Supplementary Information

for

Transition-Metal-Free Synthesis of 4-Amino Isoquinolin-1(2H)-ones via Tandem Reaction of Arynes and Oxazoles

Shaojun Liu ${ }^{a \#}$, Pei Xie ${ }^{a \#}$, Leifang Wu ${ }^{b}$, Jixing Zhao ${ }^{b}$, Zhihua Cai ${ }^{a *}$ and Lin He ${ }^{a *}$${ }^{a}$ Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan,School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang UygurAutonomous Region, 832000, China. ${ }^{b}$ Analysis and Testing Center of ShiheziUniversity, Xinjiang Uygur Autonomous Region, 832000, China.\# These authors contributed equally.*Email: caizhihua1986@sina.cn. helin@shzu.edu.cn.

Table of Contents
1 General information S2
2 Experimental section S2
2.1 General procedure for synthesis of substrates $\mathbf{1 a - 1 g}, \mathbf{1}-\mathbf{1 q}, \mathbf{1 s}$ and $\mathbf{1 u}$ S2
2.2 General procedure for synthesis of substrates $\mathbf{1 h}$ and $\mathbf{1 i}$ S3
2.3 General procedure for synthesis of substrates $\mathbf{1 r}$ and $\mathbf{1 t}$ S4
2.4 General procedure for synthesis of products S4
2.5 Procedure for derivatization reaction S5
2.5.1 Procedure for synthesis of 4-6 S5
2.5.2 Procedure for synthesis of 7-9 S5
2.5.3 Procedure for synthesis of $\mathbf{1 0}$ and $\mathbf{1 1}$ S5
2.5.4 Procedure for synthesis of 12-14 S6
2.5.5 Procedure for one-pot synthesis of 4 S6
2.5.6 Procedure for gram-scale synthesis of 3aa S7
2.6 Preparing single-crystal of $\mathbf{3 a h}$ and 3ai' and relating crystal data S7
2.7 Characterization of substrates and products S9
2.7.1 Characterization of substrates S9
2.7.2 Characterization of products S12
2.7.3 Characterization of derivatization products S18
2.8. References S20
3 Copies of NMR spectra of substrates and products S201
3.1 Copies of NMR spectra of substrates S211
3.2 Copies of NMR spectra of products. S41
3.3 Copies of NMR spectra of derivatization products S75

1 General information

Unless otherwise indicated, all reactions were conducted under nitrogen atmosphere in oven-dried glassware with magnetic stirring bar. All other chemicals were obtained from commercial supplies and used as received without any further purification. Column chromatograph was performed with silica gel ($200 \sim 300$ mesh) and analytical TLC on silica gel $60-\mathrm{F}_{254} .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR and NOE spectras were recorded on a Bruker AVANCE III spectrometer ($400 \mathrm{MHz}, 100 \mathrm{MHz}$ and 376 MHz , respectively), Chemical shifts are reported parts per million (ppm) referenced to $\mathrm{CDCl}_{3}\left(\delta 7.26 \mathrm{ppm}\right.$), tetramethylsilane (TMS, $\delta 0.00 \mathrm{ppm}$) for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR. High-resolution mass spectra (HRMS) were obtained on a Q Exactive mass spectrometry and an LTQ Orbitrap XL mass spectrometry equipped with an APCI and ESI source from Thermo Scientific. X-Ray diffraction study for product 3ah was carried out on Bruker D8 VENTURE photon II diffractometer with I μ s 3.0 microfocus X-ray source using APEX III program.

2 Experimental section

2.1 General procedure for synthesis of substrates $\mathbf{1 a - 1 g}, \mathbf{1 j} \mathbf{- 1 q}, 1 \mathrm{~s}$ and $\mathbf{1 u}$:

Substrates were prepared according to the known literature. ${ }^{[1,2]}$ To a 150 mL round-bottom flask was added amino acid (10 mmol), dioxane $/ \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=2: 1,30 \mathrm{~mL})$, $\mathrm{NaOH}(0.4 \mathrm{~g}, 10 \mathrm{mmol})$ and then cooled in an ice-bath. Subsequently, (Boc) $)_{2} \mathrm{O}(3.27$ $\mathrm{g}, 15 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.84 \mathrm{~g}, 10 \mathrm{mmol})$ were added to the reaction mixture which was reacted overnight at room temperature and monitored by TLC. After completion of the reaction, the solvent was evaporated to a half of the volume. The residue was diluted with $\mathrm{EtOAc}(40 \mathrm{~mL})$, cooled in an ice-bath and acidified to $\mathrm{pH}=2-$ 3 with 1.0 M HCl successively. The solution was layered, then the aqueous phase was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated under vacuum to give N-Boc-amino acid as colourless oil which was used for the next step without further purification.

To a solution of N -Boc-amino acid in anhydrous THF (30 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv) and cooled to $-30{ }^{\circ} \mathrm{C}$, at this time, ethyl chloroformate (1.1 equiv) was added dropwise. After reacting for $30 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{NH}$ (2.0 equiv) was added and the solution was stirred at this temperature for additional 15 min . Subsequently, the reaction mixture was warmed to room temperature naturally and continued to stir until the reaction was completed (detected by TLC, about 2 h). The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic phase was washed with $1.0 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated NaHCO_{3} (20 mL) and brine (20 mL) successively. The organic phase was then dried and concentrated under vacuum to afford corresponding amide which was used for the next step without further purification.

The obtained amide (1.0 equiv) was treated with trifluoroacetic acid (13 equiv) in $\operatorname{DCM}(1.0 \mathrm{M})$ at room temperature for 1 h . After removal of the solvent and excess trifluoroacetic acid, the residue was re-dissolved in DCM $(20 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The aqueous layer was extracted with DCM $(2 \times 30 \mathrm{~mL})$, and the combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to get unprotected amide. This unprotected amide was dissolved in 20 mL of anhydrous DCM and cooled to $0{ }^{\circ} \mathrm{C}$. To the solution was added acetic formic anhydride (3.0 equiv) and the reaction was stirred at this temperature for 15 min at $0^{\circ} \mathrm{C}$. Then, the reaction was warmed to room temperature and stirred for an additional 1 h until the complete consumption of starting material. The reaction was subsequently quenched with ice-water and extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with cold water $(2 \times 20 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$, and brine (20 mL). The organic phase was dried over anhydrous NaSO_{4}, then concentrated under vacuum to give the corresponding formamide in quantitative yield. The crude formamide was used in the next step without further purification.

To a solution of formamide in dry THF (30 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ (5.0 equiv), then cooled it to $-30{ }^{\circ} \mathrm{C}$, at this time, POCl_{3} (1.1 equiv) was added dropwise. The reaction mixture was reacted at this temperature for 2 h (monitored by TLC). Then, saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ was added and the reaction was warmed to room temperature. After separation of the reaction solution, the aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$, then the combined organic layer was washed with brine, dried and concentrated. The residue was dissolved in ethyl acetate $(10 \mathrm{ml})$ and added silica gel for continued stirring overnight. Evaporation of the solvent under vacuum, followed by purification through flash chromatography on silica gel (200-300 mesh, $\mathrm{PE} / \mathrm{EA} \mathrm{v} / \mathrm{v}=1: 1$), the desired 4, 5 -disubstituted oxaole was obtained.

2.2 General procedure for synthesis of substrates $\mathbf{1 h}$ or $\mathbf{1 i}:{ }^{[3,4]}$

To an oven-dried 50 mL Schlenk sealed tube equipped with a magnetic stir bar was added the methyl isocyanoacetate ($0.454 \mathrm{~mL}, 5 \mathrm{mmol}, 1.0$ equiv) and diethylamine ($0.567 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.1$ equiv). Then, the reaction mixture was stirred at room temperature for overnight. The reaction mixture was further purified by silica gel flash chromatography (200-300 mesh, PE/EA $\mathrm{v} / \mathrm{v}=2: 1$) to give the desired isocyanoacetamide.

To a solution of isocyanoacetamide ($282 \mathrm{mg}, 2 \mathrm{mmol}$, 1 equiv) in dry DMSO $(10 \mathrm{~mL})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(978 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv). The mixture was stirred at room temperaturefor 10 min under an nitrogen atmosphere. Fluoroarene ($2 \mathrm{mmol}, 1$ equiv) was added and stirring was continued at room temperature for 15 h . Then, the reaction was quenched with water and diluted with AcOEt (30 mL). After separation
of the reaction mixture, the aqueous phase was extracted with AcOEt $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was re-dissolved in AcOEt (10 mL) and added silica gel for continued stirring overnight. Evaporation of the solvent under vacuum, followed by purification through flash chromatography on silica gel (200300 mesh, $\mathrm{PE} / \mathrm{EA} \mathrm{v} / \mathrm{v}=3: 1$) to obtain pure oxazole compound $\mathbf{1 h}$ or $\mathbf{1 i}$.

