Supporting Information

Catalytic Asymmetric Conjugate Addition of Indolizines to Unsaturated Ketones Catalyzed by Chiral-at-metal Complexes

Cheng Huang^{*a*}, Zhifei Zhao^{*a*}, Shiwu Li^{*a*},* Jixing Zhao^{*b*}, Leifang Wu^{*b*}, Chengzhi Gu^{*a*}* ^{*a*}Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan , School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China. ^{*b*}Analysis and Testing Cent er of Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.

E-mail: lishiwu@shzu.edu.cn; gcz_tea@shzu.edu.cn

Table of Contents

Ι	General Information	1
II	Optimization of Reaction Conditions	2
III	Experimental Section	3
IV	References	20
V	NMR Spectrum	21
VI	Chiral HPLC analysis trace	5 <mark>54</mark>
VII	Single Crystal X-Ray Diffraction of 3n	<mark>84</mark>

I General Information

All reactions were performed in Schlenk tubes at room temperature using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. Dry 1,2-dichloroethane (DCE) and THF were obtained from solvent distillation machine (Vigor VSPS-5) and stored under argon over 4 Å type molecular sieves. Toluene were distilled freshly before use over sodium and benzophenone. Dichloromethane (DCM) was distilled from CaH₂. Methanol was used without further purification. Reactions were checked by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H, ¹³C NMR and ¹⁹F spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 400 MHz, 100 MHz and 376 MHz respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. Signal patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). HPLC analyses of the compounds were done using chiralcel IA-IF columns and chiralcel AD-H, AS-H, OJ-H and OD-H columns using hexane and isopropanol as eluent. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry. Crystal structure data were collected on a SuperNova, Dual, Cu at zero, Atlas diffractometer.

II Optimization of Reaction Conditions

Table 1. Optimization of the Reaction Conditions^a

^aReaction conditions: **1a** (0.22 mmol), **2a** (0.20 mmol), Λ/Δ -Rh or Λ -Ir1 (1-2 mol %), solvent (0.5 mL) at rt under argon atmosphere. ^bIsolated yields. ^c Determined by chiral HPLC analysis. ^d 0 °C.

III Experimental Section

 Λ/Δ -Rh or Λ-Ir1 was prepared according to reported procedure.¹ α,β-unsaturated 2-acyl imidazoles and indolizines were synthesized according to reported procedures.²⁻⁵

General procedure for Catalytic Asymmetric Conjugate Addition of Indolizines to Unsaturated Ketones Catalyzed by Chiral-at-metal Complexes.

To an oven-dried 10 mL Schlenk tube equipped with a stir bar, Δ -Rh1 (1 mol%) was added along with α,β -unsaturated 2-acyl imidazole 2 (1 equiv, 0.2 mmol) and indolizine (0.22 mmol) in DCE (0.5 mL). The reaction was stirring at at room temperature until consumption of the 2-acyl imidazole (monitored by TLC). The solution was directly purified by silica gel column chromatography (EtOAc/Petroleum ether = 1:3-1:2) to afford 3 or 4.

General procedure for gram-scale experiments with lower catalyst loading.

To an oven-dried 25 mL Schlenk tube equipped with a stir bar, **\Delta-Rh1** (1 mol%) (0.05 mol%) was added along with α,β -unsaturated 2-acyl imidazole **2f** (1.0 equiv, 2.56 mmol, 742 mg) and indolizine (1.1 equiv, 2.81 mmol, 492 mg) in DCE (3.0 mL). The reaction was stirring at room temperature until consumption of the 2-acyl imidazole (monitored by TLC). The solution was directly purified by silica gel column chromatography (EtOAc/Petroleum ether = 1:2) to afford **3f** (white solid, 1.19 g, 98% yield, 97% ee).

General procedure for synthetic transformation of the Michael product 3l.

3a(50 mg, 0.13 mmol, 1.0 equiv) was added to a screw-cap tube followed by CH₂Cl₂ (2 mL). The solution was stirred at 0 °C and MeOTf (10.0 equiv) was added dropwise. The solution was stirred at room temperature overnight. A solution of MeOH (1.2 mL) and DBU (1.2 mL) was prepared and added slowly to the reaction tube. The mixture stirred at room temperature for an additional 12 h. The mixture was diluted with EtOAc (15 mL) and transferred to a separatory funnel. Brine (30 mL), and H₂O (30 ml) were added and the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over sodium sulfate, filtered, and concentrated on a rotary evaporator. The residue **5** was purified by flash column chromatography 10% EtOAc/hexane. (Brown oil, 30 mg, 70% yield, 93% ee).

Brown oil, 74 mg, 96% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 14.31 min, tr (minor) = 19.69 min); $[\alpha]_D^{25}$ = -181.80 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.66-7.64 (m, 1H), 7.30 (d, *J* = 8.0 Hz; 1H), 7.25 (d, *J* = 4.0 Hz; 4H), 7.19-7.15 (m, 1H), 7.97 (s, 1H), 6.97 (s, 1H), 6.83 (s, 1H), 6.62-6.58 (m, 1H), 6.41-6.33 (m, 2H), 4.48-4.42 (dd, *J*₁ = 16.0 Hz; *J*₂ = 8.0 Hz; 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.76-3.71 (dd, *J*₁ = 16.0 Hz; *J*₂ = 8.0 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.1, 166.1, 142.8, 140.0, 131.9, 129.0, 128.6, 128.6, 127.1, 127.0, 126.4, 123.5, 120.4, 117.6, 117.2, 111.8, 101.0, 51.4, 39.9, 36.0, 35.5. HRMS (ESI, *m*/*z*) calcd for C₂₃H₂₂N₃O₃ [M+H]⁺: 388.1655, found: 388.1656.

