Regio- and enantioselective formation of tetrazole-bearing quaternary stereocenters *via* palladium-catalyzed allylic amination

Shahid Khan, Yu Wang, Mei-Na Zhang, Shahida Perveen, Junjie Zhang and Ajmal Khan*

Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China E-mail: ajmalkhan@xjtu.edu.cn

Table of Contents

General experimental details	S2
Details for the optimization conditions	\$3-\$4
General procedure for the allylic amination of vinyl cyclic carbonates 1 with tetrazole 2 .	S5
Characterization of products 3	\$5-\$20
Scaled up procedures and X-ray crystallography of compound 3ad	S20-S22
References	S22
NMR charts	S23-S54
HPLC charts	S55-S84

General experimental details

Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (Yantai Jiangyou Silica Gel Development Co., Ltd., silica gel HSGF 254). Preparative column chromatography employing silica gel (Qingdao Shenghai Fine Silica Gel Chemical Co., Ltd., 200-300 mesh) was performed according to the method of Still. Solvents for the chromatography are listed as volume/volume ratios. High-resolution mass spectra (HRMS) were performed at Instrumental Analysis Center of Xi'an Jiao Tong University using ESI method. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Varian Mercuryplus 400 (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Varian Gemini 400 (100 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.0 ppm for deuteriochloroform. ¹³C NMR spectra were routinely run with broadband decoupling. High performance liquid chromatography (HPLC) was performed with FuLi (instruments) spectrometers using chiral column as noted for each compound. Optical rotations were measured on SGW[®]-1 polarimeter. Pd₂(dba)₃•CHCl₃, Ligands and tetrazole compounds were purchased from Energy Chemicals and used as received. Substituted vinyl cyclic carbonates were synthesized according to the previously reported procedure.¹ All other chemicals were used as received from commercial resources.

Details for the Optimization Conditions

Table S1. Evaluation of ligand for asymmetric Pd-catalyzed amination of allylic cyclic carbonate 1a with Phenyl tetrazole $2a^{[a]}$

[a] Reaction conditions: Pd₂(dba)₃•CHCl₃ (2.5 mol%), ligands in entry 2 (10 mol%), ligands in entry 1 and 3-6 (5 mol%), **1a** (0.2 mmol), **2a** (0.24 mmol, 1.2 equiv), DCM (1.0 mL, 0.2 M), 0 °C, 24 hours. [b] Isolated yields. [c] Determined by ¹H-NMR of the crude reaction mixture [d] Determined by HPLC using a Chiralcel IC Column.

Table S2. Evaluation of solvents for asymmetric Pd-catalyzed amination of allylic cyclic carbonate **1a** with Phenyl tetrazole $2a^{[a]}$

o Me 1a	$+ N H H R = 2a Ph Ph R = Pd_2(dba)_3 .CHC (R,R)-L6 (R,R$	$ \begin{array}{c} I_3 (2.5 \text{ mol}\%) \\ \overline{5 \text{ mol}\%}) \\ \hline 0. 2M) \\ 24 \text{ h} \\ \hline 3a \end{array} $	Me Ha 4	N Ph N N Ne aa
entry	solvent	yield (%) ^[b]	$b/l^{[c]}$	ee (%) ^[d]
1	THF	54	15:1	85
2	toluene	89	>19:1	92
3	1,4-dioxane	40	10:1	72
4	CH ₃ CN	63	10:1	65
5	Et ₂ O	70	15:1	82
6	DCE	67	19:1	79
7	EtOH	80	19:1	45
8 ^e	toluene	38	10:1	87

[a] Reaction conditions: $Pd_2(dba)_3$ •CHCl₃ (2.5 mol%), (*R*,*R*)-L6 (5 mol%), 1a (0.2 mmol), 2a (0.24 mmol, 1.2 equiv), solvent (1.0 mL, 0.2 M), 0 °C, 24 hours. [b] Isolated yields. [c] Determined by ¹H-NMR of the crude reaction mixture. [d] Determined by HPLC using a Chiralcel IC Column. [e] Reaction was performed at 20 °C temperature.

General procedure for allylic substitution of vinyl cyclic carbonates 1 with tetrazole 2a

To an oven dried screw-cap reaction tube equipped with a magnetic stir bar, $Pd_2(dba)_3$ ·CHCl₃ (5.2 mg, 2.5 mol%), Trost's ligand (*R*,*R*)-**L6** (7.8 mg, 5 mol%), vinyl cyclic carbonate **1a** (25.6 mg, 0.2 mmol), and phenytetrazole **2a** (35.08 mg, 0.24 mmol) were added. The reaction tube was sealed with rubber-septum, then evacuated and backfilled with nitrogen. Anhydrous toluene (0.2 M, 1 mL) was added via syringe. The resulting mixture was stirred at 0 °C for 24 hours. The residue was purified by flash column chromatography on silica gel to afford the pure branched product **3aa**. The enantiomeric excesses of the products were determined by HPLC analysis using chiral stationary phases as indicated for each case.

(*R*)-2-methyl-2-(5-phenyl-2H-tetrazol-2-yl)but-3-en-1-ol (3aa) was prepared according to the general procedure from 1a and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 89% yield (41.0 mg). $[\alpha]_{D}^{25} = 20.5 \ (c = 0.12, \text{ CHCl}_3); ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 8.16–8.14 (m, 2H), 7.52–7.46 (m, 3H) 6.21 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.37 (d, *J* = 10.8 Hz, 1H), 5.14 (d, *J* = 17.6 Hz, 1H), 4.28 (dd, *J* = 7.1, 12.3 Hz, 1H), 4.05 (dd, *J* = 7.0, 12.3 Hz, 1H), 3.03 (brt, 1H), 1.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 137.1, 130.4, 128.9, 127.1, 126.9, 117.3, 71.0, 68.4, 21.7; HRMS (ESI-MS): Calcd. for C₁₂H₁₄N₄O (M + Na): 253.1065, Found: 253.1057; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 1/19, t_{major} = 24.2 min, t_{minor} = 29.1 min; 92% ee.

(*R*)-2-(5-(4-bromophenyl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3ab) was prepared according to the general procedure from 1a and 2b. The crude product was purified by flash column chromatography

(Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 87% yield (53.8 mg). $[\alpha]^{25}{}_{D} = -14.2$ (c = 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03–7.99 (m, 2H), 7.63–7.60 (m, 2H) 6.20 (dd, J = 10.8, 17.4 Hz, 1H), 5.38 (d, J = 10.8 Hz, 1H), 5.16 (d, J = 17.6 Hz, 1H), 4.29 (d, J = 12.3 Hz, 1H), 4.04 (dd, J = 12.8 Hz, 1H), 2.97 (brs, 1H), 1.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 137.0, 132.1, 128.4, 126.1, 124.8, 117.3, 71.2, 68.3, 21.5; HRMS (ESI-MS): Calcd. for C₁₂H₁₃BrN₄O (M + Na): 331.0170, Found: 331.0170; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 20/80, t_{major} = 6.5 min, t_{minor} = 7.5 min; 96% ee.

(*R*)-2-methyl-2-(5-(p-tolyl)-2H-tetrazol-2-yl)but-3-en-1-ol (3ac) was prepared according to the general procedure from 1a and 2c. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 93% yield (45.4 mg). $[\alpha]^{25}{}_{\rm D} = -6.5 \ (c = 0.74, \text{CHCl}_3); {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 8.03 \ (d, J = 8.2 \text{ Hz}, 2\text{H}), 7.28 \ (d, J = 8.0 \text{ Hz}, 2\text{H}), 6.20 \ (dd, J = 10.8, 17.4 \text{ Hz}, 1\text{H}), 5.35 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), 5.13 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.26 \ (dd, J = 5.6, 12.1 \text{ Hz}, 1\text{H}), 4.03 \ (dd, J = 5.6, 12.1 \text{ Hz}, 1\text{H}), 3.12 \ (\text{brt}, 1\text{H}), 2.41 \ (\text{s}, 3\text{H}), 1.90 \ (\text{s}, 3\text{H}); {}^{13}\text{C} \text{ NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \delta 164.7, 140.6, 137.1, 129.5, 126.8, 124.4, 117.2, 70.9, 68.4, 29.7, 21.6; HRMS \ (ESI-MS): Calcd. for C₁₃H₁₆N₄O \ (M + Na): 267.1222, Found: 267.1213; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min,$ *i*-PrOH/hexanes = 20/80, t_{major} = 8.2 min, t_{minor} = 9.5 min; 92% ee.