2.3 General procedure for synthesis of substrates $1 \mathbf{r}$ or $\mathbf{1 t} \mathbf{t}^{[5,6]}$

Acetic formic anhydride (3.0 equiv) was added dropwise to a solution of amino acid (1.0 equiv) in formic acid $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was completed, the reaction mixture was stirred at room temperature for an additional 1 h . Ice-water (20 mL) was added and the mixture was concentrated under vacuum to give the white crystalline N-formyl amino acid. Subsequently, to a solution of N-formyl amino acid (1.0 equiv) and morpholine (1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~mL}\right.$) was added $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv), HOBt (1.2 equiv) and EDCl (1.2 equiv) successively, and then the reaction mixture was stirred for 24 h at room temperature. The reaction mixture was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent under vacuum to afford the crude product which was further purified by flash chromatography on silica gel (200-300 mesh, PE/EA $\mathrm{v} / \mathrm{v}=1: 1$) to give the pure amide.

To a solution of formamide in dry THF (30 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ (5.0 equiv) and cooled to $-30{ }^{\circ} \mathrm{C}$, at this time, POCl_{3} (1.1 equiv) was added dropwise. The reaction mixture was stirred at this temperature for 2 h (monitored by TLC). Then, saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ was added and the reaction was warmed to room temperature. The aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$ and the combined organic layer was washed with brine, dried and concentrated. The residue was dissolved in ethyl acetate (10 mL) and added silica gel for continued stirring overnight. Evaporation of the solvent under vacuum, followed by purification through flash chromatography on silica gel (200-300 mesh, PE/EA $\mathrm{v} / \mathrm{v}=1: 1$), the desired $\mathbf{1 r}$ or $\mathbf{1 t}$ was obtained.

2. 4 General procedure for synthesis of products :

To an oven-dried 50 mL Schlenk sealed tube equipped with a magnetic stir bar was added KF ($58.1 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv) and 18 -Crown-6 ($158.6 \mathrm{mg}, 0.6 \mathrm{mmol}$, 3.0 equiv). Then the tube was evacuated under vacuum and charged with N_{2} ($1 \mathrm{~atm}, 3$
times). The reaction mixture was dissolved in anhydrous THF (2.0 mL) under protection of N_{2} atmosphere and subsequently cooled the reaction mixture to 0 or $20{ }^{\circ} \mathrm{C}$ with stirring. At this moment, aryne precursor $2(0.3 \mathrm{mmol}, 1.5$ equiv) and oxazole $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv) was successively added in the stirring solution under protection of N_{2} atmosphere. The mixture was reacted at 0 or $-20^{\circ} \mathrm{C}$ until completion of the reaction which was detected by TLC. The reaction mixture was then diluted with 40 mL dichloromethane and washed with saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$ aqueous solution $(3 \times 10 \mathrm{~mL})$. The residue was successively dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated of solvent to give the crude product. The crude product was purified by column chromatography on silica gel (200-300 mesh, PE/EA $\mathrm{v} / \mathrm{v}=5: 1-2: 1$) to afford the corresponding isoquinolin- $1(2 H)$-one.

2.5 Procedure for derivatization reaction:

2.5.1 Procedure for synthesis of 4-6: ${ }^{[7]}$

To an oven-dried 50 mL Schlenk sealed tube equipped with a magnetic stir bar was added 3aa ($58.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv). Then the tube was evacuated under vacuum and charged with N_{2} ($1 \mathrm{~atm}, 3$ times). Cooled the reaction mixture to $0^{\circ} \mathrm{C}$, at this moment, DMF (2.0 mL) and $\mathrm{NaH}(16.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) was added under N_{2} atmosphere. After stirring for 30 min at $0{ }^{\circ} \mathrm{C}$, the halide $(0.4 \mathrm{mmol}, 2.0$ equiv) was added to the stirring solution, and then the reaction mixture was further reacted at room temperature. When complete consumption of 3aa which was monitored by TLC, the reaction mixture was quenched with brine (10 mL) and extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic phase was washed with brine (20 mL) and water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to give the crude product. The crude product was purified by column chromatography on silica gel (200-300 mesh, PE/EA v/v=15:1) to afford the corresponding derivative product.

2.5.2 Procedure for synthesis of 7-9: ${ }^{[8]}$

To a 50 mL Schlenk sealed tube was added 3aa ($58.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), bromide ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and DMF (1 mL). The reaction was heated to $50{ }^{\circ} \mathrm{C}$ in an oil bath for 3 h . Then, the reaction mixture was allowed to cool to ambient temperature, and diluted with EtOAc (20 mL). After the reaction mixture was washed with water ($2 \times 10 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporation of solvent giving the crude product which was further purified by flash column chromatography on silica gel (200-300 mesh, PE/EA=5:1) to give the desired N-substituted products.

2.5.3 Procedure for synthesis of 10 and $11^{[9,10]}$:

To an oven-dried 50 mL Schlenk sealed tube equipped with a magnetic stir bar was added 3aa ($58.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), anhydrous acetonitrile (2.0 mL), and $\mathrm{POCl}_{3}(65 \mu \mathrm{~L}, 0.7 \mathrm{mmol})$. The reaction mixture was reflux for 2 h , then cooled to $0{ }^{\circ} \mathrm{C}$, diluted with dichloromethane (5 mL), and quenched with a dropwise addition of sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The biphasic mixture was stirred vigorously and allowed to warm to room temperature. After 1 h , the layers were separated and the aqueous fraction was extracted with DCM $(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to yield crude product. The crude product was purified by column chromatography on silica gel (200-300 mesh, PE/EA $\mathrm{v} / \mathrm{v}=15: 1$) to afford the pure product 10.

To an oven-dried 50 mL Schlenk sealed tube equipped with a magnetic stir bar was added the $\mathbf{1 0}$ ($62.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv). Then the tube was evacuated under vacuum and charged with $\mathrm{N}_{2}(1 \mathrm{~atm}, 3$ times $)$. $\mathrm{Then}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(7.4 \mathrm{mg}, 0.01 \mathrm{mmol}$, $5.0 \mathrm{~mol} \%$), TMEDA ($0.051 \mathrm{~mL}, 0.34 \mathrm{mmol}, 1.7$ equiv) and $\mathrm{NaBH}_{4}(12.9 \mathrm{mg}, 0.34$ $\mathrm{mmol}, 1.7$ equiv) were introduced in sequence. The mixture was stirred at room temperature under N_{2} atmosphere until the full consumption of $\mathbf{1 0}$. The residue was quenched with brine and extracted with ethyl acetate. The organic phase was separated, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to give the crude product which was purified by flash column chromatography on silica gel (200-300 mesh, $\mathrm{PE} / \mathrm{EA} \mathrm{v} / \mathrm{v}=20: 1$) to afford the corresponding product in excellent yields.

2.5.4 Procedure for synthesis of 12-14: ${ }^{[11]}$

To a solution of 3aa ($87.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (1 mL) was added pyridine ($0.036 \mathrm{~mL}, 0.45 \mathrm{mmol}, 1.5$ equiv) and cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{Tf}_{2} \mathrm{O}$ ($0.056 \mathrm{~mL}, 0.33 \mathrm{mmol}, 1.1$ equiv) was added dropwise. After 30 min , the reaction mixture was warmed to room temperature and continued for stirring until the reaction was completed (detected by TLC). The reaction mixture was diluted with water (10 $\mathrm{mL})$ and extracted with DCM $(2 \times 10 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to obtain crude product, which was further purified by silica gel flash chromatography on silica gel (200-300 mesh, PE/EA $\mathrm{v} / \mathrm{v}=50: 1$) to give product 12 .

Under N_{2} atmosphere, to a 25 mL Schlenk sealed tube was charged with 12 (84.9 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), $\mathrm{PhB}(\mathrm{OH})_{2}\left(26.8 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.2$ $\mathrm{mg}, 4 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($91.2 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.4$ equiv) and dry 1, 4-dioxane (2.0 mL). The mixture was reacted at $85^{\circ} \mathrm{C}$ in oil bath overnight under nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature. The reaction mixture was then diluted with water $(10 \mathrm{~mL})$ and extracted with DCM $(2 \times 10 \mathrm{~mL})$, and the combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to obtain crude product, which was further purified by silica gel flash chromatography on silica gel (200-300 mesh, $\mathrm{PE} / \mathrm{EA} \mathrm{v} / \mathrm{v}=40: 1$) to give product 13.