Brown oil, 75 mg, 94% yield, 95% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 8.75 min, tr (minor) = 15.20 min); $[\alpha]_D^{25}$ = -342.80 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.76-7.74 (m, 1H), 7.52 (d, *J* = 7.6 Hz; 1H), 7.28 (d, *J* = 9.2 Hz; 1H), 7.20-7.17 (m, 1H), 7.14-7.05 (m, 3H), 6.99 (s, 1H), 6.82 (s, 1H), 6.58-6.45 (m, 1H), 6.32-6.27 (m, 2H), 4.56-4.98 (dd, *J*₁ = 16.4 Hz; *J*₂ = 8.8 Hz; 1H), 3.90 (s, 3H), 3.85 (s, 3H), 3.64-3.58 (dd, *J*₁ = 16.4 Hz; *J*₂ = 6.4 Hz; 1H), 2.0 (s,3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.0, 166.0, 143.0, 137.8, 131.6, 131.3, 129.0, 128.0, 127.0, 126.7, 125.8, 123.2, 120.4, 117.3, 116.7, 111.8, 101.2, 51.4, 40.2, 36.0, 34.5, 19.6. HRMS (ESI, *m/z*) calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1814.

Brown oil, 77 mg, 96% yield, 99% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 11.56 min, tr (minor) = 14.49 min); $[\alpha]_D^{25}$ = -120.88 (c = 0.5, CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃): δ = 7.67-7.65 (m, 1H), 7.30 (d, *J* = 9.2 Hz, 1H), 7.19-7.11 (m, 1H), 7.08-7.04 (m, 3H), 6.97 (t, *J* = 8.8 Hz, 2H), 6.82 (s, 1H), 6.63-6.59 (m, 1H), 6.38-6.33 (m, 2H), 4.44-4.38 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.6 Hz; 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.76-3.70(dd, *J*₁ = 23.6 Hz; *J*₂ = 7.6 Hz; 1H), 2.25 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.1, 166.2, 142.8, 139.9, 138.2, 131.9, 128.9, 128.6, 128.5, 127.9, 127.2, 126.9, 124.0, 123.6, 120.4, 117.5, 117.2, 111.8, 101.0, 51.4, 39.8, 36.0, 35.0, 21.6. HRMS (ESI, *m/z*) calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1812.

Brown oil, 75 mg, 94% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 15.54 min, tr (minor) = 18.48 min); $[\alpha]_D^{25}$ = -255.56 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.67-7.65 (m, 1H), 7.30 (d, *J* = 9.2 Hz; 1H), 7.14 (d, *J* = 8.0 Hz; 2H), 7.07-7.04 (m, 3H), 6.96 (s, 1H), 6.82 (s, 1H), 6.61-6.58 (m, 1H), 6.37-6.32 (m, 2H), 4.46-4.40 (dd, *JI* = 16.4 Hz; *J2* = 8.0 Hz; 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.74-3.69 (dd, *JI* = 16.4 Hz; *J2* = 7.2 Hz; 1H), 2.27 (s,3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.1, 166.1, 142.8, 136.9, 135.9, 131.9, 129.3, 128.9, 128.7, 126.9, 123.6, 120.4, 117.5, 117.1, 111.8, 101.0, 51.4, 39.9, 36.0, 34.8, 21.0. HRMS (ESI, *m/z*) calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1810.

Brown oil, 79 mg, 95% yield, 97% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 21.92 min, tr (minor) = 27.89 min); $[\alpha]_D^{25}$ = -45.32 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.68-7.66 (m, 1H), 7.30 (d, *J* = 9.2 Hz; 1H), 7.18-7.15 (m, 2H), 7.08 (s, 1H), 6.98 (s, 1H), 6.82-6.77 (m, 3H), 6.63-6.59 (m, 1H), 6.38-6.29 (m, 2H), 4.45-4.39 (dd, *J*₁ = 16.4 Hz; *J*₂ = 8.0 Hz; 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.75 (s, 3H), 3.73-3.68 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.1, 166.1, 158.0, 142.8, 132.0, 131.9, 129.0, 128.9, 128.1, 127.0, 123.6, 120.4, 117.5, 117.0, 114.0, 111.8, 101.0, 55.2, 51.4, 40.0, 36.0, 34.4. HRMS (ESI, *m*/*z*) calcd for C₂₄H₂₄N₃O₄ [M+H]⁺: 418.1761, found: 418.1759.