(*R*)-2-methyl-2-(5-(4-nitrophenyl)-2H-tetrazol-2-yl)but-3-en-1-ol (3ad) was prepared according to the general procedure from 1a and 2d. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid in 94% yield

(51.7 mg). $[\alpha]^{25}_{D} = 27.5 \ (c = 0.61, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (400 \text{ MHz}, \text{CDCl}_3) \\ \delta \ 8.35 \ (s, 4\text{H}), \ 6.23 \ (dd, J = 10.8, 17.4 \text{ Hz}, 1\text{H}), \ 5.41 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), \ 5.20 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), \ 4.33 \ (d, J = 12.2 \text{ Hz}, 1\text{H}), \ 4.07 \ (d, J = 12.2 \text{ Hz}, 1\text{H}), \ 2.81 \ (brs, 1\text{H}), \ 1.95 \ (s, 3\text{H}); \ {}^{13}\text{C} \text{ NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \\ \delta \ 162.8, \ 148.9, \ 136.7, \ 133.1, \ 127.7, \ 124.2, \ 117.6, \ 71.6, \ 68.2, \ 21.5; \ \text{HRMS} \ (\text{ESI-MS}): \ \text{Calcd. for } C_{12}\text{H}_{13}\text{N}_5\text{O}_3 \ (M + \text{Na}): \ 298.0916, \ \text{Found: } 298.0938; \ \text{HPLC conditions: Chiralcel IC column, } 254 \text{ nm}, \ \text{flow rate: } 1 \text{ ml/min}, \ i\text{-PrOH/hexanes} = 10/90, \ t_{\text{major}} = 14.3 \text{ min}, \ t_{\text{minor}} = 17.1 \text{ min}; \ 90\% \text{ ee}.$

(*R*)-2-(5-(2,4-dichlorophenyl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3ae) was prepared according to the general procedure from 1a and 2e. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 87% yield (52.1 mg). $[\alpha]^{25}_{D} = -13.4 (c = 0.12, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.95 (m, 1H), 7.58–7.55 (m, 1H), 7.41–7.37 (m, 1H), 6.22 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.39 (d, *J* = 10.8 Hz, 1H), 5.16 (d, *J* = 17.6 Hz, 1H), 4.28 (d, *J* = 10.8 Hz, 1H), 4.05 (d, *J* = 10.8 Hz, 1H), 3.04 (brs, 1H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 136.8, 136.7, 133.8, 132.0, 130.8, 127.4, 124.8, 117.5, 71.4, 86.4, 21.7; HRMS (ESI-MS): Calcd. for C₁₂H₁₂Cl₂N₄O (M + Na): 321.0286, Found: 321.0280; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 20/80, t_{major} = 6.7 min, t_{minor} = 8.4 min; 90% ee.

(*R*)-2-methyl-2-(5-(m-tolyl)-2H-tetrazol-2-yl)but-3-en-1-ol (3af) was prepared according to the general procedure from 1a and 2f. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 84% yield (41.1 mg). $[\alpha]^{25}_{D} = -14.8$ (c = 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 7.39–7.34 (m, 1H), 7.28 (s,

1H), 6.20 (dd, J = 10.8, 17.4 Hz, 1H), 5.36 (d, J = 10.8 Hz, 1H), 5.13 (d, J = 17.6 Hz, 1H), 4.29 (d, J = 10.8 Hz, 1H), 4.04 (d, J = 10.8 Hz, 1H), 3.16 (brs, 1H), 2.42 (s, 3H), 1.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 138.7, 137.1, 131.2, 128.8, 127.5, 127.0, 124.0, 117.3, 71.0, 68.4, 21.7, 21.4; HRMS (ESI-MS): Calcd. for C₁₃H₁₆N₄O (M + Na): 267.1222, Found: 267.1219; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 14.7 min, t_{minor} = 18.4 min; 90% ee.

(*R*)-3-(2-(1-hydroxy-2-methylbut-3-en-2-yl)-2H-tetrazol-5-yl)phenol (3ag) was prepared according to the general procedure from 1a and 2g. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 83% yield (40.8 mg). $[\alpha]^{25}{}_{D} = 6.2 \ (c = 0.21, \text{ CHCl}_3); {}^{1}\text{H} \text{ NMR}$ (400 MHz, CDCl₃) δ 7.67–7.64 (m, 2H), 7.35–7.31 (m, 1H), 6.98–6.95 (m, 1H), 6.20 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.36 (d, *J* = 10.8 Hz, 1H), 5.14 (d, *J* = 17.4 Hz, 1H), 4.32 (dd, *J* = 6.0, 11.7 Hz, 1H), 4.05 (dd, *J* = 6.0, 11.7 Hz, 1H), 3.41 (brt, 1H), 1.91 (s, 3H); {}^{13}\text{C} NMR (100 MHz, CDCl₃) δ 164.3, 156.3, 136.9, 130.3, 128.1, 119.1, 117.8, 117.4, 113.7, 71.2, 68.3, 21.5; HRMS (ESI-MS): Calcd. for C₁₂H₁₄N₄O₂ (M + Na): 269.1014, Found: 269.1012; HPLC conditions: Chiralcel OD-H column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 20/80, t_{major} = 7.4 min, t_{minor} = 8.5 min; 89% ee.

(*R*)-2-methyl-2-(5-(o-tolyl)-2H-tetrazol-2-yl)but-3-en-1-ol (3ah) was prepared according to the general procedure from 1a and 2h. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 97% yield (47.4 mg). $[\alpha]^{25}{}_{\rm D} = -21.4 \ (c = 0.54, \text{CHCl}_3); {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 8.02 \ (d, J = 7.3 \text{ Hz}, 1\text{H}), 7.39-7.29 \ (m, 3\text{H}), 6.21 \ (dd, J = 10.8, 17.4 \text{ Hz}, 1\text{H}), 5.37 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), 5.13 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.27 \ (dd, J = 6.4, 12.0 \text{ Hz}, 1\text{H}), 3.03 \ (brt, 1\text{H}), 2.62 \ (s, 3\text{H}), 1.92 \ (s, 3\text{H}); {}^{13}\text{C} \text{ NMR}$

(100 MHz, CDCl₃) δ 165.0, 137.4, 137.1, 131.4, 130.0, 129.5, 126.3, 126.0, 117.2, 70.9, 68.4, 29.7, 21.7; **HRMS (ESI-MS):** Calcd. for C₁₃H₁₆N₄O (M + Na): 267.1222, Found: 267.1216; **HPLC conditions:** Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 20/80, t_{major} = 6.8 min, t_{major} = 8.3 min; 90% ee.

