Electronic Supplementary Information

Palladium-Catalyzed Tandem

Heck/Carbonylation/Aminocarbonylation En Route to Chiral

Heterocyclic α-Ketoamides

Huaanzi Hu,^{a,b,c} Ting Yu,^{a,c} Sidi Cheng,^{a,c} Jing Li,^{a,c} Chunfang Gan,^d Shuang Luo,^{*a,c,e} Qiang Zhu^{*a,c,d,e}

^{*a*} State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.

^b School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.

^c University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.

^d Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.

^e Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China.

E-mail: luo_shuang@gibh.ac.cn and zhu_qiang@gibh.ac.cn.

Dr. S. Luo and Prof. Dr. Q. Zhu

Table of Contents

1. General Considerations	3
2. Experimental Sections	4
3. Characterization Data for the Products	9
4. References	70
5. Copies of NMR and NOE Spectra	71

1. General Considerations

All the solvents and reagents were purchased from commercial suppliers. ¹H NMR. ¹³C NMR and ¹⁹F NMR were recorded on a 400 MHz or/and 500 MHz Bruker FT-NMR spectrometers. All chemical shifts were given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). High Resolution Mass (MS) analysis was obtained using on a LC/MSD TOF spectrometer system with Electrospray Ionization (ESI). Melting points were measured on a Mel-Temp apparatus and are uncorrected. Optical rotations were measured on Autopol IV automatic polarimeter. Enantiomeric ratios were determined by chiral HPLC on a Shimadzu instrument using a chiral stationary phase column with hexane and i-PrOH as solvents. The chiral HPLC condition methods were calibrated with the corresponding racemic mixtures. Reactions were monitored by thin-layer chromatography (TLC) carried out on commercial silica gel plates (GF254) under UV light. Flash chromatography was performed on silica gel 60 (200-300 mesh). Substrates **1a-m** were synthesized according to the literature procedures.¹ Substrates **5a-h** were synthesized according to the literature procedures.² **2a-l** were purchased from commercial sources and used without further purification.

2. Experimental Sections

General procedure:

In a dry 10 mL Schlenk tube, L* (0.012 mmol, 12 mol%), Pd₂(dba)₃ (0.005 mmol, 5% mol% or 0.0025 mmol, 2.5 mol%) were added, and the tube was vacuumed and refilled with Ar for 3 times followed by injection 0.5 mL of solvent. The mixture was stirred at room temperature for 45 min under Ar balloon. Then substrates **1** or **5** (0.1 mmol, 1.0 equiv), alkylamines (0.15 mmol, 1.5 equiv), base (0.12 mmol, 1.2 equiv) and 0.5 mL of solvent were added to the mixture. After the tube was vacuumed and refilled with CO for 3 times, the mixture was stirred at 40 °C under balloon pressure of CO. After completion of the reaction, it was cooled to room temperature before addition of saturated brine (10 mL) and EtOAc (10 mL) to the reaction mixture. The aqueous phase was further extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the desired products.

Screening of the chiral ligands for the synthesis of 4aa.

Table S1. Screening of the chiral ligands under optimal racemic reaction conditions.^a

^a Reaction conditions: 1a (0.1 mmol), 2a (1.5 equiv), Pd₂(dba)₃ (5 mol%), L* ([P]: 24 mol%), DBU (1.2 equiv) in 1.0 mL of solvent, 40 °C, 15 h, CO balloon (1 atm).
Determined by HPLC analysis using a chi-ral stationary phase.

Attempts to construct six-membered heterocycle substituted a-ketoamides

Scheme S1. Failures in enantioselective tandem 6-*exo*-trig Heck/carbonylation/aminocarbonylation.

Detailed Information of Conditions Optimization for 6ab^{*a,f*} **Table S2:**

entry	base	solvent	6ab :6ab' ^c	yield of 6ab / %	ee of 6ab / $\%^d$
1	Cs ₂ CO ₃	toulene	4:1	78^b	94
2	DABCO	toulene	1.25:1	-	-
3	Et ₃ N	toulene	0:1	-	-

13 ^e	Cs ₂ CO ₃	mesitylene	10:1	86 ^b	94
12	Cs_2CO_3	DMSO	1:1	-	-
11	Cs_2CO_3	THF	1:1	-	-
10	Cs ₂ CO ₃	PhCF ₃	1.25:1	-	-
9	Cs ₂ CO ₃	dioxane	5:1	-	93
8	Cs ₂ CO ₃	PhCl	3:1	-	-
7	Cs ₂ CO ₃	PhCN	4:1	-	-
6	Cs ₂ CO ₃	o-xylene	5:1	-	94
5	t-BuOK	toulene	2.5:1	-	-
4^g	-	toulene	0:1	-	-