To a 25 mL Schlenk sealed tube was charged with $\mathbf{3 f a}(74.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), trimethylsilylacetylene ($0.059 \mathrm{~mL}, 0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28.1$ $\mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), CuI ($7.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), DIPEA (0.070 mL , $0.4 \mathrm{mmol}, 2.0$ equiv) and dry DMF (2 mL). The mixture was reacted at $80^{\circ} \mathrm{C}$ in oil bath overnight under nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature. The reaction mixture was dilution with water $(10 \mathrm{~mL})$ and extracted with DCM $(2 \times 10 \mathrm{~mL})$. The organic layer was then dried and concentrated under vacuum to obtain crude product, which was further purified by silica gel flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA} \mathrm{v} / \mathrm{v}=5: 1$) to give product 14.

2.5.5 Procedure for one-pot synthesis of 4:

To an oven-dried 50 mL Schlenk sealed tube equipped with a magnetic stir bar was added KF ($58.1 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv) and 18-Crown-6 ($158.6 \mathrm{mg}, 0.6 \mathrm{mmol}$, 3.0 equiv). Then the tube was evacuated under vacuum and charged with nitrogen (1 atm, 3 times). The reaction mixture was dissolved in anhydrous THF (2.0 mL) under protection of N_{2} atmosphere and subsequently cooled the reaction mixture to $-20^{\circ} \mathrm{C}$ with stirring. At this moment, aryne precursor $\mathbf{2 a}(89.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and
oxazole 1 a ($43.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was added in the stirring solution under protection of N_{2} atmosphere. The mixture was reacted at $-20^{\circ} \mathrm{C}$ until completion of the reaction which was detected by TLC, then warming the reaction to $0^{\circ} \mathrm{C}$ and NaH $(16.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) was added. After further stirring for 30 min , methyl iodide ($25 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0$ equiv) was added, and the solution was stirred at room temperature. When complete consumption of intermediate 3aa which was monitored by TLC, the reaction mixture was quenched with brine (10 mL) and then extracted with EA $(2 \times 20 \mathrm{~mL})$. The combined organic phase was washed with brine (20 mL) and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ respectively, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of solvent, the crude product was obtained which was subsequently purified by column chromatography on silica gel (200-300 mesh, PE/EA $\mathrm{v} / \mathrm{v}=15: 1$) to afford the product 4 in 80% isolated yield.

2.5.6 Gram-scale preparation of 3aa:

To an oven-dried 250 mL three-necked flask with a magnetic stir bar was added KF ($1.046 \mathrm{~g}, 18 \mathrm{mmol}, 3.0$ equiv) and 18 -Crown-6 ($4.758 \mathrm{~g}, 18 \mathrm{mmol}, 3.0$ equiv). Then the tube was evacuated under vacuum and charged with N_{2} ($1 \mathrm{~atm}, 3$ times). The reaction mixture was dissolved in anhydrous THF (60.0 mL) under protection of N_{2} atmosphere and subsequently cooled the reaction mixture to $-20^{\circ} \mathrm{C}$ with stirring. At this moment, aryne precursor $\mathbf{2 a}(2.682 \mathrm{~g}, 9.0 \mathrm{mmol}, 1.5$ equiv) and oxazole $\mathbf{1 a}(1.296$ $\mathrm{g}, 6.0 \mathrm{mmol}, 1.0$ equiv) was successively added to the stirring solution under protection of N_{2} atmosphere. The mixture was reacted at $-20^{\circ} \mathrm{C}$ until completion of the reaction which was detected by TLC. The reaction mixture was then diluted with 100 mL dichloromethane and washed with saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$ aqueous solution (3×40 mL). The residue was successively dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated of solvent to give the crude product. The crude product was purified by column chromatography on silica gel (200-300 mesh, PE/EA $v / v=5: 1-2: 1)$ to afford the $\mathbf{3 a} \mathbf{a}$ in 1.49 g and 85% isolated yields.

2.6 Preparing single-crystal of 3ah and 3ai' and relating crystal data:

Suitable single crystal for product 3ah and 3ai' were obtained by slow volatilization of the mixed solution (THF: n-hexane ($\mathrm{v} / \mathrm{v}=1: 3$) as solvent) in a test tube for 5 days.

Figure S1 Crystal structure of 3ah at 30\% probability level.
Table S1 Crystal data and structure refinement for 3ah.

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$	
Formula weight	342.42	
Temperature	173.0 K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$\mathrm{a}=9.8383(3) \AA$	$\alpha=96.2480(10)^{\circ}$.
	$\mathrm{b}=9.8397(3) \AA$	$\beta=115.9080(10)^{\circ}$.
	$\mathrm{c}=10.3983(3) \AA$	$\gamma=94.5980(10)^{\circ}$.
Volume	890.84(5) \AA^{3}	
Z	2	
Density (calculated)	$1.277 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.613 \mathrm{~mm}^{-1}$	
F(000)	364	
Crystal size	$0.25 \times 0.23 \times 0.22 \mathrm{~mm}^{3}$	
Theta range for data collection	4.790 to 77.508°.	
Index ranges	$-12<=\mathrm{h}<=12,-11<=\mathrm{k}<=10,-13<=\mathrm{l}<=13$	
Reflections collected	13254	
Independent reflections	3684 [R(int) $=0.0517]$	
Completeness to theta $=67.679^{\circ}$	99.1 \%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7541 and 0.5836	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	3684/0/237	
Goodness-of-fit on F^{2}	1.080	
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R}_{1}=0.0540, \mathrm{wR}_{2}=0.1547$	
R indices (all data)	$\mathrm{R}_{1}=0.0642, \mathrm{wR}_{2}=0.1663$	
Extinction coefficient	n / a	
Largest diff. peak and hole	0.295 and -0.216 e. \AA^{-3}	

The CCDC number of product 3ah is 2098712.

Figure S2 Crystal structure of 3ai' at 30\% probability level.
Table S2 Crystal data and structure refinement for 3ai'.
Empirical formula

$$
\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}
$$

Formula weight	342.42	
Temperature	173.0 K	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$\mathrm{a}=9.4001(5) \AA$	$\alpha=94.508(2)^{\circ}$.
	$\mathrm{b}=9.5785(5) \AA$	$\beta=94.426(2)^{\circ}$.
	$\mathrm{c}=10.6816(5) \AA$	$\gamma=110.611(2)^{\circ}$.
Volume	891.73(8) \AA^{3}	
Z	2	
Density (calculated)	$1.275 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.078 \mathrm{~mm}^{-1}$	
F(000)	364	
Crystal size	$0.19 \times 0.17 \times 0.16 \mathrm{~mm}^{3}$	
Theta range for data collection	2.286 to 26.741°.	
Index ranges	$-11<=\mathrm{h}<=11,-12<=\mathrm{k}<=12,-13<=\mathrm{l}<=13$	
Reflections collected	11292	
Independent reflections	$3783[\mathrm{R}(\mathrm{int})=0.0294]$	
Completeness to theta $=25.242^{\circ}$	99.8 \%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7454 and 0.6706	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	3783 / 0 / 237	
Goodness-of-fit on F2	1.032	
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R}_{1}=0.0456, \mathrm{wR}_{2}=0.1213$	
R indices (all data)	$\mathrm{R}_{1}=0.0573, \mathrm{wR}_{2}=0.1324$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.275 and -0.189 e. \AA^{-3}	

The CCDC number of product 3ai' is 2132074.

2.7 Characterization of substrates and products:

2.7.1 Characterization of substrates:

N, N-diethyl-4-phenyl-4, 5-dihydrooxazol-5-amine (1a): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.10$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5$, $146.8,132.0,128.3,126.9,126.5,125.9,47.4,13.0$.

$7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,146.8$, 136.6, 129.1, 129.0, 126.8, 125.8, 47.5, 21.2, 13.0.

N, N-diethyl-4-(4-methoxyphenyl)-4, 5-dihydrooxazol-5-amine (1c): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.7,149.3,146.9,127.2,126.9,124.7,113.7,55.2,47.6,13.0$.

1d

$1 \mathbf{1}$
N, N-diethyl-4-(4-fluorophenyl)-4, 5-dihydrooxazol-5-amin (1d): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9(\mathrm{~d}$, $J=244.4 \mathrm{~Hz}), 150.1(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 147.0,128.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=7.8$ $\mathrm{Hz}), 126.2,155.2(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 47.6,12.9$.

4-(4-bromophenyl)- N , \boldsymbol{N}-diethyl-4, 5-dihydrooxazol-5-amine (1f): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6$, 146.9, 131.4, 130.9, 127.5, 125.8, 120.8, 47.5, 12.9.