(*R*)-2-(5-(2-chlorophenyl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3ai) was prepared according to the general procedure from 1a and 2i. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 96% yield (50.8 mg). $[\alpha]_{D}^{25} = -10.8 \ (c = 0.70, \text{ CHCl}_3); ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 8.00–7.96 (s, 1H), 7.55–7.52 (m, 1H), 7.44–7.36 (m, 2H), 6.22 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.38 (d, *J* = 10.8 Hz, 1H), 5.15 (d, *J* = 17.6 Hz, 1H), 4.28 (d, *J* = 12.3 Hz, 1H), 4.06 (d, *J* = 12.3 Hz, 1H), 3.18 (brs, 1H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 136.9, 133.1, 131.2, 131.1, 130.8, 126.9, 126.2, 117.3, 71.2, 68.4, 21.6; HRMS (ESI-MS): Calcd. for C₁₂H₁₃ClN₄O (M + Na): 287.0676, Found: 287.0682; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 5/95, t_{major} = 27.3 min, t_{minor} = 40.1 min; 87% ee.

(*R*)-2-(5-(2-bromophenyl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3aj) was prepared according to the general procedure from 1a and 2j. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 83% yield (51.3 mg). $[\alpha]^{25}{}_{\rm D} = 12.1 \ (c = 0.56, \text{CHCl}_3); {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 7.92 \ (dd, J = 1.7, 7.7 \text{ Hz}, 1\text{H}), 7.74 \ (dd, J = 1.0, 8.0 \text{ Hz}, 1\text{H}), 7.45 \ (ddd, J = 1.2, 7.5, 15.1 \text{ Hz}, 1\text{H}), 7.35 \ (dd, J = 1.8, 8.0 \text{ Hz}, 1\text{H}), 6.22 \ (dd, J = 10.8, 17.6 \text{ Hz}, 1\text{H}), 5.38 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), 5.15 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.05 \ (d, J = 12.3 \text{ Hz}, 1\text{H}), 3.16 \ (\text{brs}, 1\text{H}), 1.93 \ (\text{s}, 3\text{H}); {}^{13}\text{C} \text{ NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \delta 163.4, 136.9,$

134.1, 131.5, 131.3, 128.2, 127.5, 122.1, 117.3, 71.2, 68.4, 21.6; **HRMS (ESI-MS):** Calcd. for $C_{12}H_{13}BrN_4O$ (M + Na): 331.0170, Found: 331.0175; **HPLC conditions:** Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 1/19, $t_{major} = 28.4$ min, $t_{minor} = 40.5$ min; 88% ee.

(*R*)-2-(5-(2-bromophenyl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3ak) was prepared according to the general procedure from 1a and 2k. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 82% yield (37.9 mg). $[\alpha]^{25}_{D}$ = -21.3 (*c* = 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, *J* = 1.6, 4.6 Hz, 2H), 8.00 (dd, *J* = 1.6, 4.5 Hz, 2H), 6.24 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.40 (d, *J* = 10.8 Hz, 1H), 5.19 (d, *J* = 17.6 Hz, 1H), 4.33 (d, *J* = 12.2 Hz, 1H), 4.06 (d, *J* = 12.2 Hz, 1H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 150.3, 136.8, 120.9, 119.1, 117.5, 71.7, 68.3, 21.5; HRMS (ESI-MS): Calcd. for C₁₁H₁₃N₅O (M + Na): 254.1018, Found: 254.1025; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 1/19, t_{major} = 41.0 min, t_{minor} = 45.5 min; 98% ee.

(*R*)-2-(5-(5-chlorothiophen-2-yl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3al) was prepared according to the general procedure from 1a and 2l. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 83% yield (44.9 mg). $[\alpha]_{D}^{25} = -22.1$ (c = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 4.0 Hz, 1H), 6.96 (d, J = 4.0 Hz, 1H), 6.19 (dd, J = 10.8, 17.6 Hz, 1H), 5.37 (d, J = 10.8 Hz, 1H), 5.16 (d, J = 17.6 Hz, 1H), 4.26 (dd, J = 4.0, 12.1 Hz, 1H), 4.01 (dd, J = 4.0, 12.1 Hz, 1H), 2.93 (brs, 1H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 136.8, 133.0, 127.4, 127.2, 127.0, 117.4, 71.3, 68.2, 21.5; HRMS (ESI-MS): Calcd. for C₁₀H₁₁ClN₄OS (M + Na): 293.0240, Found: 293.0235; HPLC conditions:

Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, $t_{major} = 10.7$ min, $t_{minor} = 12.9$ min; 86% ee.

(*R*)-2-methyl-2-(5-methyl-2H-tetrazol-2-yl)but-3-en-1-ol (3am) was prepared according to the general procedure from 1a and 2m. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 78% yield (26.2 mg). $[\alpha]_{D}^{25} = 38.3 \ (c = 0.10, \text{CHCl}_3); \ ^1\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 6.15 \ (dd, J = 10.8, 17.6 \text{ Hz}, 1\text{H}), 5.35 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), 5.13 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.20 \ (dd, J = 6.8, 12.1 \text{ Hz}, 1\text{H}), 3.98 \ (dd, J = 6.8, 12.1 \text{ Hz}, 1\text{H}), 3.05 \ (brt, 1\text{H}), 2.55 \ (s, 3\text{H}), 1.83 \ (s, 3\text{H}); \ ^{13}\text{C} \text{ NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \delta 162.5, 137.1, 117.1, 70.5, 68.3, 21.5, 10.9;$

For the determination of enantiomeric excess of **3am**, compound **3am** was converted to corresponding benzoate **4am**. The ee value of 4am was determined by chiral HPLC

(*R*)-2-methyl-2-(5-methyl-2H-tetrazol-2-yl)but-3-en-1-yl benzoate (4am) was obtained as a white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 2H), 7.57–7.53 (m, 1H), 7.43–7.39 (m, 2H), 6.34 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.42 (d, *J* = 10.8 Hz, 1H), 5.29 (d, *J* = 17.6 Hz, 1H), 4.87 (d, *J* = 11.7 Hz, 1H), 4.79 (d, *J* = 11.7 Hz, 1H), 2.55 (s, 3H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 161.3, 136.2, 133.4, 129.7, 129.4, 129.2, 117.9, 68.7, 58.5, 18.4, 13.7; HRMS (ESI-MS): Calcd. for C₁₄H₁₆N₄O₂ (M + Na): 295.1171, Found: 295.1166; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 1/19, t_{major} = 22.6 min, t_{minor} = 24.3 min; 90% ee.

(*R*)-2-(5-benzyl-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3an) was prepared according to the general procedure from 1a and 2n. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 88% yield (42.9 mg). $[\alpha]_{D}^{25} = 68.9 \ (c = 0.07, \text{ CHCl}_3); ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 7.36–7.22 (m, 5H), 6.13 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.34 (d, *J* = 10.8 Hz, 1H), 5.07 (d, *J* = 17.6 Hz, 1H), 4.26 (s, 2H), 4.19 (d, *J* = 12.3 Hz, 1H), 3.96 (d, *J* = 12.3 Hz, 1H), 2.85 (brs, 1H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 137.1, 136.6, 128.8, 128.7, 126.9, 117.2, 70.8, 68.3, 31.8, 21.6; HRMS (ESI-MS): Calcd. for C₁₃H₁₆N₄O (M + Na): 267.1222, Found: 267.1217; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 8.4 min, t_{minor} = 9.5 min; 90% ee.

