indolin]-2'-one (11):** pale yellow solid; 24.1 mg, 73 % yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.03 (d, J = 6.4 Hz, 1H), 7.89 (s, 1H), 7.73 (d, J = 6.0 Hz, 1H), 7.51 (s, 1H), 7.42 (d, J = 3.6 Hz, 1H), 7.18 (s, 1H), 6.95 (d, J = 6.0 Hz, 1H), 3.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 169.1 (dd, J = 7.9, 2.5 Hz, 1C), 161.1 (dd, J = 8.3, 6.9 Hz, 1C), 152.0 (d, J = 1.3 Hz, 1C), 145.3, 132.5, 127.8 (d, J = 3.4 Hz, 1C), 126.4 (t, J = 26.0 Hz, 1C), 125.2, 123.5, 123.3 (t, J = 255.2 Hz, 1C), 119.0 (d, J = 2.8 Hz, 1C), 118.0, 109.2, 107.9, 98.7 (dd, J = 29.0, 26.0 Hz, 1C), 26.6. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -78.8 (d, J = 257.2 Hz, 1F), -109.6 (d, J = 256.5 Hz, 1F). HRMS (ESI) Calcd for [M + H]⁺ C₁₆H₁₁F₂N₂O₄, m/z: 333.0686, found: 333.0681.

Sigle crystal data

Identification code	3р	
Empirical formula	$C_{15}H_7Cl_2F_2N_3O_6$	
Formula weight	365.29	
Temperature	100.0(2) K	
Crystal system	triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.4977(9) Å	$\alpha = 70.511(6)^{\circ}$
	b = 11.8470(8) Å	$\beta = 80.465(6)^{\circ}$
	c = 12.9471(9) Å	$\gamma=79.851(6)^{\circ}$
Volume	1625.6(2) Å ³	
Z	4	
Density (calculated)	1.774 g/cm ³	
Absorption coefficient	4.225 mm ⁻¹	
F (000)	872.0	
Crystal size	$0.13\times0.11\times0.09~mm^3$	
Radiation	Cu Ka (λ = 1.54184)	
Theta range for data collection	7.292 to 147.446°	
Index ranges	$\text{-10} \le h \le 13, \text{-13} \le k \le 14, \text{-14} \le l \le 15$	
Reflections collected	11200	
Independent reflections	6351 [$R_{int} = 0.0735$, $R_{sigma} = 0.0893$]	
Completeness to theta = 73.723	96.6%	
Absorption correction	Multi-scan	
Data/restraints/parameters	6351/0/517	
Goodness-of-fit on F ²	1.033	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0770, wR_2 = 0.1972$	
Final R indexes [all data]	$R_1 = 0.1023, wR_2 = 0.2357$	
Largest diff. peak/hole	0.68/-0.64 e Å ⁻³	

Identification code	8	
Empirical formula	$C_{16}H_{13}F_2N_3O_5$	
Formula weight	365.29	
Temperature	150.00(10) K	
Crystal system	triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.8331(6) Å	$\alpha = 88.789(7)^{\circ}$
	b = 9.3318(8) Å	$\beta = 75.495(7)^{\circ}$
	c = 12.2430(11) Å	$\gamma = 66.796(8)^{\circ}$
	88.789(7)	
	75.495(7)	
	66.796(8)	
Volume	793.29(13) Å ³	
Z	2	
Density (calculated)	1.529 g/cm ³	
Absorption coefficient	0.130 mm ⁻¹	
F (000)	376.0	
Crystal size	$0.15\times0.13\times0.12\ mm^3$	
Radiation	Mo Ka ($\lambda = 0.71073$)	
Theta range for data collection	4.768 to 49.99°	
Index ranges	$-9 \le h \le 7, -10 \le k \le 11, -14 \le l \le 13$	
Reflections collected	5179	
Independent reflections	2793 [R _{int} = 0.0206, R _{sigma} = 0.0388]	
Completeness to theta $= 24.995$	100%	
Absorption correction	Multi-scan	
Data/restraints/parameters	2793/0/242	
Goodness-of-fit on F ²	1.022	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0420, wR_2 = 0.0940$	
Final R indexes [all data]	$R_1 = 0.0547, wR_2 = 0.1024$	
Largest diff. peak/hole	0.18/-0.19 e Å ⁻³	

Identification code	11	
Empirical formula	$C_{16}H_{10}F_2N_2O_4\\$	
Formula weight	332.26	
Temperature	219.99(10) K	
Crystal system	triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.8185(5) Å	$\alpha = 92.612(6)^{\circ}$
	b = 8.7925(7) Å	$\beta = 101.796(5)^{\circ}$
	c = 11.6820(7) Å	$\gamma = 112.885(6)^{\circ}$
Volume	717.23(3) Å ³	
Z	2	
Density (calculated)	1.538 g/cm ³	
Absorption coefficient	0.129 mm ⁻¹	
F (000)	340.0	
Crystal size	$0.13\times0.12\times0.11\ mm^3$	
Radiation	Mo Ka ($\lambda = 0.71073$)	
Theta range for data collection	5.078 to 49.978°	
Index ranges	$-9 \le h \le 7, -6 \le k \le 10, -13 \le l \le 13$	
Reflections collected	4587	
Independent reflections	2531 [$R_{int} = 0.0213$, $R_{sigma} = 0.0391$]	
Completeness to theta $= 24.986$	100 %	
Absorption correction	Multi-scan	
Data/restraints/parameters	2531/0/228	
Goodness-of-fit on F ²	1.052	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0437, wR_2 = 0.1066$	
Final R indexes [all data]	$R_1=0.0554,wR_2=0.1170$	
Largest diff. peak/hole	0.23/-0.22 e Å ⁻³	

NMR spectrum

115.61