[a] Reaction conditions: **5a** (0.05 mmol), **2b** (1.5 equiv), $Pd_2(dba)_3$ (2.5 mol%), **L21** (12 mol%), base (1.2 equiv) in 0.5 mL of solvent, 40 °C, 10 h, CO balloon (1 atm). [b] Isolated yield. [c] Determined by ¹H NMR. [d] Determined by HPLC analysis using a chiral stationary phase. [e] 0.1 mmol of **5a** in 1.0 mL of solvent. [f] Only a single diastereomer was observed, > 20 : 1 d.r. [g] 3.0 equiv of **2b**, no extra base was added.

Procedures for 1 mmol-scale reaction

In a dry 50 mL two-necked bottle, (R)-L1* (0.12 mmol, 12 mol%), Pd₂(dba)₃ (0.05 mmol, 5% mol%) were added, and the bottle was vacuumed and refilled with Ar for 3 times followed by injection 5.0 mL of toluene. The mixture was stirred at room temperature for 45 min under Ar balloon. Then substrates **1a** (1.0 mmol, 1.0 equiv), **2a** (1.5 mmol, 1.5 equiv), DBU (0.12 mmol, 1.2 equiv) and 5.0 mL of toluene were added to the mixture. After the bottle was vacuumed and refilled with CO for 3 times,

the mixture was stirred at 40 °C under balloon pressure of CO. After completion of the reaction, it was cooled to room temperature before addition of saturated brine (50 mL) and EtOAc (50 mL) to the reaction mixture. The aqueous phase was further extracted with EtOAc (20 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give **3aa** (21.3 mg, 8% yield, 95% ee) and **4aa** (218.9 mg, 76% yield, 91% ee).

6db, 80 yield, 92% ee, >20:1 dr double : mono = 5 : 1 16% yield, 85% ee, >20:1 dr In a dry 50 mL two-necked bottle, (S)-L2* (0.12 mmol, 12 mol%), Pd₂(dba)₃ (0.025 mmol, 2.5 mol%) were added, and the bottle was vacuumed and refilled with Ar for 3 times followed by injection 5.0 mL of mesitylene. The mixture was stirred at room temperature for 45 min under Ar balloon. Then substrates 5d (1.0 mmol, 1.0 equiv), **2b** (1.5 mmol, 1.5 equiv), Cs₂CO₃ (1.2 mmol, 1.2 equiv) and 5.0 mL of mesitylene were added to the mixture. After the tube was vacuumed and refilled with CO for 3 times, the mixture was stirred at 40 °C under balloon pressure of CO. After completion of the reaction, it was cooled to room temperature before addition of saturated brine (50 mL) and EtOAc (50 mL) to the reaction mixture. The aqueous phase was further extracted with EtOAc (20 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the amide product (65.0 mg, 16% yield, 85% ee, >20:1 d.r.) and 6db (342.3 mg, 80% yield, 92% ee, >20:1 d.r.).

Procedures for the Derivatization of 4aa and 6db

The preparation of compound 7 was described as an example. NaBH₄ (15.2 mg, 2.0

equiv) was add to a mixture of 4aa (57.6 mg, 0.2 mmol, 1.0 equiv) in MeOH (5.0 mL) at -5 °C under Ar atmosphere and the mixture was stirring at that temperature for 1h. Then the mixture was quenched with saturated aqueous NH₄Cl and extracted with EtOAc (6 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄ concentrated under reduced and pressure to afford 2-hydroxy-N-propylpropanamide. LiAlH₄ (15.2 mg, 2.0 equiv) was added to a mixture of 2-hydroxy-N-propylpropanamide in dry THF (3.0 mL) at room temperature under Ar atmosphere and the mixture was stirring at that temperature for 2h. The mixture was quenched with saturated aqueous NH₄Cl and extracted with EtOAc (5 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The 6:1 dr was determinded by ¹H NMR and 7 (24.4 mg, 45% yield) was abtained by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4/1).