(*R*)-2-(5-benzyl-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3ao) was prepared according to the general procedure from 1a and 2o. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 87% yield (48.1 mg). $[\alpha]_{D}^{25} = -16.4 \ (c = 0.55, \text{CHCl}_3); ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 7.39–7.36 (m, 2H), 7.31–7.22 (m, 3H), 6.10 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.32 (d, *J* = 10.8 Hz, 1H), 5.05 (d, *J* = 17.6 Hz, 1H), 4.40 (s, 2H), 4.16 (dd, *J* = 5.4, 12.2 Hz, 1H), 3.92 (dd, *J* = 5.4, 12.2 Hz, 1H), 2.69 (brt, 1H), 1.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 136.7, 136.5, 129.0, 128.5, 127.6, 117.3, 71.3, 68.1, 36.5, 21.4; HRMS (ESI-MS): Calcd. for C₁₃H₁₆N₄OS (M + Na): 299.0943, Found: 299.0939; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 7.4 min, t_{minor} = 8.5 min; 81% ee.

ethyl (*R*)-2-(2-(1-hydroxy-2-methylbut-3-en-2-yl)-2H-tetrazol-5-yl)acetate (3ap) was prepared according to the general procedure from 1a and 2p. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 72% yield (34.6 mg). $[\alpha]^{25}{}_{\rm D}$ = 42.7 (*c* = 0.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.17 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.35 (d, *J* = 10.8 Hz, 1H), 5.13 (d, *J* = 17.6 Hz, 1H), 4.28-4.18 (m, 3H), 3.99 (s, 2H),

3.97 (dd, *J* = 4.0, 12.1 Hz, 1H), 3.05 (brs, 1H), 1.86 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 159.6, 137.0, 117.2, 71.1, 68.2, 61.6, 31.8, 21.4, 14.0;

For the determination of enantiomeric excess of **3ap**, compound **3ap** was converted to corresponding benzoate **4ap**. The ee value of **4ap** was determined by chiral HPLC

(*R*)-2-(5-(2-ethoxy-2-oxoethyl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-yl benzoate (4ap) was obtained as a white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.87 (m, 2H), 7.54–7.50 (m, 1H), 7.40–7.36 (m, 2H), 6.33 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.41 (d, *J* = 10.8 Hz, 1H), 5.26 (d, *J* = 17.6 Hz, 1H), 4.89 (d, *J* = 11.4 Hz, 1H), 4.81 (d, *J* = 11.4 Hz, 1H), 4.15 (dd, *J* = 7.1, 14.2 Hz, 2H), 4.02 (s, 3H), 2.03 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 165.7, 159.9, 136.1, 133.3, 129.6, 129.3, 117.8, 68.7, 68.3, 61.5, 31.9, 21.6, 13.9; HRMS (ESI-MS): Calcd. for C₁₇H₂₀N₄O₄ (M + Na): 367.1382, Found: 367.1376; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 20/80, t_{major} = 7.7 min, t_{minor} = 9.5 min; 89% ee.

(*R*)-2-(5-(4'-((2-butyl-4-chloro-5-(hydroxymethyl)-1H-imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-yl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3aq) was prepared according to the general procedure from 1a and 2q. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 4:1) on silica gel to provide the title compound as a white solid in 67% yield (67.9 mg). $[a]^{25}_{D} = 35.3$ (*c* = 0.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.06–8.04 (m, 1H), 7.57–7.50 (m, 2H), 7.42–7.40 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.01 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.26 (d, *J* = 10.8 Hz, 1H), 5.26 (s, 2H), 4.94 (d, *J* = 17.6 Hz, 1H), 4.52 (s, 2H), 3.85 (d, *J* = 12.4 Hz, 1H), 3.69 (d, *J* = 12.4 Hz, 1H), 2.61 (t, *J* = 7.6, 15.6 Hz, 2H), 1.75 (s, 3H), 1.73–1.66 (m, 2H), 1.40–1.30 (m, 2H), 0.91 (t, *J* = 7.6, 15.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 148.4, 141.0, 140.9, 136.8, 135.0, 130.8, 130.6, 130.1, 130.0, 129.6, 128.7, 127.9, 125.7, 125.4, 117.0, 70.6, 68.1, 47.2, 38.6, 28.8, 26.5, 23.7, 22.3, 13.7; HRMS (ESI-MS): Calcd. for $C_{27}H_{13}ClN_6O_2$ (M + Na): 529.2095, Found: 529.2086; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 48.87 min, t_{minor} = 61.92 min; 97% ee.

(*R*)-2-(5-(4'-((2-butyl-4-chloro-5-(hydroxymethyl)-1H-imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-yl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3ar) was prepared according to the general procedure from 1a and 2r. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 4:1) on silica gel to provide the title compound as a white solid in 74% yield (75.9 mg). $[\alpha]^{25}_{D} = -19.4$ (c =0.81, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 1.6, 6.8 Hz, 1H), 7.56–7.48 (m, 2H), 7.41 (dd, J = 1.4, 7.2 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.00 (dd, J = 10.8, 17.6 Hz, 1H), 5.25 (d, J = 10.8 Hz, 1H), 4.93 (d, J = 17.6 Hz, 1H), 4.69 (s, 2H), 3.83 (d, J = 11.6 Hz, 1H), 3.67 (d, J =11.6 Hz, 1H), 2.69 (brs, 1H), 2.37 (t, J = 7.6, 15.6 Hz, 2H), 2.02-1.93 (m, 6H), 1.86-1.77 (m, 2H), 1.71 (s, 3H), 1.66–1.59 (m, 2H), 1.39–1.34 (m, 2H), 0.90 (t, J = 7.6, 15.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 164.1, 161.8, 141.2, 140.8, 136.9, 135.4, 130.5, 130.0, 129.9, 129.6, 127.8, 126.2, 126.0, 116.9, 76.5, 70.6, 68.0, 43.2, 37.3, 37.2, 28.7, 27.7, 26.0, 22.3, 21.3, 13.7; HRMS (ESI-MS): Calcd. for C₃₀H₃₆N₆O₂ (M + Na): 535.2797, Found: 535.2802; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 20/80, t_{major} = 10.5 min, t_{minor} = 12.6 min; 95% ee.

(*R*)-2-(5-(4'-((2-butyl-4-chloro-5-(hydroxymethyl)-1H-imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-yl)-2H-tetrazol-2-yl)-2-methylbut-3-en-1-ol (3as) was prepared according to the general procedure from 1a and 2s. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 4:1) on silica gel to provide the title compound as a white solid in 52% yield (54.6 mg). $[\alpha]^{25}_{D} = -42.5$ (*c* = 0.70, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 1.6, 7.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.53–7.44 (m, 2H), 7.37 (dd, J = 1.4, 7.6 Hz, 1H), 7.16 (t, J = 7.6, 15.6 Hz, 1H), 7.04 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 5.88 (dd, J = 10.8, 17.6 Hz, 1H), 5.64 (s, 2H), 5.10 (d, J = 10.8 Hz, 1H), 4.83 (d, J = 17.6 Hz, 1H), 4.65 (dd, J = 7.2, 14.4 Hz, 2H), 3.81 (s, 3H), 3.78 (dd, J = 6.8, 12.0 Hz, 1H), 3.60 (dd, J = 6.8, 12.0 Hz, 1H), 2.48 (brt, 1H), 1.59 (s, 3H), 1.48 (t, J = 6.8, 14.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 164.2, 158.7, 141.8, 141.5, 140.1, 136.8, 136.2, 131.4, 130.6, 130.0, 129.9, 129.2, 127.6, 126.3, 125.9, 123.7, 121.9, 120.8, 116.8, 115.6, 70.51, 68.0, 66.7, 52.2, 21.2, 14.6; HRMS (ESI-MS): Calcd. for C₂₉H₂₈N₆O₂ (M + Na): 547.2070, Found: 547.2076; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 20/80, t_{major} = 18.5 min, t_{minor} = 24.0 min; 96% ee.