$\boldsymbol{N}, \boldsymbol{N}$-diethyl-4-(2-fluorophenyl)-4, 5-dihydrooxazol-5-amine (1g): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.05$ $(\mathrm{m}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 159.9(\mathrm{~d}, J=247.9 \mathrm{~Hz}), 152.1,144.9,130.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 120.8(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 115.8(\mathrm{~d}$, $J=21.9 \mathrm{~Hz}), 45.8,13.2 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.9$.

O ${ }^{\mathrm{NEt}_{2}} \mathrm{~N}, \mathrm{~N}$-diethyl-4-(2-nitrophenyl) oxazol-5-amine (1h): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

1h

$1 i$
\mathbf{N}, \mathbf{N}-diethyl-4-(4-methoxy-2-nitrophenyl)oxazol-5-amine (1i): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

N, N-diethyl-4-(naphthalen-1-yl)-4, 5-dihydrooxazol-5-amine (1j): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,144.1,133.8$, $132.2,130.2,128.2,128.1,127.8,126.2,125.9,125.7,125.1,119.5,45.7,13.2$.

1j

$\boldsymbol{N}, \boldsymbol{N}$-diethyl-4-(thiophen-3-yl)-4, 5-dihydrooxazol-5-amine (1k): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, J=2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=5.2$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

4-benzyl- $\mathrm{N}, ~ \mathrm{~N}$-diethyl-4, 5-dihydrooxazol-5-amine (11): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.6,147.2$, 139.5, 128.7, 128.3, 128.3, 126.1, 48.1, 31.6, 13.3.

1m

1n
N, N-diethyl-4-isobutyl-4, 5-dihydrooxazol-5-amine (1 m): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.5,146.9,129.0,48.1,34.1,27.6,22.4,13.1$.
N-isopropyl- N-methyl-4-phenyl-4, 5-dihydrooxazol-5-amine (1n): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.7,146.4,132.1,128.3,126.9,125.9,124.9,54.0,35.6$, 20.1.

\boldsymbol{N}-butyl- N -methyl-4-phenyl-4, 5-dihydrooxazol-5-amine (10) : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, $1 \mathrm{H}), 3.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 2 \mathrm{H})$, $0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,145.8,132.0$, 128.3, 126.8, 126.0, 123.3, 54.5, 40.4, 29.7, 20.2, 13.9.

$\boldsymbol{N}, \boldsymbol{N}$-diallyl-4-phenyl-4, 5-dihydrooxazol-5-amine (1p) : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}$, $1 \mathrm{H}), 5.91-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.08(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.0,146.4,133.9,131.8,128.4,127.0,126.0,125.1,118.4$, 55.2.
 $4.18(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,146.0,136.9,131.7,128.8$, 128.4, 128.3, 127.6, 127.0, 126.1, 124.5, 56.0.
$1 q$

4-phenyl-5-(pyrrolidin-1-yl)-4, 5-dihydrooxazole (1r): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 1 \mathrm{H})$, 3.30-3.20 (m, 4H), 1.98-1.87 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7$, 143.4, 132.7, 128.1, 126.6, 126.1, 118.3, 50.2, 25.4.

4-phenyl-5-(piperidin-1-yl)-4, 5-dihydrooxazole (1s): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.7,145.5,132.1,128.4,126.6,125.7,122.0,51.3,25.9,23.9$.

4-(4-phenyl-4, 5-dihydrooxazol-5-yl)morpholine (1t): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H})$,
$3.85(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.11(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.2, 146.0, 131.6, 128.5, 127.1, 125.9, 123.3, 66.9, 50.3.

4-phenyl-5-(4-phenylpiperazin-1-yl)-4, 5-dihydrooxazole (1u): ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}$, $3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.32-3.25$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.4,151.3,146.0,131.7,129.2,128.5$, 127.0, 125.9, 123.1, 120.3, 116.6, 50.2, 49.6.

2.7.2 Characterization of products:

4-(diethylamino)-3-phenylisoquinolin- $\mathbf{1 (2 H}$)-one (3aa): white solid (54.3 mg , 93% yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.23$) $\mathrm{mp} 160-161{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.74-7.68 (m, 1H), 7.52-7.48 (m, 1H), 7.48-7.43 (m, 5H), 3.00-2.80 (m, 4H), 0.94 $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.1,140.5,138.1,135.3$, 132.3, 129.1, 129.0, 128.3, 127.8, 126.4, 125.8, 125.0, 124.4, 48.4, 14.3. HRMS (ESI) m/z: (M-H) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ 291.1503; Found 291.1499. IR (KBr, thin film): 2970, $2844,1657,1607,1545,1490,1459,1376,1245,1117,858,781,700,577 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-(p-tolyl)isoquinolin-1(2H)-one (3ba): white solid ($51.0 \mathrm{mg}, 84 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.14$). mp $164-165{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41$ (dd, $\left.J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.00(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27(\mathrm{~s}, 2 \mathrm{H}), 3.00-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,140.6,138.8,138.2,132.3,132.2,128.9$, 127.7, 126.2, 125.7, 124.8, 124.3, 48.3, 21.4, 14.3. HRMS (ESI) m/z: (MH) ${ }^{-}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} 305.1659$; Found 305.1655. IR (KBr, thin film): 3154, 2970, 1642, 1508, $1470,1348,1218,1113,1025,895,785,529 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-(4-methoxyphenyl)isoquinolin-1(2H)-one (3ca): white solid (56.4 mg , 88% yield, TLC (PE/EA, $3: 1$): $\mathrm{R}_{\mathrm{f}}=0.20$). mp 159$160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.44-7.37 (m, 2H), 7.02-6.96 (m, 2H), 3.88 (s, 3H), 3.00-2.82 (m, 4H), $0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,159.0$, 139.6, 137.0 131.1, 129.4, $126.7126 .5,125.1,124.6,123.8,123.3,112.6$,
54.3, 47.3, 13.3. HRMS (ESI) m/z: (M-H) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ 321.1608; Found 321.1603. IR (KBr, thin film): 2970, 2850, 1641, 1512, 1465, 1346, 1247, 1176, 1035, 833, 777, $626 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-(4-fluorophenyl)isoquinolin-1(2H)-one (3da): white solid ($49.7 \mathrm{mg}, 80 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.16$). mp 182-183 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.12(\mathrm{~m}$, 2 H), 3.04-2.82 (m, 4H), 0.93 (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.0(\mathrm{~d}, J=247.1 \mathrm{~Hz}), 162.6,140.3,132.2,131.3(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, $131.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 127.8,126.4,125.8,125.2,124.3,115.1(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 48.4,14.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.2$. HRMS (ESI) m/z: (M-H) ${ }^{-}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}$ 309.1409; Found 309.1403. IR (KBr, thin film): 2971, 1651, 1610, 1508, 1383, 1317, 1219, 1157, 841, 771, $628,527 \mathrm{~cm}^{-1}$.

3-(4-chlorophenyl)-4-(diethylamino)isoquinolin-1(2H)-one (3ea): white solid ($52.7 \mathrm{mg}, 81 \%$ yield, TLC (PE/EA, $5: 1$): $\mathrm{R}_{\mathrm{f}}=0.15$). mp $164-165{ }^{\circ} \mathrm{C}$. ${ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 4 \mathrm{H})$, 3.03-2.88 (m, 4H), $0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.6,140.1,137.5,134.8,133.5,132.3,130.8,128.3,127.9,126.5,125.9$, 125.2, 124.3, 48.4, 14.3. HRMS (ESI) m/z: (M-H) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}$
325.1113; Found 325.1108. IR (KBr, thin film): 2967, 1643, 1604, 1549, 1489, 1469, 1346, 1093, 1016, 894, 777, $593 \mathrm{~cm}^{-1}$.

3fa

3-(4-bromophenyl)-4-(diethylamino)isoquinolin-1(2H)-one (3fa): white solid ($57.5 \mathrm{mg}, 78 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.15$). mp 175-176 ${ }^{\circ} \mathrm{C}$. $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.41-8.35(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34$ $(\mathrm{m}, 2 \mathrm{H}), 3.04-2.86(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.6,140.1,137.5,133.9,132.3,131.3,131.1,127.9,126.5$, $125.9,125.2,124.3,123.1,48.4,14.3$. HRMS (ESI) m/z: (M-H)- calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O} 369.0608$; Found 369.0600. IR (KBr, thin film): 3161, 1974, 1645, 1485, 1463, 1348, 1309, 1159, 1068, 864, $773,586 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-(2-fluorophenyl)isoquinolin-1(2H)-one (3ga): white solid ($57.5 \mathrm{mg}, 93 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.25$). mp 190-191 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{td}, J=7.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.83(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0,160.1(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 140.0,132.7,132.2$, $131.8(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 127.9,126.8,126.7,126.2,124.5,123.8(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 122.9(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 48.3,14.4 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 112.4. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O} 311.1554$; Found 311.1551. IR (KBr, thin film): $3307,2949,1945,1654,1450,1345,1320,1221,1108,1070,779,587 \mathrm{~cm}^{-1}$.