3. Characterization Data for the Products

(*R*)-3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2-oxo-*N*-propylpropanamide (4aa)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (23.1 mg, 80% yield, 86% ee); $[\alpha]_D^{25} = -12.0$ (c = 0.15 in MeOH, 86% ee); ¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (t, J = 6.5 Hz, 1H), 7.12 (d, J = 7.3 Hz, 1H), 7.00 (t, J = 4.7 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.67 (s, 1H), 3.86 (dd, J = 19.1, 2.0 Hz, 1H), 3.42 (dd, J = 19.2, 2.0 Hz, 1H), 3.28 (s, 3H), 3.22 – 3.09 (m, 2H), 1.50 – 1.43 (m, 2H), 1.39 (s, 3H), 0.86 (td, J = 7.4, 2.1 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 195.81, 180.13, 159.63, 143.90, 133.06, 128.21, 122.49, 122.07, 108.18, 44.96, 44.19, 41.08, 26.48, 24.87, 22.50, 11.33. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₆H₁₉N₂O₃⁻ 287.1401; Found 287.1403. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 16.415 min, t (minor) = 22.376 min.

(*R*)-2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-propylacetamide (3aa)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:2) gave the product as a colorless oil (21.3 mg, 8% yield, 95% ee); $[\alpha]_D^{25} = +26.3$ (c = 0.19 in MeOH, 95% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.19 (m, 2H), 7.10 – 7.00 (m, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 6.34 (s, 1H), 3.23 (s, 3H), 3.06 (dd, *J* = 13.1, 6.9 Hz, 2H), 2.70 (dd, *J* = 55.6, 14.7 Hz, 2H), 1.51 – 1.32 (m, 5H), 0.81 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 180.78, 168.99, 142.93, 133.48, 128.24, 122.91, 108.37, 46.37, 44.10, 41.24, 26.47, 23.72, 22.82, 11.41. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₅H₁₉N₂O₂⁻ 259.1452; Found 259.1453. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 8.473 min, t (minor) = 7.369 min.

(*R*)-*N*-benzyl-3-(1,3-dimethyl-2-oxoindolin-3-yl)-2-oxopropanamide (4ab)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (27.4 mg, 81% yield, 86% ee); $[\alpha]_D^{25} = +75.6$ (c = 0.23 in MeOH, 86% ee); ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 4H), 7.19 – 7.10 (m, 3H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.94 (s, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 4.42 – 4.29 (m, 2H), 3.88 (d, *J* = 19.1 Hz, 1H), 3.44 (d, *J* = 19.1 Hz, 1H), 3.25 (s, 3H), 1.40 (s, 3H); ¹³**C** NMR (126 MHz, CDCl₃) δ 195.51, 180.06, 159.42, 143.90, 136.76, 132.96, 128.91, 128.26, 127.98, 127.96, 122.53, 122.12, 108.22, 45.00, 44.25, 43.52, 26.50, 24.84. HRMS (ESI) *m*/*z*: [M-H]⁻ Calcd for C₂₀H₁₉N₂O₃⁻ 335.1401; Found 335.1399. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 12.176 min, t (minor) = 13.552 min.

(*R*)-3-(1,3-Dimethyl-2-oxoindolin-3-yl)-*N*-(4-methoxybenzyl)-2-oxopropanamide (4ac)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave

the product as a colorless oil (27.7 mg, 76% yield, 84% ee); $[\alpha]_D^{25} = -9.2$ (c = 0.13 in MeOH, 84% ee); ¹**H NMR** (500 MHz, CDCl₃) δ 7.26 (t, J = 7.7 Hz, 1H), 7.11 (dd, J = 13.9, 7.8 Hz, 3H), 7.00 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.6 Hz, 2H), 6.82 (d, J = 8.2 Hz, 2H), 4.36 – 4.22 (m, 2H), 3.87 (d, J = 19.1 Hz, 1H), 3.77 (s, 3H), 3.43 (d, J = 19.1 Hz, 1H), 3.25 (s, 3H), 1.40 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 195.59, 180.09, 159.43, 159.33, 143.91, 132.99, 129.38, 128.84, 128.26, 122.53, 122.12, 114.32, 108.22, 55.43, 45.00, 44.28, 43.04, 26.51, 24.85. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₁H₂₁N₂O₄⁻ 365.1507; Found 365.1504. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.948 min, t (minor) = 17.008 min.