(*R*)-2-ethyl-2-(5-phenyl-2H-tetrazol-2-yl)but-3-en-1-ol (3ba) was prepared according to the general procedure from 1b and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 76% yield (37.1 mg). $[\alpha]_{D}^{25} = 59.6 \ (c = 0.24, \text{ CHCl}_3); \ ^1\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 8.17-8.14 \ (m, 2\text{H}), 7.53-7.45 \ (m, 3\text{H}) 6.28 \ (dd, J = 10.8, 17.4 \text{ Hz}, 1\text{H}), 5.44 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), 5.16 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.25 \ (t, J = 13.6 \text{ Hz}, 2\text{H}), 2.96 \ (brs, 1\text{H}), 2.39-2.26 \ (m, 2\text{H}), 0.93 \ (t, J = 7.4 \text{ Hz}, 3\text{H}); \ ^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 164.5, 135.8, 130.4, 128.9, 127.2, 126.9, 117.6, 74.2, 66.1, 18.4, 8.0; HRMS (ESI-MS): Calcd. for C₁₃H₁₆N₄O (M + Na): 267.1222, Found: 267.1219; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min,$ *i*-PrOH/hexanes = 10/90, t_{major} = 12.2 min, t_{minor} = 15.8 min; 90% ee.

(*R*)-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinyloctan-1-ol (3ca) was prepared according to the general procedure from 1c and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 84% yield (50.5 mg). $[\alpha]^{25}{}_{\rm D} = 52.4 \ (c = 0.13, \text{CHCl}_3); {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 8.17-8.14 (m, 2H), 7.52-7.47 (m, 3H) 6.29 (dd,$ *J*= 10.8, 17.4 Hz, 1H), 5.42 (d,*J*= 10.8 Hz, 1H), 5.11 (d,*J*= 17.6 Hz, 1H), 4.28-4.19 (m, 2H), 3.00 (brt, 1H), 2.27-2.23 (m, 2H), 1.30-1.19 (m, 8H), 0.93 (t,*J* $= 6.5 Hz, 3H); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) = 5.24 \text{ (m} + 1.27-2.23 (m, 2H), 1.30-1.19 (m, 8H)}$

CDCl₃) δ 164.4, 136.2, 130.4, 128.9, 127.2, 126.9, 117.4, 73.9, 66.4, 36.0, 31.4, 29.3, 23.3, 22.5, 14.0; **HRMS (ESI-MS):** Calcd. for C₁₇H₂₄N₄O (M + Na): 323.1848, Found: 323.1842; **HPLC conditions:** Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 11.2 min, t_{minor} = 14.1 min; 90% ee.

(*R*)-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinyloctan-1-ol (3da) was prepared according to the general procedure from 1d and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 87% yield (62.0 mg). $[\alpha]^{25}_{D} = 42.1 \ (c = 0.23, \text{ CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 8.18–8.15 (m, 2H), 7.52–7.47 (m, 3H) 6.29 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.42 (d, *J* = 10.8 Hz, 1H), 5.12 (d, *J* = 17.6 Hz, 1H), 4.28–4.19 (m, 2H), 2.91 (brt, 1H), 2.27–2.22 (m, 2H), 1.29–1.2 (m, 16H), 0.87 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 136.2, 130.4, 128.9, 127.3, 126.9, 117.4, 73.9, 66.4, 36.1, 31.9, 29.7, 29.5, 29.4, 29.3, 23.3, 22.6, 14.1; HRMS (ESI-MS): Calcd. for C₂₁H₃₂N₄O (M + Na): 379.2474, Found: 379.2469; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 17.4 min, t_{minor} = 21.6 min; 96% ee.

(*R*)-2-(3,4-dimethoxybenzyl)-2-(5-phenyl-2H-tetrazol-2-yl)but-3-en-1-ol (3ea) was prepared according to the general procedure from 1e and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 72% yield (52.8 mg). $[\alpha]^{25}{}_{\rm D} = 28.7 \ (c = 0.86, {\rm CHCl}_3); {}^{1}{\rm H} \,{\rm NMR} \,(400 \,{\rm MHz}, {\rm CDCl}_3) \,\delta \,8.18-8.16 \,({\rm m}, 2{\rm H}), 7.51-7.47 \,({\rm m}, 3{\rm H}) \,6.75 \,({\rm d}, J = 8.2 \,{\rm Hz}, 1{\rm H}), 6.70 \,({\rm dd}, J = 1.8, 8.2 \,{\rm Hz}, 1{\rm H}), 6.55 \,({\rm d}, J = 1.8 \,{\rm Hz}, 1{\rm H}), 6.22 \,({\rm dd}, J = 10.8, 17.4 \,{\rm Hz}, 1{\rm H}), 5.40 \,({\rm d}, J = 10.8 \,{\rm Hz}, 1{\rm H}), 5.02 \,({\rm d}, J = 17.6 \,{\rm Hz}, 1{\rm H}), 4.26-4.18 \,({\rm m}, 2{\rm H}), 3.84 \,({\rm s}, 3{\rm H}), 3.72 \,({\rm s}, 3{\rm H}), 3.60 \,({\rm d}, J = 13.7 \,{\rm Hz}, 1{\rm H}), 3.50 \,({\rm d}, J = 13.7 \,{\rm Hz}, 1{\rm H}), 2.84 \,({\rm brs}, 1{\rm H}); {}^{13}{\rm C} \,{\rm NMR} \,(100 \,{\rm MHz}, {\rm CDCl}_3) \,\delta \,164.5, 148.6, 148.2, 136.1, 132.4, 130.5, 128.9, 127.1, 126.5, 122.9, 117.6, 113.5, 110.9, 74.0, 64.7, 55.8, 55.7, 29.7; HRMS (ESI-MS): Calcd. for C₂₀H₂₂N₄O₃ (M + Na): 389.1590, Found:$

389.1584; **HPLC conditions:** Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, $t_{major} = 13.4 \text{ min}, t_{minor} = 15.0 \text{ min}; 90\%$ ee.

(*R*,E)-6,10-dimethyl-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinylundeca-5,9-dien-1-ol (3fa) was prepared according to the general procedure from 1f and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 88% yield (64.5 mg). $[\alpha]^{25}{}_{D} = 59.5 (c = 0.84, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 8.18–8.14 (m, 2H), 7.55–7.46 (m, 3H) 6.32 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.44 (d, *J* = 10.8 Hz, 1H), 5.14 (d, *J* = 17.6 Hz, 1H), 5.09–5.02 (m, 2H), 4.31–4.19 (m, 2H), 2.88 (brt, 1H), 2.31–2.24 (m, 2H), 2.06–1.92 (m, 6H), 1.65 (s, 3H), 1.62 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 136.6, 136.1, 131.5, 130.4, 128.9, 127.2, 126.9, 124.1, 122.4, 117.5, 73.8, 66.5, 36.0, 31.9, 29.7, 26.5, 22.1, 17.7, 16.0; HRMS (ESI-MS): Calcd. for C₂₂H₃₀N₄O (M + Na): 389.2317, Found: 389.2322; HPLC conditions: Chiralcel OD-H column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 10.5 min, t_{minor} = 12.8 min; 94% ee.

(*R*)-6-methyl-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinylhept-5-en-1-ol (3ga) was prepared according to the general procedure from 1g and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 93% yield (55.5 mg). $[\alpha]_{D}^{25} = 63.9 \ (c = 0.14, \text{ CHCl}_3); ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 8.19–8.17 (m, 2H), 7.54–7.47 (m, 3H), 6.34 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.46 (d, *J* = 10.8 Hz, 1H), 5.16 (d, *J* = 17.6 Hz, 1H), 5.07 (t, *J* = 7.01 Hz, 1H), 4.32–4.22 (m, 2H), 2.93 (brt, 1H), 2.32–2.28 (m, 2H), 2.04–1.98 (m, 2H), 1.66 (s, 3H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 136.0, 132.9, 130.4, 128.9, 127.2, 126.9, 122.5, 117.5, 73.8, 66.5, 36.0, 25.6, 22.2, 17.6; HRMS (ESI-MS): Calcd. for C₁₇H₂₂N₄O (M + Na): 321.1691, Found: 316.2190; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{minor} = 13.8 min, t_{major} = 15.0 min; 94% ee.