3ha

4-(diethylamino)-3-(2-nitrophenyl)isoquinolin-1(2H)-one (3ha): yellow solid ($32.1 \mathrm{mg}, 95 \%$ yield, TLC (PE/EA, $1: 1$): $\mathrm{R}_{\mathrm{f}}=0.11$). mp 256-257 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 11.43(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.91-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.57(\mathrm{~m}, 1 \mathrm{H})$, $0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d_{6}-\right.$ DMSO) $\delta 161.4,148.0,139.5,137.4,134.3,134.0,132.7,130.9,130.4,128.0,126.9,126.7$, 125.0, 124.5, 124.2, 49.1, 48.0, 15.2, 15.1. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$ 338.1499; Found 338.1503. IR (KBr, thin film): 3438, 3158, 2977, 2923, 2855, 1647, 1605, 1525, $1468,1352,781,703 \mathrm{~cm}^{-1}$.

3ia

4-(diethylamino)-3-(4-methoxy-2-nitrophenyl)isoquinolin-1(2H)one (3ia): yellow solid ($86.1 \mathrm{mg}, 84 \%$ yield, TLC (PE/EA, 1:1): $\mathrm{R}_{\mathrm{f}}=$ 0.12). mp 245-246 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 8.33$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.64(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4,160.4,148.9,139.8,135.2,133.9,132.1,127.9,126.4$, $126.1,124.3,122.1,119.3,109.6,56.0,48.4,14.7$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} 368.1605$; Found 368.1609. IR (KBr, thin film): 3441, $3155,2968,2831,1650,1525$, $1346,1304,1233,1031,778,718 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-(naphthalen-1-yl)isoquinolin-1(2H)-one (3ja): white solid ($57.9 \mathrm{mg}, 85 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.33$). mp 196-197 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H})$, $8.13(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6$, $140.6,136.2,133.6,132.4,132.0,131.7,129.8,128.5,128.2,127.7,127.3$, 126.8, 126.4, 125.9, 125.3, 124.8, 124.6, 49.6, 47.1, 14.8, 14.6. HRMS (ESI) m/z: (M+H) ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O} 343.1805$; Found 343.1800. IR (KBr, thin film): 2974, 1643, 1557, 1466, 1348, 1224, 1187, 1089, 1019, 916, 776, $575 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-(thiophen-3-yl)isoquinolin-1(2H)-one (3ka): white solid ($21.8 \mathrm{mg}, 46 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.32$). mp $126-127{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H})$, 3.17-2.95 (m, 4H), $0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.3,140.3,135.0,134.0,132.2,128.1,127.9,126.2,125.6,125.4,125.3$, 124.3, 124.2, 48.3, 14.1. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSNa} 321.1032$; Found 321.1032. IR (KBr, thin film): 3302, 2969, 2919, 1742, 1472, 1386, 1304, 1140, 1082, 1054, 717, $652,549 \mathrm{~cm}^{-1}$.

3-benzyl-4-(diethylamino)isoquinolin-1(2H)-one (3la): white solid (27.0 mg , 46% yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.39$). mp 114-115 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}$, $2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,139.2,138.7,137.0,132.1,129.1,129.0,128.2$, 127.1, 126.0, 125.7, 124.6, 123.8, 49.2, 35.5, 15.2. HRMS (ESI) $\mathrm{m} / \mathrm{z}:(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O} 307.1805$; Found 307.1805. IR (KBr, thin film): 2970, 2925, 1651, 1553, 1467, 1344, $1238,1135,1028,774,713,520 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-isobutylisoquinolin-1(2H)-one (3ma): white solid (30.1 $\mathrm{mg}, 56 \%$ yield, TLC (PE/EA, 2:1): $\left.\mathrm{R}_{\mathrm{f}}=0.45\right) . \mathrm{mp} 91-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.98(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.9,140.5,139.9,131.9,127.9,125.5,125.3,125.0,123.9,49.0$, 38.2, 29.7, 27.7, 22.5, 15.1. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O} 273.1961$; Found 273.1962. IR (KBr, thin film): 3202, 2969, 2919, 1742, 1472, 1386, 1304, 1140, 1082, 1054, 717, 652, $549 \mathrm{~cm}^{-1}$.

4-(isopropyl(methyl)amino)-3-phenylisoquinolin-1(2H)-one (3na): white solid ($56.9 \mathrm{mg}, 92 \%$ yield, TLC (PE/EA, 3:1): $\mathrm{R}_{\mathrm{f}}=0.22$). mp 142-143 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 6 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H})$, $0.93-0.76(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,140.3,138.7,135.4$, $132.3,129.0,128.8,128.3,128.0,126.3,126.2,125.8,124.3,53.3,40.5,22.0$, 21.6; HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O} 293.1648$, found 293.1650; IR (KBr, thin film): 2972, 1651, 1607, 1469, 1377, 1272, 1195, 1078, 1029, 924, 771, $565 \mathrm{~cm}^{-1}$.

4-(butyl(methyl)amino)-3-phenylisoquinolin-1(2H)-one (30a): white solid ($58.4 \mathrm{mg}, 95 \%$ yield, TLC (PE/EA, 3:1): $\mathrm{R}_{\mathrm{f}}=0.22$). mp 152-153 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 6 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.03$ (m, 2H), 0.74 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0,139.2,136.8,135.3,132.4,129.0,128.9$, $128.5,127.9,127.2,126.4,125.9,124.0,55.8,42.9,30.9,20.2,13.9$. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ 307.1805; Found 307.1802. IR (KBr, thin film): 3163, 2948, 1641, 1467, $1348,1272,1186,1033,912,786,759,568 \mathrm{~cm}^{-1}$.

4-(diallylamino)-3-phenylisoquinolin- $\mathbf{1 (2 H)}$-one (3pa): white solid (51.2 mg , 81% yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.37$). mp 97-98 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.70 (m, 1H), 7.55-7.43 (m, 6H), 5.76-5.62 (m, 2H), 5.02-4.98 (m, 1H), 4.98-4.92 (m, 3H), 3.58-3.39 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2$, 140.7, 139.3, 137.2, 136.1, 133.4, 130.3, 130.1, 129.3, 128.9, 127.4, 126.7, 126.1, 124.9, 117.6, 58.1. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O} 317.1648$; Found 317.1649. IR (KBr, thin film): $3007,2845,1645,1466,1412,1341,1208,1171,1025,917,775,567 \mathrm{~cm}^{-1}$.

4-(dibenzylamino)-3-phenylisoquinolin-1(2H)-one (3qa): white solid (67.8 mg , 82% yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.12$). mp 226-227 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.83-7.75 (m, 1H), 7.58-7.51 (m, 1H), 7.48-7.37 (m, 1H), 7.36-7.28 (m, 2H), 7.26-7.15 (m, 6H), 7.10-6.96 (m, 4H), 6.95-6.84 (m, 2H), $4.1(\mathrm{dd}, \mathrm{J}=30.8,14.0$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.7,138.5,138.5,137.8,135.0,132.6$, 129.2, 129.1, 128.8, 128.4, 128.3, 128.2, 127.1, 126.6, 125.9, 124.5, 124.2, 57.6; HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O} 417.1961$; Found 417.1962. IR (KBr, thin film): 3030, 2843, 1656, 1608, 1494, 1447, 1349, 1264, 1192, 1081, 762, $698 \mathrm{~cm}^{-1}$.

3-phenyl-4-(pyrrolidin-1-yl)isoquinolin-1(2H)-one (3ra): white solid (51.9 mg , 90% yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.31$). mp 183-184 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.42(\mathrm{~m}$, $6 \mathrm{H}), 3.07(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.4,138.6,138.4,134.8,132.2,128.8,128.6,128.3,128.2,126.2,126.0,123.3$, 122.9, 51.5, 26.1. HRMS (ESI) m/z: (M-H) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}^{-}$289.1346; Found 289.1342. IR (KBr, thin film): 2963, 1648, 1611, 1471, 1348, 1265, 1148, 1032, $942,781,694,558 \mathrm{~cm}^{-1}$.

3-phenyl-4-(piperidin-1-yl)isoquinolin-1(2H)-one (3sa): white solid (55.9 mg, 92% yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.29$). mp 251-252 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-$ $7.68(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.35(\mathrm{~m}, 6 \mathrm{H})$, 3.13-2.87 (m, 2H), 2.58-2.34 (m, 2H), 1.74-1.56 $(\mathrm{m}, 3 \mathrm{H}), 1.54-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.9, 138.9, 135.4, 135.3, 132.4, 129.3, 129.1, 128.4, 128.1, 127.8, 126.5, 125.7, 123.7, 53.2, 27.0, 24.2; HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O} 305.1648$; Found 305.1646. IR (KBr, thin film): 2937, 1654, 1553, 1469, 1346, 1270, 1211, 1118, 911, 777, $756,599 \mathrm{~cm}^{-1}$.