Brown solid, 87 mg, 94% yield, 96% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 12.59 min, tr (minor) = 16.65 min); $[\alpha]_D^{25}$ = -44.08 (c = 0.5, CH₂Cl₂); mp = 160.8-162.3 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.95-7.93 (d, *J* = 6.8 Hz; 1H), 7.56-7.49 (m, 2H), 7.33 (d, *J* = 9.2 Hz; 1H), 7.24-7.20 (m, 1H), 7.11 (s, 1H), 7.07-7.03 (m, 1H), 6.97 (s, 1H), 6.85 (s, 1H), 6.66-6.62 (m, 1H), 6.51-6.47 (m, 1H), 5.86 (t, *J* = 7.2 Hz; 1H), 4.35-4.29 (dd, *J_I* = 17.6 Hz; *J₂* = 8.4 Hz; 1H), 4.16-4.10 (dd, *J_I* = 17.6 Hz; *J₂* = 6.8 Hz; 1H), 3.86 (s, 3H), 3.79(s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.1, 165.9, 142.8, 139.5, 133.2, 131.5, 130.1, 129.1, 128.3, 127.3, 126.9, 126.8, 124.6, 123.0, 120.3, 118.0, 117.4, 112.1, 102.0, 51.6, 41.5, 37.2, 36.0. HRMS (ESI, *m/z*) calcd for C₂₃H₂₁N₃O₃Br [M+H]⁺: 466.0761, 468.0739, found: 466.0761, 468.0740.

Brown oil, 86 mg, 93% yield, 95% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 12.49 min, tr (minor) = 17.85 min); $[\alpha]_D^{25}$ = -85.72 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.66-7.64 (m, 1H), 7.42 (s, 1H), 7.34-7.30 (m, 2H), 7.19-7.09 (m, 3H), 6.99 (s, 1H), 6.84 (s, 1H), 6.66-6.62 (m, 1H), 6.44-6.40 (m, 1H),6.34 (t, *J* = 7.2 Hz; 1H), 4.42-4.36 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.6 Hz; 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.80-3.74 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.6, 166.0, 142.7, 132.0, 130.2, 130.1, 129.7, 129.1, 127.6, 127.1, 125.8, 123.2, 122.9, 120.5, 117.6, 117.3, 112.2, 101.2, 51.5, 39.8, 36.0, 34.8. HRMS (ESI, *m/z*) calcd for C₂₃H₂₁N₃O₃Br [M+H]⁺: 466.0761, 468.0735, found: 466.0759, 468.0737.

Brown oil, 86 mg, 92% yield, 95% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 15.48 min, tr (minor) = 20.00 min); $[\alpha]_D^{25}$ = -8.92 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.64-7.62 (m, 1H), 7.38-7.31 (m, 3H), 7.14-7.09 (m, 3H), 6.99 (s, 1H), 6.83 (s, 1H), 6.66-6.61 (m, 1H), 6.42-6.39 (m, 1H), 6.31 (t, *J* = 7.2 Hz; 1H), 4.46-4.40 (dd, *J*₁ = 16.8 Hz; *J*₂ = 8.0 Hz; 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.75-3.69 (dd, *J*₁ = 16.4 Hz; *J*₂ = 6.8 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.7, 166.0, 142.7, 139.3, 132.0, 131.7, 129.1, 128.9, 127.9, 127.1, 123.2, 120.5, 120.3, 117.7, 117.2, 112.1, 101.2, 51.5, 39.8, 36.0, 34.6. HRMS (ESI, *m*/*z*) calcd for C₂₃H₂₁N₃O₃Br [M+H]⁺: 466.0761, 468.0739, found: 466.0762, 468.0740.

Brown oil, 78 mg, 96% yield, 97% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 14.36 min, tr (minor) = 23.95 min); $[\alpha]_D{}^{25}$ = -182.00 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, J = 7.2 Hz; 1H), 7.53-7.49 (m, 1H), 7.31 (d, J = 9.2 Hz; 1H), 7.18-7.12 (m, 1H), 7.10 (s, 1H), 7.05 (td, J_I = 7.6 Hz; J_2 = 1.2 Hz; 1H), 6.96-6.91 (m, 2H), 6.84 (s, 1H), 6.65-6.61 (m, 1H), 6.51-6.47 (m, 1H), 6.16 (t, J = 7.2 Hz; 1H), 4.43-4.37 (dd, J_I = 17.6 Hz; J_2 = 7.6 Hz; 1H), 3.86 (s, 3H), 3.84 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ = -116.71 ppm. ¹³C NMR (CDCl₃, 100 MHz): HRMS (ESI, m/z) calcd for C₂₃H₂₁N₃O₃F [M+H]⁺: 406.1561, found: 406.1561.

Brown oil, 79 mg, 94% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 14.55 min, tr (minor) = 18.93 min); $[\alpha]_D^{25}$ = -156.60 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.64-7.62 (m, 1H), 7.33-7.31 (m, 1H), 7.23-7.17 (m, 4H), 7.08 (s, 1H), 6.99 (s, 1H), 6.84 (s, 1H), 6.65-6.61 (m, 1H), 6.42-6.38 (m, 1H), 6.33 (t, *J* = 7.2 Hz; 1H), 4.46-4.40 (dd, *J*₁ = 16.4 Hz; *J*₂ = 8.0 Hz; 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.76-3.70 (dd, *J*₁ = 16.4 Hz; *J*₂ = 6.8 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.7, 166.0, 142.7, 138.7, 132.2, 132.0, 129.1, 128.7, 128.5, 128.0, 127.2, 123.2, 120.5, 117.7, 117.2, 112.1, 101.2, 51.5, 39.9, 36.0, 34.5. HRMS (ESI, *m/z*) calcd for C₂₃H₂₁N₃O₃Cl [M+H]⁺: 422.1266, 423.1263, 424.1231, found: 422.1266, 423.1264, 424.1231.