(*R*)-6-chloro-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinylhexan-1-ol (3ha) was prepared according to the general procedure from 1h and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 85% yield (52.1 mg). $[\alpha]_{D}^{25} = 32.2 \ (c = 0.26, \text{ CHCl}_3); ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 8.17–8.13 (m, 2H), 7.52–7.48 (m, 3H), 6.28 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.44 (d, *J* = 10.8 Hz, 1H), 5.12 (d, *J* = 17.6 Hz, 1H), 4.30–4.20 (m, 2H), 3.55–3.51 (m, 2H), 2.98 (brs, 1H), 2.37–2.22 (m, 2H), 1.85–1.77 (m, 2H), 1.53–1.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 135.8, 130.5, 128.9, 127.1, 126.7, 117.7, 73.7, 66.3, 44.3, 35.0, 32.4, 20.8; HRMS (ESI-MS): Calcd. for C₁₅H₁₉ClN₄O (M + Na): 329.1145, Found: 329.1144; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 14.8 min, t_{minor} = 18.6 min; 87% ee.

(*R*)-6-bromo-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinylhexan-1-ol (3ia) was prepared according to the general procedure from 1i and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 83% yield (58.3 mg). $[\alpha]_{D}^{25} = 42.9 \ (c = 0.15, \text{CHCl}_3); \text{ }^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 8.16-8.13 \ (m, 2H), 7.51-7.47 \ (m, 3H), 6.28 \ (dd, J = 10.8, 17.4 \text{ Hz}, 1H), 5.43 \ (d, J = 10.8 \text{ Hz}, 1H), 5.12 \ (d, J = 17.6 \text{ Hz}, 1H), 4.28 \ (d, J = 12.2 \text{ Hz}, 1H), 4.22 \ (d, J = 12.2 \text{ Hz}, 1H), 3.54-3.37 \ (m, 2H), 3.05 \ (brs, 1H), 2.36-2.23 \ (m, 2H), 1.92-1.76 \ (m, 2H), 1.52-1.42 \ (m, 2H); \text{ }^{13}\text{C} \text{ NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \delta 164.5, 135.8, 130.5, 128.9, 127.1, 126.7, 117.8, 73.6, 66.3, 34.8, 32.9, 32.5, 22.1; \text{ HRMS} \ (ESI-MS): Calcd. for C₁₅H₁₉BrN₄O \ (M + Na): 373.0640, Found: 373.0645;$ **HPLC conditions:**Chiralcel IC column, 254 nm, flow rate: 1 ml/min,*i*-PrOH/hexanes = 15/85, t_{major} = 14.7 min, t_{minor} = 19.0 min; 90% ee.

(*R*)-6-bromo-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinylhexan-1-ol (3ja) was prepared according to the general procedure from 1j and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 91% yield (68.9 mg). $[a]^{25}{}_{\rm D} = 65.3 \ (c = 0.11, {\rm CHCl}_3); {}^{1}{\rm H} {\rm NMR} \ (400 {\rm MHz}, {\rm CDCl}_3) \ \delta 8.17-8.13 \ (m, 2{\rm H}), 7.49-7.47 \ (m, 3{\rm H}), 7.36-7.27 \ (m, 5{\rm H}), 6.27 \ (dd, J = 10.8, 17.4 {\rm Hz}, 1{\rm H}), 5.42 \ (d, J = 10.8 {\rm Hz}, 1{\rm H}), 5.13 \ (d, J = 17.6 {\rm Hz}, 1{\rm H}), 4.48 \ (s, 2{\rm H}), 4.24 \ (s, 2{\rm H}), 3.50 \ 3.46 \ (m, 2{\rm H}), 3.10 \ (brs, 1{\rm H}), 2.41-2.37 \ (m, 2{\rm H}), 1.67-1.60 \ (m, 2{\rm H}), 1.30-1.26 \ (m, 2{\rm H}); {}^{13}{\rm C} {\rm NMR} \ (100 {\rm MHz}, {\rm CDCl}_3) \ \delta 164.5, 138.1, 136.0, 130.4, 128.8, 128.4, 127.6, 127.2, 126.9, 117.6, 73.7, 72.9, 69.8, 66.3, 32.4, 23.8; {\rm HRMS} \ (ESI-MS): Calcd. for C₂₂H₂₆N₄O₂ \ (M + Na): 401.1953, Found: 401.1959;$ **HPLC conditions:**Chiralcel IC column, 254 nm, flow rate: 1 ml/min,*i*-PrOH/hexanes = 1/9, t_{major} = 15.9 min, t_{minor} = 21.1 min; 97% ee.

(*R*)-6-(4-bromophenoxy)-2-(5-phenyl-2H-tetrazol-2-yl)-2-vinylhexan-1-ol (3ka) was prepared according to the general procedure from 1k and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 89% yield (78.9 mg). $[\alpha]^{25}{}_{D} = 67.3 (c = 0.31, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 8.15–8.13 (m, 2H), 7.52–7.47 (m, 3H), 7.35–7.31 (m, 2H), 6.75–6.70 (m, 2H), 6.29 (dd, *J* = 10.8, 17.4 Hz, 1H), 5.43 (d, *J* = 10.8 Hz, 1H), 5.12 (d, *J* = 17.6 Hz, 1H), 4.26 (s, 2H), 3.93–3.88 (m, 2H), 2.96 (brt, 1H), 2.39–2.31 (m, 2H), 1.83–1.76 (m, 2H), 1.54–1.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 157.9, 135.9, 132.2, 130.4, 128.9, 127.1, 126.9, 117.7, 116.2, 112.7, 73.8, 67.5, 66.4, 35.5, 29.1, 20.1; HRMS (ESI-MS): Calcd. for C₂₁H₂₃BrN₄O₂ (M + Na): 465.0902, Found: 465.0907; HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min, *i*-PrOH/hexanes = 10/90, t_{major} = 16.2 min, t_{minor} = 20.6 min; 90% ee.

(*R*)-2-cyclohexyl-2-(5-phenyl-2H-tetrazol-2-yl)but-3-en-1-ol (3la) was prepared according to the general procedure from 1l and 2a. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a colorless oil in 54% yield

(32.2 mg). $[a]^{25}{}_{D} = 20.7 \ (c = 0.25, \text{ CHCl}_3); {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \\ \delta 8.19-8.14 \ (m, 2\text{H}), 7.53-7.48 \ (m, 3\text{H}), 6.46 \ (dd, J = 10.8, 17.4 \text{ Hz}, 1\text{H}), 5.50 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), 5.21 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.44 \ (dd, J = 8.2, 12.4 \text{ Hz}, 1\text{H}), 4.19 \ (dd, J = 8.2, 12.4 \text{ Hz}, 1\text{H}), 2.97 \ (\text{brt}, 1\text{H}), 2.38 \ (t, J = 11.4 \text{ Hz}, 1\text{H}), 1.77-1.65 \ (m, 2\text{H}), 1.60-1.47 \ (m, 4\text{H}), 1.29-1.09 \ (m, 4\text{H}); {}^{13}\text{C} \text{ NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \\ \delta 164.2, 134.4, 130.4, 128.9, 127.3, 126.9, 117.9, 64.2, 45.1, 27.4, 27.2, 26.4, 26.1; \text{HRMS} \ (\text{ESI-MS}): \text{Calcd. for } \text{C}_{17}\text{H}_{22}\text{N}_4\text{O} \ (M + \text{Na}): 321.1691, \text{Found: } 321.1690; \text{HPLC conditions: Chiralcel IC column, 254 nm, flow rate: 1 ml/min,$ *i* $-PrOH/hexanes = 15/85, t_{major} = 7.4 \text{ min}, t_{minor} = 8.5 \text{ min}; 89\% \text{ ee.}$

Scaled up procedure and X-ray crystallography of 3ad

To an oven dried screw-cap reaction tube equipped with a magnetic stir bar, $Pd_2(dba)_3$ ·CHCl₃ (52.0 mg, 2.5 mol%), Trost's ligand (*R*,*R*)-L6 (78.0 mg, 5 mol%), vinyl cyclic carbonate 1a (256.25 mg, 2 mmol), and phenytetrazole 2a (458.76 mg, 2.4 mmol) were added. The reaction tube was sealed with rubber-septum, then evacuated and backfilled with nitrogen. Anhydrous toluene (0.2 M, 10 mL) was added via syringe. The resulting mixture was stirred at 0 °C for 48 hours. The residue was purified by flash column chromatography on silica gel to afford the pure branched product 3ad in 89% of isolated yield (0.45 g) and without any loss in enantioselectivity.