4-morpholino-3-phenylisoquinolin-1(2H)-one (3ta): white solid ($57.0 \mathrm{mg}, 90 \%$ yield, TLC (PE/EA, 1:1): $\mathrm{R}_{\mathrm{f}}=0.20$). mp 248-249 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.61(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.77-2.65 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,136.2,134.8,132.7,129.5,129.2,128.7$, 128.0, 126.8, 126.4, 123.3, 67.8, 52.1. HRMS (ESI) m/z: (M+H) ${ }^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ 307.1441; Found 307.1443. IR (KBr, thin film): 3440, 3154, 2950, 2851, 1647, 1557, 1449, 1269, 1200, $1105,778,564 \mathrm{~cm}^{-1}$.

3-phenyl-4-(4-phenylpiperazin-1-yl)isoquinolin-1(2H)-one (3ua): white solid $(17.8 \mathrm{mg}, 20 \%$ yield, TLC (PE/EA, $1: 1): \mathrm{R}_{\mathrm{f}}=0.24$). mp 245-246 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}$, $1 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta$ 161.6, 151.6, 138.4, 135.7, 134.9, 132.8, 129.5, 129.1, 128.8, 128.0, 126.9, 126.6, 125.6, 125.7, 123.5, 120.0, 116.3, 51.9, 50.4. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}$ 382.1914; Found 382.1913. IR (KBr, thin film): 3058, 2920, 1730, $1648,1606,1497,1449,1371,124,952,757,528 \mathrm{~cm}^{-1}$.

4-(diethylamino)-6, 7-dimethyl-3-phenylisoquinolin-1(2H)-one (3ab): white solid ($52.7 \mathrm{mg}, 83 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.21$). mp 244-245 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42$ $(\mathrm{m}, 5 \mathrm{H}), 3.01-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,142.2,138.5,137.1,135.9,135.6,129.0$, $128.8,128.3,128.0,124.8,124.7,123.9,48.4,20.8,19.7,14.3$. HRMS (ESI) m / z : $(\mathrm{M}-\mathrm{H})^{-}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}^{-} 319.18159$; Found 319.18094. IR $(\mathrm{KBr}$, thin film): 2970, 2914, 2859, 1651, 1616, 1494, 1470, 1379, 1232, 1191, 1130, 1021, 773, $553 \mathrm{~cm}^{-1}$.

4-(diethylamino)-6, 7-dimethoxy-3-phenylisoquinolin-1(2H)-one (3ac): white solid ($49.3 \mathrm{mg}, 70 \%$ yield, TLC (PE/EA, 1:1): $\mathrm{R}_{\mathrm{f}}=0.25$). mp 130$131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.39$ (m, 6H), $4.03(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.99-2.72(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.9,153.0,148.5,136.1,135.8,134.8$, 128.7, 128.4, 127.8, 124.3, 118.9, 107.1, 104.5, 55.7, 55.0, 47.9, 14.1; HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} 353.1860$; Found 353.1859. IR (KBr , thin film): $2926,2848,1650,1509,1491,1434,1381,1271,1147,1032,878,849,765,523 \mathrm{~cm}^{-1}$.

3ad

4-(diethylamino)-6, 7-difluoro-3-phenylisoquinolin-1(2H)-one (3ad): white solid ($39.4 \mathrm{mg}, 60 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.40$). mp 221-222 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=10.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (dd, $J=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 5 \mathrm{H}), 2.95-2.64(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.5(\mathrm{~d}, J=53.5 \mathrm{~Hz}), 134.3$, $132.1,129.2,128.7$, 128.6, 128.3, 128.1, 126.2, 123.9, 115.3 (d, $J=20.4 \mathrm{~Hz}$), $112.1\left(\mathrm{~d}, J=19.4 \mathrm{~Hz}\right.$), 48.0, 14.0. HRMS (ESI) m/z: (M-H) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$ 327.1314; Found 327.1309. IR (KBr, thin film): 2964, 2851, 1654, 1616, 1492, 1463, 1361, 1227, 1179, 883, $772,542 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-phenyl-2, 6, 7, 8-tetrahydro-1Hcyclopenta[g]isoquinoli n-1-one (3ae): white solid ($49.8 \mathrm{mg}, 76 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.21$). mp 228-229 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.36(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 5 \mathrm{H}), 3.06(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 3.01-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,150.1,143.7,139.3,136.9,135.6,129.1,128.8$, $128.3,125.2,124.5,122.9,119.5,48.4,33.4,32.5,25.7,14.3$. HRMS (ESI) m/z: (M-H) ${ }^{-}$calcd for

8-(diethylamino)-7-phenyl-[1, 3]dioxolo[4, 5-g]isoquinolin-5(6H)-one (3af): white solid ($51 \mathrm{mg}, 76 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.24$). $\mathrm{mp} 265-$ $266{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.38$ $(\mathrm{m}, 6 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.69(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3,152.5,147.7,138.8,137.1,135.4,129.3,129.3$, 128.2, 125.2, 121.4, 105.8, 103.1, 101.7, 48.3, 14.3. HRMS (ESI) m/z: (M-$\mathrm{H})^{-}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} 335.1401$; Found 335.1396. IR (KBr, thin film): 2970, 2835, 1641, 1463, $1379,1257,1120,1029,935,877,744,507 \mathrm{~cm}^{-1}$.

4-(diethylamino)-5, 8-dimethyl-3-phenylisoquinolin-1(2H)-one (3ag): white solid ($41.01 \mathrm{mg}, 64 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.36$). mp $159-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.68(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.57(\mathrm{~m}, 8 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,142.8,140.6,140.1,137.0,136.8,136.0$, $133.2,130.0,129.4,129.3,128.7,125.4,123.3,48.8,24.4,24.8,24.7,13.1$; HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 321.1961; Found 321.1963. IR $\left(\mathrm{KBr}\right.$, thin film): $2969,2927,1695,1573,1493,1442,1375,1287,1187,843,783,512 \mathrm{~cm}^{-1}$.

3ah

4-(diethylamino)-3-phenylbenzo[g]isoquinolin- $\mathbf{1 (2 H)}$-one (3ah): white solid ($57.53 \mathrm{mg}, 84 \%$ yield, TLC (PE/EA, $5: 1$): $\mathrm{R}_{\mathrm{f}}=0.25$). mp 252-253 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.04(\mathrm{~m}, 2 \mathrm{H})$, $8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 6 \mathrm{H}), 3.10-2.88(\mathrm{~m}$, $4 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,136.4$, 135.9, 135.6, 135.4, 131.5, 129.3, 129.2, 129.0, 128.9, 128.5, 128.3, 128.1, 126.0, 124.8, 124.3, 123.3, 48.4, 14.4. HRMS (ESI) m/z: (M-H) ${ }^{-}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} 341.1659$; Found 341.1653. IR (KBr, thin film): 2968, 1655, 1624, 1486, 1446, 1361, $1200,1123,959,892,776,537 \mathrm{~cm}^{-1}$.

3ai

1-(diethylamino)-2-phenylbenzo[flisoquinolin-4(3H)-one (3ai): fluorescent green solid ($31.7 \mathrm{mg}, 46 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.11$). mp 245-246 ${ }^{\circ} \mathrm{C}$. ${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.18(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.54(\mathrm{~m}$, 7 H), 3.05-2.83 (m, 4H), 0.97 (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.7, 143.7, 141.2, 135.6, 134.1, 132.8, 132.8, 130.0, 129.6, 129.0, 128.6, 128.5, 128.2, 126.9, 125.9, 123.1, 119.5, 49.4, 14.9. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O} 343.1805$; Found 343.1800 . IR (KBr , thin film): 2968, 2926, 1633, 1548, 1446, 1246, 1191, 1097, 918, 833, 761, $510 \mathrm{~cm}^{-1}$.

3ai'

4-(diethylamino)-3-phenylbenzo[h]isoquinolin-1(2H)-one (3ai'): fluores cent green solid ($13.5 \mathrm{mg}, 20 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.28$). mp 222$223{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H})$, 8.38 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.44(\mathrm{~m}, 6 \mathrm{H}), 2.97-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.63(\mathrm{~m}$, $2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.6, 141.2, 138.7, 136.5, 135.5, 130.5, 129.3, 128.8, 128.8, 128.5, 128.4, 128.3, 127.9, 125.7, 124.8, 123.9, 123.7, 48.2, 12.8. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O} 343.1805$; Found 343.1802. IR (KBr, thin film): 2929, 1740, 1635, 1541, 1485, 1379, 1245, 1107, 917, 840, 762, $584 \mathrm{~cm}^{-1}$.