Brown oil, 77 mg, 93% yield, 96% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 26.60 min, tr (minor) = 35.69 min); $[\alpha]_D^{25}$ = -13.40 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.62 (d, *J* = 7.2 Hz; 1H), 7.55-7.53 (m, 2H), 7.38-7.33 (m, 3H), 7.10 (s, 1H), 7.02 (s, 1H), 6.86 (s, 1H), 6.68-6.64 (m, 1H), 6.46-6.42 (m, 1H), 6.39 (t, *J* = 6.8 Hz; 1H), 4.51-4.45 (dd, *J*₁ = 16.8 Hz; *J*₂ = 8.0 Hz; 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.81-3.75 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.4, 165.9, 146.1, 142.5, 132.4, 132.1, 129.3, 128.0, 127.4, 127.3, 122.8, 120.6, 118.8, 117.9, 117.3, 112.4, 110.3, 101.4, 51.5, 39.8, 36.0, 35.1. HRMS (ESI, *m*/*z*) calcd for C₂₄H₂₁N₄O₃ [M+H]⁺: 413.1608, found: 413.1610.

Yellow oil, 88 mg, 96% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 27.93 min, tr (minor) = 20.86 min); $[\alpha]_D^{25}$ = -43.60(c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (d, *J* = 8.8 Hz; 2H), 7.64 (d, *J* = 7.2 Hz; 1H), 7.44-7.42 (m, 2H), 7.35 (d, *J* = 9.2 Hz; 1H), 7.25 (s, 1H), 6.86 (s, 1H), 6.68-6.64 (m, 1H), 6.46-6.43 (m, 2H), 5.41-5.35 (m, 1H), 4.56-4.50 (dd, *J*₁ = 16.4 Hz; *J*₂ = 8.0 Hz; 1H), 3.85-3.80 (m, 4H), 1.37-1.34 (dd, *J*₁ = 6.8 Hz; *J*₂ = 4.0 Hz; 6H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.4, 165.8, 148.4, 146.5, 141.8, 132.1, 129.7, 128.1, 127.1, 123.8, 122.8, 121.6, 120.7, 117.9, 117.3, 112.5, 101.5, 51.5, 49.2, 40.5, 35.3, 23.6, 23.4. HRMS (ESI, *m/z*) calcd for C₂₅H₂₄N₄O₅ [M+H]⁺: 461.1819, found: 461.1817.

Yellow solid, 72 mg, 95% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 11.82 min, tr (minor) = 15.27 min); $[\alpha]_D^{25}$ = -130.04 (c = 0.5, CH₂Cl₂); mp = 128.4-130.2 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.85-7.83 (m, 1H), 7.32 (d, *J* = 9.2 Hz; 1H), 7.09 (s, 1H), 6.99 (s, 1H), 6.83 (s, 1H), 6.66-6.61 (dd, *J*₁ = 8.8 Hz; *J*₂ = 6.4 Hz; 1H), 6.46-6.41 (m, 2H), 6.28-6.27(m, 2H), 6.13-6.12 (m, 1H), 4.44-4.38 (dd, *J*₁ = 16.8 Hz; *J*₂ = 8.0 Hz; 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.67-3,61 (dd, *J*₁ = 16.8 Hz; *J*₂ = 6.4 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.2, 165.9, 153.7, 142.7, 141.6, 132.1, 129.0, 127.1, 126.2, 123.6, 120.4, 117.6, 116.8, 112.0, 110.4, 106.3, 101.2, 51.4, 39.4, 36.1, 30.6. HRMS (ESI, *m*/*z*) calcd for C₂₁H₂₀N₃O₄ [M+H]⁺: 378.1448, found: 378.1447.

Brown oil, 74 mg, 94% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 15.34 min, tr (minor) = 18.32 min); $[\alpha]_D^{25}$ = -64.80 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.76 (d, J = 7.2 Hz; 1H), 7.33 (d, J = 9.2 Hz; 1H), 7.13-7.12 (m, 1H), 7.08 (s, 1H), 6.98 (s, 1H), 6.90-6.83 (m, 3H), 6.66-6.62 (m, 1H), 6.65 (t, J = 14.4 Hz; 1H), 6.44-6.41 (m, 1H), 4.46-4.40 (dd, J_I = 16.4 Hz; J_2 = 7.6 Hz; 1H), 3.89 (s, 3H),3.86 (s, 3H) , 3.84-3.78 (dd, J_I = 16.4 Hz; J_2 = 7.2Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.2, 165.9, 144.9, 142.7, 132.2, 129.0, 127.5, 127.1, 126.8, 124.3, 124.0, 123.8, 120.4, 117.7, 116.9, 112.0, 101.1, 51.5, 41.5, 36.0, 32.1. HRMS (ESI, m/z) calcd for C₂₁H₂₀N₃O₃ [M+H]⁺: 394.1220, found: 394.1218.

Black oil, 85 mg, 96% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 14.04 min, tr (minor) = 17.53 min); $[\alpha]_D^{25}$ = -173.72 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.83-7.81 (m; 1H), 7.32 (d, *J* = 9.2 Hz; 1H), 7.07 (s, 1H), 6.97 (s, 1H), 6.82 (s, 1H), 6.66-6.62 (m, 2H), 6.53-6.42 (m, 3H), 4.42-4.36 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.6 Hz; 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.77-3.71 (dd, *J*₁ = 16.4 Hz; *J*₂ = 6.8 Hz; 1H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.3, 165.9, 142.8, 142.2, 138.7, 132.1, 129.0, 127.6, 127.1, 124.7, 123.9, 123.6, 120.4, 117.7, 116.8, 111.9, 101.1, 51.5, 41.1, 36.0, 32.1, 15.3. HRMS (ESI, *m*/*z*) calcd for C₂₂H₂₂N₃O₃S [M+H]⁺: 408.1376, found: 408.1375.