X-ray crystallography of 3ad

A single-crystal of **3ad** was obtained from dichloromethane/hexane solvent system at room temperature. Diffraction data were collected on a Bruker SMART Apex-II CCD-based X-ray diffractometer with Cu-K α radiation. The empirical absorption correction was applied by using the SADABS program. The structure was solved using direct method, and refined by full-matrix least-squares on F^2 (G.M. Sheldrick, SHELXTL2008, program of crystal structure refinement, University of Göttingen, Germany, 1997). H-atoms were refined isotopically, while all other atoms were refined anisotropically. The crystallographic data is summarized in Table F1 and the diagram is shown in Figure F1.

Table F1. Crystal data and structure refinement for 3ad.

Identification code	А
Empirical formula	C12 H13 N5 O3
Formula weight	275.27
Temperature/K	193.00

1.3414 Å		
Triclinic		
P1		
a = 7.1821(8) Å alpha = 74 deg.		
b = 7.4470(8) Å $beta = 75$ deg.		
c = 13.2850(15) A gamma = 83 deg.		
659.82(13) Å ³		
2		
1.386 mg/m ³		
0.552 mm^{-1}		
288		
0.12 x 0.1 x 0.1mm ³		
10.766 to 120.664 deg.		
-9≤h≤9, -9≤k≤9, -16≤l≤17		
8286		
4465 [$R_{int} = 0.0437$, $R_{sigma} = 0.0569$]		
1.48/0.74		
60.332		
MULTI-SCAN		
GaKa (g = 1.34139)		
Full-matrix least-squares on F ²		
4465 / 3 / 365		
1.103		
$R_1 = 0.0650, wR2 = 0.2021$		
R1 = 0.0737, wR2 = 0.2087		
0.3(4)		
0.33/-0.26 e.Å ⁻³		

Figure F1. X-ray of 3ad.

References:

1. A. Khan, H. Zhao, M. Zhang, S. Khan, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 1340-1345.

S30

S34

S36

S43

S47

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		24.426	543704.8	21366769.0	49.9749	49.9749	+ BB
2		29.158	491154.5	21388202.6	50.0251	50.0251	+ BB
	Total:		1034859.3	42754971.5	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		24.236	489726.4	23159156.9	95.9793	95.9793	+ BB
2		29.099	27008.7	1201338.0	4.0207	4.0207	+ BB
	Total:		516735.1	24360494.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		6.560	3341483.0	53478455.3	49.1750	49.1750	+ BB
2		7.521	3244031.2	55272920.5	50.8250	50.8250	+ BB
	Total:		6585514.2	108751375.8	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		6.508	1644741.6	18475437.8	97.7957	97.7957	+ BB
2		7.501	40172.4	416436.5	2.2043	2.2043	+ BB
	Total:		1684914.0	18891874.3	100.0000	100.0000	

Analysis Results

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		8.165	2963080.6	44765225.5	49.0351	49.0351	+ BB
2		9.471	2700856.4	46526998.1	50.9649	50.9649	+ BB
	Total:		5663937.0	91292223.6	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		8.212	1171927.1	16180336.9	95.8512	95.8512	+ BB
2		9.532	45652.3	700350.2	4.1488	4.1488	+ BB
	Total:		1217579.4	16880687.1	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.245	380755.3	8937539.1	49.9910	49.9910	+ BB
2		16.979	314500.9	8940740.1	50.0090	50.0090	+ BB
	Total:		695256.2	17878279.2	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.304	517810.9	12051716.3	94.9806	94.9806	+ BB
2		17.110	25330.2	636890.5	5.0194	5.0194	+ BB
	Total:		543141.1	12688606.8	100.0000	100.0000	

Analysis Results

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		6.803	3181454.8	41454359.7	48.2396	48.2396	+ BB
2		8.416	2928437.8	44479959.3	51.7604	51.7604	+ BB
	Total:		6109892.6	85934318.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		6.769	839787.7	9497410.8	94.8005	94.8005	+ BB
2		8.392	40948.9	520906.7	5.1995	5.1995	+ BB
	Total:		880736.6	10018317.5	100.0000	100.0000	

Analysis Results

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.678	352249.0	7757522.3	50.0032	50.0032	+ BB
2		18.352	279294.3	7756543.9	49.9968	49.9968	+ BB
	Total:		631543.3	15514066.2	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.699	804188.4	18186613.3	94.9128	94.9128	+ BB
2		18.392	41681.3	974785.7	5.0872	5.0872	+ BB
	Total:		845869.7	19161399.1	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.421	431485.8	5410075.4	49.5250	49.5250	+ BB
2		8.563	373916.0	5513846.0	50.4750	50.4750	+ BB
	Total:		805401.8	10923921.4	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.411	572413.3	7117180.2	94.4491	94.4491	+ BB
2		8.562	33111.6	418290.1	5.5509	5.5509	+ BB
	Total:		605524.9	7535470.3	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		6.870	1696874.0	18188586.2	49.3483	49.3483	+ BB
2		8.357	1432465.3	18668953.6	50.6517	50.6517	+ BB
	Total:		3129339.3	36857539.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		6.865	1906000.4	21120700.0	94.8496	94.8496	+ BB
2		8.373	114515.2	1146864.6	5.1504	5.1504	+ BB
	Total:		2020515.6	22267564.6	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		28.657	273846.7	11600505.2	49.9166	49.9166	+ BB
2		40.548	203712.7	11639276.6	50.0834	50.0834	+ BB
	Total:		477559.4	23239781.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		27.367	1202503.8	53365624.3	93.5741	93.5741	+ BB
2		40.182	65298.9	3664741.8	6.4259	6.4259	+ BB
	Total:		1267802.7	57030366.2	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		28.693	330858.0	13754039.7	49.8698	49.8698	+ BB
2		41.112	231787.7	13825849.4	50.1302	50.1302	+ BB
	Total:		562645.7	27579889.2	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		28.410	942911.2	40130869.3	93.8842	93.8842	+ BB
2		40.595	50042.8	2614195.3	6.1158	6.1158	+ BB
	Total:		992954.0	42745064.6	100.0000	100.0000	