(*R*)-*N*-(4-chlorobenzyl)-3-(1,3-dimethyl-2-oxoindolin-3-yl)-2-oxopropanamide (4ad)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (24.2 mg, 65% yield, 87% ee); $[\alpha]_D^{25} = -11.3$ (c = 0.16 in MeOH, 87% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.25 (m, 4H), 7.13 – 7.09 (m, 3H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.94 (s, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 4.32 (d, *J* = 6.1 Hz, 2H), 3.86 (d, *J* = 19.0 Hz, 1H), 3.42 (d, *J* = 19.0 Hz, 1H), 3.26 (s, 3H), 1.40 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.46, 180.03, 159.51, 143.91, 135.34, 133.91, 132.94, 129.31, 129.08, 128.33, 122.57, 122.15, 108.28, 45.08, 44.19, 42.83, 26.54, 24.85. HRMS (ESI) *m*/*z*: [M-H]⁻ Calcd for C₂₀H₁₈ClN₂O₃⁻ 369.1011; Found 369.1018. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 11.541 min, t (minor) = 13.170 min.

(*R*)-3-(1,3-Dimethyl-2-oxoindolin-3-yl)-*N*-octyl-2-oxopropanamide (4ae)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (34.4 mg, 91% yield, 84% ee); $[\alpha]_D^{25} = -8.8$ (c = 0.25 in MeOH, 84% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, J = 7.7 Hz, 1H), 7.11 (d, J =7.3 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 6.63 (s, 1H), 3.86 (d, J = 19.2 Hz, 1H), 3.41 (d, J = 19.2 Hz, 1H), 3.27 (s, 3H), 3.21– 3.12 (m, 2H), 1.45 – 1.37 (m, 5H), 1.31 – 1.20 (m, 13H), 0.86 (t, J = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.84, 180.17, 159.57, 143.93, 133.08, 128.25, 122.52, 122.09, 108.20, 44.97, 44.25, 39.44, 31.86, 29.24, 29.22, 26.89, 26.52, 24.91, 22.73, 14.20, 14.17. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₂₁H₂₉N₂O₃⁻ 357.2184; Found 357.2179. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.927 min, t (minor) = 7.223 min.

(*R*)-3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2-oxo-*N*-(2-(thiophen-2-yl)ethyl)propena mide (4af)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (27.5 mg, 77% yield, 85% ee); $[\alpha]_D^{25} = -16.0$ (c = 0.20 in MeOH, 85% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 7.3 Hz, 1H), 7.13 – 7.10 (m, 2H), 7.00 (t, J = 7.4 Hz, 1H), 6.92 – 6.84 (m, 2H), 6.79 (s, 1H), 6.75 (d, J = 2.8 Hz, 1H), 3.84 (d, J = 19.0 Hz, 1H), 3.56 – 3.35 (m, 3H), 3.26 (s, 3H), 2.96 (t, J = 6.8 Hz, 2H), 1.38 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 195.39, 180.05, 159.62, 143.86, 140.40, 132.97, 128.24, 127.21, 125.60, 124.25, 122.51, 122.08, 108.22, 44.97, 44.05, 40.69, 29.59, 26.50, 24.89. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₉H₁₉N₂O₃S⁻ 355.1122; Found 355.1130. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.462 min, t (minor) = 12.904 min.

1	PDA UNI 20	971m				
[NO.	Ret. Time	Area(uAU*min)	Height (uAU)	Rel. Area %	Resolution(USP)
[1	11.462	7028226	354688	92, 482	0.508
[2	12.904	571325	27186	7.518	0.558

3-((*R*)-1,3-Dimethyl-2-oxoindolin-3-yl)-2-oxo-*N*-((*R*)-1-phenylethyl)propenamid e (4ag)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (22.3 mg, 64% yield, 86% de); $[\alpha]_D^{25} = +5.0$ (c = 0.12 in MeOH, 86% de); ¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.22 (m, 4H), 7.18 (d, *J* = 7.1 Hz, 2H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 4.95 (p, *J* = 7.0 Hz, 1H), 3.83 (d, *J* = 19.3 Hz, 1H), 3.46 (d, *J* = 19.3 Hz, 1H), 3.26 (s, 3H), 1.44 (d, *J* = 6.9 Hz, 3H), 1.38 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 195.69, 180.10, 158.54, 143.80, 141.91, 132.91, 128.81, 128.18, 127.77, 126.22, 122.49, 122.06, 108.15, 49.15, 44.85, 44.27, 26.45, 24.89, 21.55. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₂₁H₂₁N₂O₃⁻ 349.1558; Found 349.1551.