Black oil, 62 mg, 96% yield, 99% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 11.04 min, tr (minor) = 19.72 min); $[\alpha]_D^{25}$ = +3.64 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.81-8.09 (m, 1H), 7.33-7.30 (m, 1H), 7.09 (s, 1H), 6.96 (s, 1H), 6.80 (s, 1H), 6.65-6.61 (m, 1H), 6.56-6.53 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.79 (d, *J* = 7.2 Hz; 2H), 1.71 (s, 1H), 1.52 (d, *J* = 7.2 Hz; 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 165.9, 143.0, 131.6, 131.3, 129.0, 126.7, 123.4, 120.5, 116.9, 115.9, 111.8, 101.7, 51.4, 43.4, 36.0, 25.9, 17.9. HRMS (ESI, *m/z*) calcd for C₁₈H₂₀N₃O₃ [M+H]⁺: 326.1499, found: 326.1499.

Black oil, 86 mg, 97% yield, >99% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 6.95 min, tr (minor) = 7.49 min); $[\alpha]_D^{25}$ = -141.28 (c = 0.5, CH₂Cl₂); mp = 153.6-154.8 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.16 (d, *J* = 7.2 Hz; 1H), 7.39 (s, 5H), 7.14-7.08 (m, 3H), 6.87 (s, 1H), 6.76-6.62 (m, 2H), 6.33-6.27 (m, 1H), 4.26-4.20 (dd, *J*₁ = 17.2 Hz; *J*₂ = 6.8 Hz; 1H), 3.84 (s, 3H), 3.77-3.71 (dd, *J*₁ = 17.2 Hz; *J*₂ = 6.4 Hz; 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ = -67.05 ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 185.0, 165.4, 142.0, 137.8, 133.1, 129.7, 129.0, 128.8, 127.6, 125.7, 124.5, 120.6, 119.4, 118.3, 112.9, 102.1, 51.6, 35.6, 35.4, 35.0. HRMS (ESI, *m/z*) calcd for C₂₃H₁₉N₃O₃F₃ [M+H]⁺: 443.1370, found: 442.1370.

Black oil, 70 mg, 92% yield, 95% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 11.27 min, tr (minor) = 10.41 min); $[\alpha]_D^{25}$ = -38.48 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.90-7.88 (m, 1H), 7.35 (d, *J* = 9.2 Hz; 1H), 7.12 (s, 1H), 6.83 (s, 1H), 6.70-6.66 (m, 1H), 6.57-6.54 (m, 1H), 5.76-5.72 (dd, *J*₁ = 16.0 Hz; *J*₂ = 2.0 Hz; 1H), 5.45-5.38 (m, 1H), 3.86 (s, 3H), 3.69-3.63 (dd, *J*₁ = 16.4 Hz; *J*₂ = 6.8 Hz; 1H), 1.38-1.34 (m, 6H), 1.24 (t, *J* = 7.2 Hz; 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.5, 166.3, 165.7, 147.1, 141.8, 129.6, 125.8, 123.5, 121.8, 121.3, 120.6, 117.7, 117.0, 112.2, 101.5, 60.4, 51.4, 49.1, 40.7, 33.4, 23.6, 14.2. HRMS (ESI, *m*/*z*) calcd for C₂₀H₂₂N₃O₅ [M+H]⁺: 384.1481, found: 384.1483.

Black oil, 79 mg, 95% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 10.18 min, tr (minor) = 13.09 min); $[\alpha]_D^{25}$ = -181.20 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.76 (d, J = 9.6 Hz; 1H), 7.33-7.25 (m, 7H), 7.17 (t, J = 7.2 Hz; 1H), 6.80 (s, 1H), 6.64-6.60 (m, 1H), 6.44-6.40 (m, 2H), 5.24-5.21 (m, 1H), 4.65-4.60 (dd, J_I = 16.0 Hz; J_2 = 6.8 Hz; 1H), 4.05-3.99 (dd, J_I = 15.6 Hz; J_2 = 8.4 Hz; 1H), 3.85 (s, 3H), 1.39-1.35 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ = 188.4, 166.1, 139.3, 132.1, 128.7, 127.5, 127.1, 126.6, 123.9, 121.1, 120.2, 118.0, 117.2, 112.2, 100.9, 51.5, 50.3, 41.5, 35.3, 23.4, 23.3. HRMS (ESI, m/z) calcd for C₂₅H₂₆N₃O₃ [M+H]⁺: 416.1969, found: 416.1969.