Analysis Results

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		40.615	210411.8	14670000.9	50.1140	50.1140	VV
2		44.899	182771.0	14603251.3	49.8860	49.8860	VB
	Total:		393182.8	29273252.2	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		41.031	67620.0	4932396.6	98.9238	98.9238	+ BB
2		45.513	639.5	53657.9	1.0762	1.0762	+ BB
	Total:		68259.5	4986054.5	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		10.771	1073529.5	17207728.1	49.9149	49.9149	+ BB
2		12.971	897082.1	17266371.8	50.0851	50.0851	+ BB
	Total:		1970611.6	34474099.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		10.779	455405.1	7652329.6	92.9545	92.9545	+ BB
2		12.967	31932.6	580009.2	7.0455	7.0455	+ BB
	Total:		487337.7	8232338.8	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		23.294	1593.7	49168.0	50.9182	50.9182	+ BB
2		24.594	1412.5	47394.8	49.0818	49.0818	+ BB
	Total:		3006.2	96562.8	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		22.666	116763.1	4276674.8	94.9100	94.9100	+ BB
2		24.358	6938.7	229358.5	5.0900	5.0900	+ BB
	Total:		123701.8	4506033.3	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		8.400	18506.3	254981.4	50.5312	50.5312	+ BB
2		9.563	15670.9	249620.2	49.4688	49.4688	+ BB
	Total:		34177.2	504601.5	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		8.390	9713.8	132533.4	95.0327	95.0327	+ BB
2		9.564	561.0	6927.4	4.9673	4.9673	+ BB
	Total:		10274.8	139460.8	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.788	510550.3	7480254.6	49.9955	49.9955	+ BB
2		8.807	462128.0	7481589.4	50.0045	50.0045	+ BB
	Total:		972678.3	14961843.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.482	554583.3	7119339.1	90.4468	90.4468	+ BB
2		8.536	53325.6	751962.7	9.5532	9.5532	+ BB
	Total:		607908.9	7871301.8	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.657	709900.8	9500771.3	49.9121	49.9121	+ BB
2		9.525	586475.7	9534221.5	50.0879	50.0879	+ BB
	Total:		1296376.5	19034992.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.695	1715841.2	22824736.0	94.4201	94.4201	+ BB
2		9.590	96398.9	1348871.6	5.5799	5.5799	+ BB
	Total:		1812240.1	24173607.6	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		48.274	421129.7	73767610.9	50.3857	50.3857	+ BB
2		61.782	298646.2	72638123.5	49.6143	49.6143	+ BB
	Total:		719775.9	146405734.4	100.0000	100.0000	

Comment:

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		48.872	139987.8	23789859.2	98.5715	98.5715	+ BB
2		61.924	2142.9	344770.2	1.4285	1.4285	+ BB
	Total:		142130.7	24134629.4	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		10.316	2295601.6	86586051.0	51.0571	51.0571	+ BB
2		12.316	1701760.4	83000795.0	48.9429	48.9429	+ BB
	Total:		3997362.0	169586846.0	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		10.547	176776.3	6635581.9	97.3876	97.3876	+ BB
2		12.679	4204.4	177998.4	2.6124	2.6124	+ BB
	Total:		180980.7	6813580.3	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		18.881	612945.8	30999556.6	50.0782	50.0782	+ BB
2		23.920	471712.5	30902756.3	49.9218	49.9218	+ BB
	Total:		1084658.3	61902313.0	100.0000	100.0000	
5,000							
4,500							
4,000							
3,500							
3,000							
Q 2,500							
2,000				206			
1,500				18.			
1,000				\wedge		90	
500				/ \	\	24.0	
0							
0	1 2 3 4 5 6	6 7 8 9 10	11 12 13 14	15 16 17 18 1 [min]	9 20 21 22	23 24 25 26 27	28 29

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		18.506	1093737.6	55264062.7	98.0291	98.0291	+ BB
2		24.006	22608.3	1111121.5	1.9709	1.9709	+ BB
	Total:		1116345.9	56375184.1	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		12.188	2355267.6	48494692.8	48.6928	48.6928	+ BB
2		15.756	1919070.0	51098551.6	51.3072	51.3072	+ BB
	Total:		4274337.6	99593244.4	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		12.224	488613.4	9187976.9	95.1228	95.1228	+ BB
2		15.826	23023.3	471097.0	4.8772	4.8772	+ BB
	Total:		511636.7	9659073.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		11.224	2656740.4	66485128.1	49.1014	49.1014	+ BB
2		14.071	2399980.4	68918685.1	50.8986	50.8986	+ BB
	Total:		5056720.8	135403813.2	100.0000	100.0000	

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 [min]

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		11.206	497352.6	11300276.5	94.7954	94.7954	+ BB
2		14.151	27929.7	620427.9	5.2046	5.2046	+ BB
	Total:		525282.3	11920704.4	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		17.308	573947.8	26343900.6	49.9351	49.9351	+ BB
2		21.292	453984.5	26412335.4	50.0649	50.0649	+ BB
	Total:		1027932.3	52756236.0	100.0000	100.0000	

Comment:

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		17.426	346370.6	15615121.5	97.8218	97.8218	+ BB
2		21.610	7868.5	347708.4	2.1782	2.1782	+ BB
	Total:		354239.1	15962829.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		13.466	130668.6	3013683.3	50.4412	50.4412	+ BB
2		15.063	116296.4	2960966.7	49.5588	49.5588	+ BB
	Total:		246965.0	5974649.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		13.471	224910.0	5128582.1	95.0924	95.0924	+ BB
2		15.081	12836.8	264678.5	4.9076	4.9076	+ BB
	Total:		237746.8	5393260.6	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		10.605	1079952.0	30557871.2	50.9046	50.9046	+ BB
2		12.697	852109.3	29471773.3	49.0954	49.0954	+ BB
	Total:		1932061.3	60029644.5	100.0000	100.0000	

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 [min]

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		10.537	2126494.0	63318989.2	96.9006	96.9006	+ BB
2		12.837	61528.9	2025303.2	3.0994	3.0994	+ BB
	Total:		2188022.9	65344292.4	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		13.401	1194812.0	30445304.4	50.0459	50.0459	+ BB
2		14.641	1141828.3	30389517.9	49.9541	49.9541	+ BB
	Total:		2336640.3	60834822.4	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		13.873	45218.6	868814.2	3.1188	3.1188	+ BB
2		15.074	1037075.0	26988762.0	96.8812	96.8812	+ BB
	Total:		1082293.6	27857576.2	100.0000	100.0000	

Analysis Results

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.789	255002.7	6612741.5	49.9554	49.9554	+ BB
2		18.486	202217.9	6624537.4	50.0446	50.0446	+ BB
	Total:		457220.6	13237278.9	100.0000	100.0000	
	2,000						
	1,800						
	1,600						
	1,400						
	1			<u></u>			

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.847	801066.2	21432372.1	93.6985	93.6985	+ BB
2		18.646	61378.1	1441393.2	6.3015	6.3015	+ BB
	Total:		862444.3	22873765.2	100.0000	100.0000	

Analysis Results

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.640	400377.7	11558399.1	49.4578	49.4578	+ BB
2		18.890	263496.9	11811809.0	50.5422	50.5422	+ BB
	Total:		663874.6	23370208.1	100.0000	100.0000	

Analysis Results

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		14.722	490229.4	14479315.5	95.2335	95.2335	+ BB
2		19.062	21414.9	724694.4	4.7665	4.7665	+ BB
	Total:		511644.3	15204009.9	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		15.987	571949.5	16895201.3	50.3900	50.3900	+ BB
2		21.145	439360.0	16633701.3	49.6100	49.6100	+ BB
	Total:		1011309.5	33528902.6	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		15.914	421026.4	12677501.2	98.5038	98.5038	+ BB
2		21.179	6380.8	192559.8	1.4962	1.4962	+ BB
	Total:		427407.2	12870061.0	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		16.016	235839.5	7205001.5	49.2171	49.2171	+ BB
2		20.240	184273.5	7434208.2	50.7829	50.7829	+ BB
	Total:		420113.0	14639209.6	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		16.290	249032.9	7929810.7	94.9761	94.9761	+ BB
2		20.676	12056.2	419457.1	5.0239	5.0239	+ BB
	Total:		261089.1	8349267.8	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.421	431485.8	5410075.4	49.5250	49.5250	+ BB
2		8.563	373916.0	5513846.0	50.4750	50.4750	+ BB
	Total:		805401.8	10923921.4	100.0000	100.0000	

No.	Compound	R.Time	Height	Area	Area%	Conc.	Туре
1		7.411	572413.3	7117180.2	94.4491	94.4491	+ BB
2		8.562	33111.6	418290.1	5.5509	5.5509	+ BB
	Total:		605524.9	7535470.3	100.0000	100.0000	