4-(diethylamino)-5-methyl-3-phenylisoquinolin-1(2H)-one (3aj): white solid $\left(31.4 \mathrm{mg}, 51 \%\right.$ yield, TLC (PE/EA, 2:1): $\left.\mathrm{R}_{\mathrm{f}}=0.68\right) . \mathrm{mp} 166-167{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97-2.75 (m, 7H), $0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,142.2,141.9$, 138.1, 135.1, 131.3, 129.4, 129.0, 128.7, 128.1, 124.6, 123.9, 122.4, 48.2, 23.5, 14.2. HRMS (ESI) $\mathrm{m} / \mathrm{z}:(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O} 307.1805$; Found 307.1803. IR (KBr, thin film): 2973, 2847, $1642,1564,1465,1379,1257,1120,1029,935,877,744,507 \mathrm{~cm}^{-1}$.

4-(diethylamino)-8-methyl-3-phenylisoquinolin-1(2H)-one (3aj'): white solid ($24.8 \mathrm{mg}, 42 \%$ yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.49$). mp 197-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56-8.42(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}$, $1 \mathrm{H})$, 7.53-7.42 (m, 4H), 7.33-7.27 (m, 2H), 3.21 (s, 3H), 2.85-2.66 (m, 4H), 0.89 $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.3,142.5,139.2,135.1$, 131.7, 129.6, 128.6, 128.3, 128.0, 126.5, 126.3, 125.5, 124.1, 48.4, 33.8, 14.5. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O} 307.1805$; Found 307.1804. IR (KBr , thin film): 2923, 2847, 1643, 1457, 1382, 1251, 1188, 1061, 905, 843, 775, 691, $514 \mathrm{~cm}^{-1}$.

2.7.3 Characterization of derivatization products:

\mathbf{N}, \mathbf{N}-diethyl-1-methoxy-3-phenylisoquinolin-4-amine (4): white solid (59.9 mg, 98% yield, TLC (PE/EA, 2:1): $\mathrm{R}_{\mathrm{f}}=0.31$). mp $155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.66(\mathrm{~m}, 4 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 162.3,142.5,139.2,135.1,131.7$, 129.6, 128.6, 128.3, 128.0, 126.5, 126.3, 125.4, 124.1, 48.4, 33.8, 14.5. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ 307.1805; Found 307.1801. IR (KBr , thin film): $3068,2962,2834,1643,1583,1494,1345,1259,1183,783,745,519 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-phenylisoquinolin-1-yl methanesulfonate (5): white solid ($39.8 \mathrm{mg}, 68 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.56$). mp 86-87 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}$, $3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,146.9,140.8$, 140.2, 138.9, 130.9, 129.3, 128.0, 127.8, 124.6, 124.2, 120.8, 48.0, 41.6, 14.3. HRMS (ESI) m/z: $(M+H)^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 371.1424; Found 371.1424. IR (KBr, thin film): $3058,3025,2975,2838,1614,1585,1448,1261,1183,892,813,573 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-phenylisoquinolin-1-yl 4-methylbenzenesulfonate (6): white solid ($58.0 \mathrm{mg}, 65 \%$ yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.62$). mp 89-90 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.34(\mathrm{~m}$, $5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{q}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,146.8,144.8,140.7,139.8$, 138.3, 134.7, 130.6, 129.4, 129.4, 129.3, 127.6, 127.6, 127.5, 124.5, 124.2, 120.6, 48.0, 21.7, 14.3. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 447.1737$; Found 447.1739. IR (KBr, thin film): 3065, 2968, 2858, 1590, 1450, 1374, 1340, 1192, 1048, 892, 774, $541 \mathrm{~cm}^{-1}$.

2-benzyl-4-(diethylamino)-3-phenylisoquinolin-1(2H)-one (7): colorless oily liquid ($56.1 \mathrm{mg}, 74 \%$ yield, TLC (PE/EA, 10:1): $\mathrm{R}_{\mathrm{f}}=0.33$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=3.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 2.85-2.55(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.3,142.4,139.4,137.9,134.1,132.0,130.2,128.6,128.5,128.2,127.6,126.8$, 126.7, 125.7, 124.3, 48.6, 48.4, 14.5. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O} 383.2118$;

Found 383.2119. IR (KBr, thin film): 3422, 3065, 3026, 2967, 2923, 2837, 1654, 1579, 1341, 1077, 783, $702 \mathrm{~cm}^{-1}$.

ethyl 2-(4-(diethylamino)-1-oxo-3-phenylisoquinolin-2(1H)-yl)acetate (8): colorless oily liquid ($56.4 \mathrm{mg}, 75 \%$ yield, TLC (PE/EA, 10:1): $\mathrm{R}_{\mathrm{f}}=$ $0.35) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=$ 8.4 Hz, 1H), 7.73-7.60 (m, 3H), 7.53 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 3 \mathrm{H})$, $5.04(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-2.90(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,155.1,146.9,141.1,140.2$, 133.8, 130.0, 129.4, 127.5, 127.2, 126.2, 124.4, 124.3, 119.3, 62.8, 60.8, 48.3, 14.4, 14.1. HRMS (ESI) $\mathrm{m} / \mathrm{z}:(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$ 379.2016; Found 379.2022. IR (KBr , thin film): 3057, 2971, 2926, 2840, 1763, 1620, 1578, 1340, 1212, 1162, 1096, $766 \mathrm{~cm}^{-1}$.

2-allyl-4-(diethylamino)-3-phenylisoquinolin-1(2H)-one (9): yellow solid ($49.7 \mathrm{mg}, 75 \%$ yield, TLC (PE/EA, 10:1): $\mathrm{R}_{\mathrm{f}}=0.23$). mp 71-72 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.27(\mathrm{~m}$, $2 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.63(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.7$, 142.3, 139.4, 134.3, 133.2, 131.9, 130.1, 128.7, 128.2, 127.7, $126.5,126.5,125.6,124.2,116.3,77.4,77.1,76.78,48.4,47.8,14.5$; HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 333.1961; Found 333.1963. IR (KBr, thin film): 3069, 2965, 2926, 2837, $1650,1608,1581,1548,1426,1334,1209,778 \mathrm{~cm}^{-1}$.

chloro- N, N-diethyl-3-phenylisoquinolin-4-amine (10): white solid (60.5 mg , 97% yield, TLC (PE/EA, 5:1): $\mathrm{R}_{\mathrm{f}}=0.78$); mp $64-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55$ (m, 2H), 7.47-7.41 (m, 2H), 7.41-7.35 (m, 1H), $2.99(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.99(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,146.1,140.3,139.8,139.0$, $130.5,129.3,128.0,127.8,127.8,126.9,126.7,125.0,48.0,14.3$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{2}$ 311.1310; Found 311.1313. IR (KBr, thin film): 2964, 2828, $1607,1556,1442,1382,1259,1174,1056,856,767,606 \mathrm{~cm}^{-1}$.

11 N, N-diethyl-3-phenylisoquinolin-4-amine (11): yellow solid ($50.7 \mathrm{mg}, 92 \%$ yield, TLC (PE/EA, 20:1): $\mathrm{R}_{\mathrm{f}}=0.13$). mp 91-92 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $151.0,148.4,141.8,139.0,137.7,129.8,129.3,129.1,127.9,127.7,127.4,126.7,124.4,48.0$, 14.3. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} 277.1699$; Found 277.1703. IR (KBr , thin film): $3420,3051,2965,2834,1623,1554,1498,1349,1239,1188,1069,769 \mathrm{~cm}^{-1}$.

12

4-(diethylamino)-3-phenylisoquinolin-1-yl trifluoromethanesulfonate (12): yellow solid ($117.9 \mathrm{mg}, 93 \%$ yield, TLC (PE/EA, 50:1): $\mathrm{R}_{\mathrm{f}}=0.56$). mp 91-92 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.1,145.9$, $140.2,139.1,138.2,130.1,128.3,127.3,127.0,126.9,124.0,122.2,119.0$, $117.7(\mathrm{q}, J=319.0 \mathrm{~Hz})$, 46.94 , 13.22; HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 425.1141; Found 425.1144. IR (KBr, thin film): 2982, 2935, 2837, 1626, 1590, 1415, 1337, 1248, 1212, 1141, 1040, 888, $775 \mathrm{~cm}^{-1}$.