Black oil, 85 mg, 95% yield, 96% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 14.86 min, tr (minor) = 18.49 min); $[\alpha]_D^{25}$ = -127.32 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.68-7.67 (m, 1H), 7.36-7.34 (m; 3H), 7.31-7.29 (m, 1H), 7.24 (d, *J* = 4.4 Hz; 4H), 7.18 (s, 1H), 7.17-7.14 (m, 1H), 7.09 (s, 1H), 7.08-7.06 (m, 2H), 6.84 (s, 1H), 6.62-6.58 (m, 1H), 6.37-6.33 (m, 1H), 6.27 (t, *J* = 7.6 Hz; 1H), 4.41-4.35 (dd, *J_I* = 15.6 Hz; *J₂* = 7.6 Hz; 1H), 3.87-3.81 (dd, *J_I* = 15.6 Hz; *J₂* = 7.6 Hz; 1H), 3.87-3.81 (dd, *J_I* = 15.6 Hz; *J₂* = 7.6 Hz; 1H), 3.79 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 188.7, 166.0, 142.7, 140.2, 138.1, 131.9, 129.5, 128.9, 128.6, 128.2, 127.1, 127.1, 126.4, 125.8, 123.5, 120.3, 117.6, 117.4, 111.9, 101.2, 51.4, 40.2, 35.6. HRMS (ESI, *m/z*) calcd for C₂₈H₂₄N₃O₃ [M+H]⁺: 450.1812, found: 450.1812.

Brown oil, 76 mg, 95% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 14.15 min, tr (minor) = 20.66 min); $[\alpha]_D^{25}$ = -143.84 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.65-7.63 (m, 1H), 7.30 (d, *J*= 9.2 Hz; 1H), 7.25 (s, 4H), 7.19-7.16 (m, 1H), 7.08 (s, 1H), 6.98 (s, 1H), 6.84 (s, 1H), 6.62-6.58 (m, 1H), 6.42-6.33 (m, 2H), 4.48-4.42 (dd, *J*₁ = 16.4 Hz; *J*₂ = 8.0 Hz; 1H), 4.36-4.31 (m, 2H), 3.89 (s, 3H), 3.78-3.72 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H), 1.36 (t, *J* = 7.2 Hz; 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.0, 165.7, 142.8, 140.1, 131.9, 128.9, 128.6, 128.4, 127.0, 126.4, 126.4, 123.5, 120.3, 117.6, 117.5, 111.8, 101.1, 60.2, 39.9, 36.0, 35.0, 14.4. HRMS (ESI, *m/z*) calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1813.

Brown oil, 82 mg, 95% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 12.64 min, tr (minor) = 16.62 min); $[\alpha]_D^{25}$ = -153.88 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.65-7.63 (m, 1H), 7.30 (d, *J* = 9.2 Hz; 1H), 7.25 (d, *J* = 4.4 Hz; 4H), 7.20-7.15 (m, 1H), 7.08 (s, 1H), 6.98 (s, 1H), 6.84 (s, 1H), 6.62-6.58 (m, 1H), 6.43-6.33 (m, 2H), 4.48-4.42 (dd, *J*₁ = 16.4 Hz; *J*₂ = 8.0 Hz; 1H), 4.32-4.25 (m, 2H), 3.89 (s, 3H), 3.78-3.72 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H), 1.77-1.69 (m, 2H), 1.48-1.43 (m, 2H), 0.96 (t, *J* = 7.2 Hz; 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.0, 165.8, 142.8, 140.1, 131.8, 128.9, 128.6, 128.4, 127.1, 126.9, 126.4, 123.5, 120.3, 117.6, 117.5, 111.8, 101.0, 64.1, 39.8, 36.0, 35.0, 30.8, 19.3, 13.8. HRMS (ESI, *m*/*z*) calcd for C₂₆H₂₈N₃O₃ [M+H]⁺: 430.2125, found: 430.2126.

Brown oil, 89 mg, 96% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 20.80 min, tr (minor) = 38.99 min); $[\alpha]_D^{25}$ = -171.44 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.66-7.64 (m, 1H), 7.46-7.44 (m, 2H), 7.37-7.30 (m, 4H), 7.24 (d, *J* = 4.8 Hz; 4H), 7.18-7.15 (m, 1H), 7.06 (s, 1H), 6.94 (s, 1H), 6.87 (s, 1H), 6.62-6.57 (m, 1H), 6.42 (t, *J* = 7.6 Hz; 1H), 6.37-6.33 (m, 1H), 5.39-5.30 (q, *J* = 9.6 Hz; 2H), 4.46-4.40 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.6 Hz; 1H), 3.83 (s, 3H), 3.81-3.75 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.0, 165.4, 142.8, 140.0, 136.6, 131.9, 129.0, 128.8, 128.6, 128.5, 128.1, 127.9, 127.1, 127.0, 126.4, 123.5, 120.4, 117.6, 117.1,

111.9, 101.2, 65.8, 39.8, 36.0, 35.0. HRMS (ESI, *m*/*z*) calcd for C₂₉H₂₆N₃O₃ [M+H]⁺: 464.1969, found: 464.1968.

Brown oil, 81 mg, 94% yield, 96% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 19.01 min, tr (minor) = 24.71 min); $[\alpha]_D^{25}$ = -156.08 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.67-7.65 (m, 1H), 7.30 (d, *J* = 9.2 Hz; 1H), 7.26-7.24 (m, 4H), 7.19-7.15 (m, 1H), 7.08 (s, 1H), 6.97 (s, 1H), 6.87 (s, 1H), 6.62-6.58 (dd, *J*₁ = 9.2 Hz; *J*₂ = 6.4 Hz; 1H), 6.42-6.34 (m, 2H), 4.48-4.40 (m, 3H), 3.89 (s, 3H), 3.79-3.71 (m, 3H), 3.40 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.0, 165.5, 142.8, 140.1, 131.8, 128.9, 128.7, 128.6, 127.1, 127.0, 126.4, 123.5, 120.4, 117.5, 117.1, 111.9, 101.2, 70.6, 63.3, 59.0, 39.9, 36.0, 35.0. HRMS (ESI, *m/z*) calcd for C₂₅H₂₆N₃O₄ [M+H]⁺: 432.1918, found: 432.1917.