3-((S)-1,3-Dimethyl-2-oxoindolin-3-yl)-2-oxo-N-((R)-1-phenylethyl)propenamide (4ag')

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a white solid (22.6 mg, 65% yield, 89% de): mp 138-140 °C; $[\alpha]_D^{25} =$ +28.0 (c = 0.20 in MeOH, 89% de); ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.23 (m, 4H), 7.21 (d, *J* = 7.4 Hz, 2H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.7 Hz, 2H), 4.95 (p, *J* = 7.1 Hz, 1H), 3.85 (d, *J* = 19.2 Hz, 1H), 3.41 (d, *J* = 19.2 Hz, 1H), 3.26 (s, 3H), 1.42 (d, *J* = 6.8 Hz, 3H), 1.38 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 195.81, 180.07, 158.59, 143.94, 141.90, 133.01, 128.92, 128.28, 127.88, 126.23, 122.52, 122.13, 108.21, 49.16, 44.95, 44.30, 26.51, 24.88, 21.52.

(*R*)-*N*-cyclopentyl-3-(1,3-dimethyl-2-oxoindolin-3-yl)-2-oxopropanamide (4ah) Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (26.2 mg, 83% yield, 85% ee); $[\alpha]_D^{25} = -6.7$ (c = 0.18 in MeOH, 85% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 1H), 7.11 (d, *J* = 6.8 Hz, 1H), 7.00 (t, *J* = 4.0 Hz, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.58 (s, 1H), 4.12 – 4.02 (m, 1H), 3.85 (d, *J* = 19.4 Hz, 1H), 3.44 (d, *J* = 19.4 Hz, 1H), 3.28 (s, 3H), 2.01 – 1.81 (m, 2H), 1.63 – 1.50 (m, 4H), 1.39 (s, 3H), 1.38 – 1.23 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 196.00, 180.21, 159.07, 143.94, 133.10, 128.25, 122.52, 122.09, 108.19, 51.13, 44.91, 44.36, 32.96, 32.86, 26.52, 24.94, 23.75. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₈H₂₁N₂O₃⁻ 313.1558; Found 313.1566. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 12.442 min, t (minor) = 17.602 min.

(*R*)-*N*-cyclohexyl-3-(1,3-dimethyl-2-oxoindolin-3-yl)-2-oxopropanamide (4ai)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (28.8 mg, 88% yield, 86% ee); $[\alpha]_D^{25} = -5.0$ (c = 0.12 in MeOH, 86% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.23 (m, 1H), 7.12 (d, J =7.3 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.53 (s, 1H), 3.85 (d, J = 19.4 Hz, 1H), 3.68 – 3.56 (m, 1H), 3.44 (d, J = 19.4 Hz, 1H), 3.28 (s, 3H), 1.85 – 1.75 (m, 2H), 1.66 – 1.60 (m, 2H), 1.39 (s, 3H), 1.37 – 1.27 (m, 3H), 1.17-1.03 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.14, 180.24, 158.59, 143.95, 133.12, 128.25, 122.53, 122.10, 108.20, 48.38, 44.93, 44.38, 32.67, 32.64, 26.53, 25.44, 24.95, 24.69. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₉H₂₃N₂O₃⁻ 327.1714; Found 327.1707. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda =$ 254 nm, t (major) = 6.474 min, t (minor) = 9.984 min.

NO.	Ret. Time	Area(uAU*min)	Height(uAU)	Rel.Area %	Resolution(USP)
1	6.598	4075339	350426	49.919	0.307
2	10.252	4088592	227575	50.081	0.466

(R)-N-(tert-butyl)-3-(1,3-dimethyl-2-oxoindolin-3-yl)-2-oxopropanamide (4aj)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:6) gave

the product as a colorless oil (10.2 mg, 34% yield, 75% ee); $[\alpha]_D^{25} = -6.0$ (c = 0.30 in MeOH, 75% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.25 (m, 1H), 7.12 (d, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.53 (s, 1H), 3.83 (d, *J* = 19.4 Hz, 1H), 3.44 (d, *J* = 19.4 Hz, 1H), 3.29 (s, 3H), 1.38 (s, 3H), 1.28 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 196.61, 180.13, 158.60, 143.80, 132.99, 128.09, 122.36, 121.96, 108.04, 51.23, 44.75, 43.91, 28.14, 26.39, 24.87. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₃⁺ 303.1703; Found 303.1703. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 6.955 min, t (minor) = 10.072 min.