13
N, N-diethyl-1, 3-diphenylisoquinolin-4-amine (13): yellow solid (38.74 mg, 55% yield, TLC (PE/EA, 40:1): $\mathrm{R}_{\mathrm{f}}=0.34$). mp $98-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.60(\mathrm{~m}, 5 \mathrm{H})$,
$7.46(\mathrm{dt}, J=24.4,7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,150.1,141.9,139.9,138.4,138.1,130.2,129.5$, 129.3, 128.2, 127.8, 127.3, 127.0, 126.4, 124.7, 48.1, 14.5. HRMS (ESI) m/z: (M+H) ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2}$ 353.2012; Found 353.2015. IR (KBr, thin film): 3054, 3021, 2968, 2923, 2858, 1614, $1548,1498,1388,1254,1028,778 \mathrm{~cm}^{-1}$.

4-(diethylamino)-3-(4-
((trimethylsilyl)ethynyl)phenyl)isoquinolin-1(2H)-one
(14):
yellow solid ($46.32 \mathrm{mg}, 60 \%$ yield, TLC (PE/EA, $2: 1$): $\mathrm{R}_{\mathrm{f}}=0.49$). mp 254-255 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.36$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 3 \mathrm{H}), 3.10-2.81(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.2,140.1,137.6,135.2,132.4,131.9,129.1$, $128.0,126.7,125.9,125.2,124.4,123.8,104.5,95.9,48.5,14.3,0.0$. HRMS (ESI) m/z: $(\mathrm{M}+\mathrm{H})^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OSi} 389.2049$; Found 389.2052 . IR (KBr, thin film): 3679, 3164, 2971, 2923, 2852, 2149, 1647, 1605, 1445, 1251, 867, $840 \mathrm{~cm}^{-1}$.

2.8 Reference

[1] V. Čaplar, M. Žinić, J-L. Pozzo, F. Fages, G. Mieden-Gundert and F. Vögtle, Eur. J. Org. Chem., 2004, 2004, 4048.
[2] J. George, S-Y. Kim and K. Oh, Org. Lett., 2018, 20, 7192.
[3] C. Housseman and J. Zhu, Synlett., 2006, 11, 1777.
[4] T. Buyck, Q. Wang and J. Zhu, Angew. Chem. Int. Ed. 2013, 52, 12714.
[5] M. Serafini, A. Griglio, S. Viarengo, S. Aprile and T. Pirali, Org. Biomol. Chem. 2017, 15, 6604.
[6] X. Li, Q. Xiong, M. Guan, S. Dong, X. Liu and X. Feng, Org. Lett., 2019, 21, 6096.
[7] L. M. Potikha, R. M. Gutsul, V.A. Kovtunenko and A. V. Turov, Chem Heterocycl Com ${ }^{+}$. 2010, 46, 569.
[8] Y. Mu, M. Yang, F. Li, Z. Iqbal, R. Jiang, J. Hou, X. Guo, Z. Yang and D. Tang, New J. Chem., 2021, 45, 4934.
[9] W. Devine, J. L. Woodring, U. Swaminathan, E. Amata, G. Patel, J. Erath, P. J. Lee, S. E. Leed, A. Rodriguez, K. Mensa-Wilmot, R. J. Sciotti and M. P. Pollastri, J. Med. Chem. 2015, 58, 5522.
[10] G. Chelucci and S. Figus. J. Mol. Catal. A: Chem., 2014, 393, 191.
[11] L. Váňa, M. Jakubec, J. Sýkora, I. Císařová, J. Storch and V. Církva. J. Org. Chem., 2021, 86, 13252.

3 Copies of NMR spectra of substrates and products

3.1 Copies of NMR spectra of substrates:

1 a

$\mathrm{N}_{\mathrm{N}}^{\mathrm{O}} \mathrm{Ph}_{\mathrm{Ph}}^{\mathrm{NEt}_{2}}$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$

ペ
$\underset{~}{\text { F }}$
$\stackrel{\text { Ni }}{\stackrel{\text { N }}{+}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCb}$)

30	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	1

1b

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

${ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}, \mathrm{CDCb})$

1c
$\begin{array}{lllll}\infty & \infty & 0 & N & 士 \\ \infty & 0 & \infty & 0 & 寸 \\ j & j & j & 0 & 0 \\ j & j & j\end{array}$
$\stackrel{\circ}{\circ}$
$\stackrel{8}{0}$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$

[^0]

\circ
0
1

1f

 $\stackrel{\rightharpoonup}{\text { 「. }}$ 응

 ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDC}_{6}\right)$

$\left.\begin{array}{lllllllllllllllll}30 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
$1 g$

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCb})$

1i

N
耳~NO

1j

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$

Cr
\bullet
$\stackrel{6}{6}$
$!$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$

1k

8
0
0

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCb})$

11

$\underset{\sim}{¢} \stackrel{0}{\sim} \stackrel{ \pm}{N}$	

＋

or

HNMR（ $400 \mathrm{MHz}, \mathrm{CDC} 3$

令べ゚
\circ
$\stackrel{\circ}{\infty}$
+1
in
$\stackrel{\stackrel{\circ}{\mathrm{m}}}{\stackrel{+}{1}}$

$\left.\begin{array}{lllllllllllllllll}30 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right) 70$

1m

1n

${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}, \mathrm{CDCb})$

10

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCb} 3)$

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDC} \sqrt{3}$ ）

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCb}$)

$1 q$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1r

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCb})$

${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}, \mathrm{CDCl} 3)$

1s

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCb})$

$\stackrel{0}{5}$
웅

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCb}_{6}\right)$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCH}_{3}\right)$

~~ロ

"

${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1u

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCb})$

3.2 Copies of NMR spectra of products:

3aa

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDC} \mathrm{b}$)

| 70 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90
 f 1
 (ppm) | 70 | 60 | 50 | 40 | 30 | 20 | 10 | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3ba

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$

3da

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCb}$)

$\stackrel{\infty}{\aleph} \stackrel{n}{\circ}$
 NN゚

O
+
+
1
$\stackrel{m}{\stackrel{m}{\underset{\sim}{+}}}$

${ }^{19}{ }^{9}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCb}$)
\qquad

3ea

3fa

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCb}$ ）

$\stackrel{\infty}{\infty}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$

3ga

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDC}(\mathrm{B})$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}{ }^{9}$ NMR $(376 \mathrm{MHz}, \mathrm{CDC} \mathrm{C})$

3ha

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO)

3ia

3ja

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCb})$

3ka

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDC}_{\xi}\right)$

$\stackrel{\circ}{6}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

3ma

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDC}$ § $)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDC} 3$)

3na

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

30a

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCh}_{3}\right)$

3pa

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

o̊

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHZ}, \mathrm{CDCb}$)

3qa

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{HMz}, \mathrm{CDCl}_{3}\right)$

IHNMR ($400 \mathrm{HMz}, \mathrm{CDCh}$)

3ra

$\stackrel{\sim}{\dot{\sim}}$

3sa

${ }^{3} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

3ta

3ua

3ab

Non
\mathbf{N}
$\substack{\infty \\+\\ 1}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDC}$ ()

$3 a c$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

3ad

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 a e$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCH}_{3}\right)$

3af

$3 a g$

$\stackrel{8}{8}$

3ah

3ai

$\stackrel{\infty}{\stackrel{\circ}{j}}$
$\stackrel{\dot{\sigma}}{\stackrel{+}{+}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHZ}, \mathrm{CDC}_{3}$)

3ai'

3aj

The regioselectivity was determined by NOE experiment. For 3aj, NOE correlation was observed between methyl-H in the $5^{\text {th }}$ position and methyl-H of diethylin.

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDC} 3)$

3aj'

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

3．3 Copies of NMR spectra of derivatization products：

4

$\left.{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{CDC},)^{2}\right)$

ONํํ
N人か。
$\stackrel{\text { y }}{\infty}$
$\begin{array}{r}i 0 \\ \stackrel{\circ}{+} \\ \hline\end{array}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5

30	150	140	130	120	110	100	90	80 $\mathrm{f} 1(\mathrm{ppm})$	70	60	50	40	30	20	10	1

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCb})$

๗ む N N゚숭

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

'HNMR (400 MHz,CDCh $)$

$\stackrel{\infty}{\infty} \stackrel{\circ}{\circ} \mathrm{C}$人穴

-14.48

${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}, \mathrm{CDC} 3)$

8

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$

ल్లִ	¢ ¢	\bar{m}
N人穴	¢ั่	$\stackrel{\infty}{+}$
+	1/	+

${ }^{3} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

9
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

－

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDC} \mathrm{b}_{3}\right)$

$\stackrel{0}{\infty}$ NN゚
 が

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCb}$)

11

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

مْ $\dot{+}$
$\dot{+}$
\vdots
$\underset{\sim}{\underset{\sim}{~ N}}$

13
${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDC} \sqrt{3})$

-

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCb})$

[^0]: $\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