Brown solid, 77 mg, 96% yield, 97% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 11.55 min, tr (minor) = 13.73 min); $[\alpha]_D^{25}$ = -214.32 (c = 0.5, CH₂Cl₂); mp = 124.1-125.3 °C.¹H NMR (400 MHz, CDCl₃): δ = 7.55 (d, *J* = 7.2 Hz; 1H), 7.24 (d, *J* = 4.4 Hz; 4H), 7.19-7.14 (m, 1H), 7.09 (s, 1H), 6.98 (s, 1H), 6.84 (s, 1H), 6.43-6.37 (m, 2H), 6.31 (t, *J* = 6.8 Hz; 1H), 4.50-4.44 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.6 Hz; 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.75-3.69 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.1, 166.2, 142.8, 140.2, 132.9, 129.4, 129.1, 129.0, 128.6, 127.1, 127.0, 126.3, 121.5, 116.8, 116.7, 112.1, 99.6, 51.4, 40.0, 36.0, 35.1, 18.0. HRMS (ESI, *m/z*)

calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1812.

Brown oil, 75mg, 93% yield, 95% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 16.48 min, tr (minor) = 29.70 min); $[\alpha]_D^{25}$ = -46.12 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (d, J = 7.6 Hz; 1H), 7.25-7.24 (m, 4H), 7.19-7.14 (m, 1H), 7.08 (s, 1H), 7.05 (s, 1H), 6.98 (s, 1H), 6.67 (s, 1H), 6.36 (t, J = 7.6 Hz; 1H), 6.21-6.18 (m, 1H), 4.47-4.41 (dd, J_I = 16.4 Hz; J_2 = 7.6 Hz; 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.74-3.68 (dd, J_I = 16.4 Hz; J_2 = 7.2 Hz; 1H), 2.18 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.1, 166.2, 142.8, 140.3, 132.3, 129.0, 128.6, 127.9, 127.6, 127.1, 127.0, 126.3, 123.0, 118.2, 117.1, 114.7, 99.2, 51.4, 40.0, 36.0, 35.1, 20.8. HRMS (ESI, m/z) calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1812.

Light yellow solid, 78 mg, 97% yield, 99% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 10.14 min, tr (minor) = 13.74 min); $[\alpha]_D^{25}$ = -195.64 (c = 0.5, CH₂Cl₂); mp = 152.6-153.9 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (s, 1H), 7.40-7.38 (m, 2H), 7.26-7.19 (dd, J_I = 17.2 Hz; J_2 = 10.0 Hz; 3H), 7.12-7.09 (m, 2H), 6.94 (s, 1H), 6.56-6.53 (dd, J_I = 9.2 Hz; J_2 = 6.4 Hz; 1H), 6.34-6.33 (m, 1H), 5.87 (t, J = 7.6 Hz; 1H), 4.42-4.36 (dd, J_I = 16.8 Hz; J_2 = 8.0 Hz; 1H), 3.84 (s, 3H), 3.83 (s, 3H), 2.43 (s, 3H), 1.42 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 191.3, 165.8, 144.2, 143.2, 132.8, 131.4, 128.9, 128.1, 127.6, 126.7, 125.7, 117.8, 117.7, 117.3, 117.2, 113.6, 111.4, 51.2, 43.6, 36.0, 35.7, 26.9, 18.5. HRMS (ESI, *m*/*z*) calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1812.

Brown oil, 77 mg, 96% yield, 98% ee (HPLC: chiralpak AD-H column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 31.49 min, tr (minor) = 33.87 min); $[\alpha]_D^{25}$ = -63.72 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (s, 1H), 7.25-7.21 (m, 5H), 7.19-7.15 (m, 1H), 7.10 (s, 1H), 6.98 (s, 1H), 6.79 (s, 1H), 6.48-6.46 (m, 1H), 6.34 (t, *J* = 7.2 Hz; 1H), 4.50-4.43 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.6 Hz; 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.77-3.71 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H), 2.06 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.2, 166.2, 142.8, 140.3, 130.8, 129.0, 128.6, 128.2, 127.1, 127.0, 126.3, 121.1, 121.0, 120.7, 119.8, 116.7, 101.0, 51.4, 40.1, 36.0, 35.0, 18.9. HRMS (ESI, *m*/*z*) calcd for C₂₄H₂₄N₃O₃ [M+H]⁺: 402.1812, found: 402.1812.

Brown oil, 79 mg, 85% yield, 96% ee (HPLC: chiralpak IC column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 10.67 min, tr (minor) = 9.53 min); $[\alpha]_D^{25}$ = -79.68 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.83 (s, 1H), 7.29-7.20 (m, 6H), 7.11 (s, 1H), 7.00 (s, 1H), 6.87 (s, 1H), 6.69-6.66 (m, 1H), 6.27 (t, *J* = 7.2 Hz; 1H), 4.44-4.38 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.6 Hz; 1H), 3.90 (s, 3H), 3.84 (s, 3H), 3.81-3.75 (dd, *J*₁ = 16.4 Hz; *J*₂ = 7.2 Hz; 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 190.0, 165.6, 142.7, 139.5, 130.1, 129.2, 129.1, 128.8, 127.1, 126.7, 123.3, 121.2, 121.0, 117.8, 107.2, 102.7, 51.6, 40.0, 36.0, 35.2. HRMS (ESI, *m/z*) calcd for C₂₃H₂₁N₃O₃ Br [M+H]⁺: 466.0761, 468.0740, found: 466.0763, 468.0741.

Brown oil, 30 mg, 70% yield, 93% ee (HPLC: chiralpak IC column, 254 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, tr (major) = 11.57 min, tr (minor) = 15.33 min); $[\alpha]_D^{25}$ = -58.40 (c = 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.85-7.83 (m, 1H), 7.33 (d, J = 9.2 Hz; 1H), 7.10 (s, 1H), 7.00 (s, 1H), 7.00 (s, 1H), 6.83 (s, 1H), 6.66-6.62 (m, 1H), 6.47-6.40 (m, 2H), 6.29-6.28 (m, 1H), 6.13-6.12 (m, 1H), 4.44-4.38 (dd, J_I = 16.8 Hz; J_2 = 8.0 Hz; 1H), 3.93 (s, 3H), 3.87 (s, 3H), 3.66-3.61 (dd, J_I = 16.8 Hz; J_2 = 6.4 Hz; 1H), 1.25 (s,1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 189.2, 186.0, 153.7, 141.6, 129.1, 127.0, 123.7, 120.4, 117.6, 112.0, 110.4, 106.3, 101.2, 51.5, 39.4, 36.1, 30.6. HRMS (ESI, m/z) calcd for C₂₀H₂₀NO₄ [M+H]⁺: 338.1314, found: 338.1315.

IV References

(1) Wang, C.; Chen, L.-A.; Huo, H.; Shen, X.; Harms, K.; Gong, L.; Meggers, E. *Chem. Sci.* **2015**, *6*, 1094-1100.

- (2) Huo, H.; Fu, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990-2993.
- (3) Benedetti, E.; Duchemin, N.; Bethge, L.; Vonhoff, S.; Klussmann, S.; Vasseur,
- J.-J.; Cossy, J.; Smietana, M.; Arseniyadis, S. Chem. Commun. 2015, 51, 647-650.
- (4) Drissi-Amraoui, S.; Morin, M. S. T.; Crévisy, C.; Baslé, O.; Figueiredo, R. M.;
- Mauduit, M.; Campagne, J.-M. Angew. Chem., Int. Ed. 2015, 54, 11830 -11834.
- (5) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848-10849.

V NMR Spectrum

¹H NMR-3d

¹H NMR-3e

¹H NMR-3f

¹H NMR-3g

¹H NMR-3h

¹H NMR-3i

¹H NMR-3j

¹H NMR-3k

¹HNMR-3l

¹H NMR-3n

¹³C NMR-30

¹H NMR-3p

¹H NMR-3q

¹H NMR-3s

¹³C NMR-3s

¹H NMR-3t

¹H NMR-3v

¹H NMR-4b

¹H NMR-4c

¹H NMR-4d

¹H NMR-4f

¹H NMR-4g

¹H NMR-4h

¹H NMR-4i

¹H NMR-4j

¹H NMR-5a

VI Chiral HPLC analysis trace

racemic-3a

chiral-3a

chiral-3b

racemic-3c

chiral-3c

chiral-3d

chiral-3e

chiral-3f

chiral-3g

chiral-3h

chiral-3i

racemic-3j

chiral-3j

chiral-3k

racemic-3l

chiral-3l

chiral-3n

chiral-30

racemic-3p

chiral-3p

chiral-3q

chiral-3s

chiral-3t

chiral-3u

racemic-3v

chiral-3v

chiral-4b

racemic-4c

chiral-4c

chiral-4d

chiral-4e

chiral-4f

chiral-4g

chiral-4h

chiral-4i

chiral-4j

chiral-5a

VII. Single Crystal X-Ray Diffraction of 3n

 Table 1. Crystal data and structure refinement for 3n.

CCDC 2117336

Table 1. Crystal data and structure refinement for 3n .			
Identification code	3n		
Empirical formula	$C_{21}H_{19}N_3O_4$		
Formula weight	377.39		
Temperature	173.0 K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P21212		
Unit cell dimensions	a = 7.3671(3) Å	α= 90°.	
	b = 14.9482(6) Å	β= 90°.	
	c = 17.1529(7) Å	$\gamma = 90^{\circ}$.	
Volume	1888.96(13) Å ³		
Z	4		
Density (calculated)	1.327 Mg/m ³		
Absorption coefficient	0.770 mm^{-1}		
F(000)	792		
Crystal size	0.21 x 0.19 x 0.13 mm ³		
Theta range for data collection	2.576 to 68.268°.		
Index ranges	-8<=h<=8, -18<=k<=18, -20<=l<=20		
Reflections collected	48412		
Independent reflections	3462 [R(int) = 0.0597]		
Completeness to theta = 67.679°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7531 and 0.6630		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3462 / 0 / 255		

Goodness-of-fit on F ²	1.039
Final R indices [I>2sigma(I)]	R1 = 0.0328, wR2 = 0.0804
R indices (all data)	R1 = 0.0357, wR2 = 0.0831
Absolute structure parameter	-0.05(9)
Extinction coefficient	n/a
Largest diff. peak and hole	0.136 and -0.135 e.Å ⁻³