(*R*)-3-(1,3-Dimethyl-2-oxoindolin-3-yl)-1-morpholinopropane-1,2-dione (4ak)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (23.4 mg, 74% yield, 86% ee); $[\alpha]_D^{25} = +5.3$ (c = 0.19 in MeOH, 86% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 3.68-3.60 (m, 3H), 3.57-3.48 (m, 4H), 3.29 – 3.18 (m, 6H), 1.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.74, 179.90, 164.01, 143.58, 132.80, 128.31, 122.58, 122.11, 108.33, 66.82, 66.50, 46.61, 45.91, 45.33, 42.04, 26.50, 24.72. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₇H₁₉N₂O₄⁻ 315.1350; Found 315.1342. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 24.091 min, t (minor) = 22.693 min.

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (18.8 mg, 63% yield, 86% ee); $[\alpha]_D^{25} = -1.3$ (c = 0.15 in MeOH, 86% ee); ¹**H NMR** (500 MHz, CDCl₃) δ 7.27 – 7.22 (m, 1H), 7.16 (d, *J* = 7.3 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 3.80 (d, *J* = 17.9 Hz, 1H), 3.43 – 3.34 (m, 3H), 3.28 (d, *J* = 15.0 Hz, 1H), 3.26 (s, 3H), 3.24 – 3.18 (m, 1H), 1.81 – 1.70 (m, 4H), 1.37 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 196.86, 180.19, 161.84, 143.76, 133.10, 128.16, 122.48, 122.28, 108.21, 47.26, 46.55, 46.14, 45.37, 26.54, 26.39, 24.86, 23.57. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₇H₁₉N₂O₃⁻ 299.1401; Found 299.1393. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 85/15, 1.0 mL/min, λ = 254 nm, t (major) = 14.591 min, t (minor) = 13.576 min.

D.	Ret. Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USE
1	13.576	14591	283857	6.909	
2	14. 591	173591	3824603	93. 091	1.835

(*R*)-3-(1,3-Dimethyl-2-oxoindolin-3-yl)-1-(piperidin-1-yl)propane-1,2-dione (4am)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (17.7 mg, 56% yield, 91% ee); $[\alpha]_D^{25} = -11.7$ (c = 0.12 in MeOH, 91% ee); ¹**H NMR** (500 MHz, CDCl₃) δ 7.26 (t, *J* = 7.7 Hz, 1H), 7.20 (d, *J* = 7.3 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 3.63 (d, *J* = 18.1 Hz, 1H), 3.55 – 3.47 (m, 1H), 3.44 – 3.36 (m, 1H), 3.30 – 3.21 (m, 4H), 3.17 – 3.06 (m, 2H), 1.63-1.57 (m, 2H), 1.56-1.50 (m, 2H), 1.49-1.44 (m, 2H), 1.37 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 197.37, 180.12, 164.58, 143.74, 133.00, 128.24, 122.59, 122.23, 108.31, 46.91, 46.65, 45.21, 42.73, 26.59, 26.44, 25.45, 24.86, 24.45. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₈H₂₁N₂O₃⁻ 313.1558; Found 313.1559. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 85/15, 1.0 mL/min, λ = 254 nm, t (major) = 13.968 min, t (minor) = 11.447 min.

(*R*)-2-oxo-*N*-propyl-3-(1,3,5-trimethyl-2-oxoindolin-3-yl)propenamide (4ba) Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (21.3 mg, 71% yield, 87% ee); $[\alpha]_D^{25} = +31.8$ (c = 0.17 in MeOH, 87% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.05 (d, *J* = 7.8 Hz, 1H), 6.92 (s, 1H), 6.76 (d, *J* = 7.9 Hz, 1H), 6.67 (s, 1H), 3.84 (d, *J* = 19.3 Hz, 1H), 3.40 (d, *J* = 19.2 Hz, 1H), 3.25 (s, 3H), 3.23 – 3.07 (m, 2H), 2.29 (s, 3H), 1.47 (dt, *J* = 14.6, 7.4 Hz, 2H), 1.37 (s, 3H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.85, 180.12, 159.66, 141.54, 133.10, 132.02, 128.45, 122.98, 107.91, 44.98, 44.26, 41.10, 26.54, 24.98, 22.53, 21.21, 11.35. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₇H₂₁N₂O₃⁻ 301.1558; Found 301.1563. The enantiomeric ratio was determined by Daicel Chiralcel OD-H (0.46 cm×25 cm), Hexanes/IPA = 90/10, 1.0 mL/min, λ =

254 nm, t (major) = 17.672 min, t (minor) = 14.724 min.

(*R*)-3-(5-Methoxy-1,3-dimethyl-2-oxoindolin-3-yl)-2-oxo-*N*-propylpropanamide (4ca)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (24.9 mg, 78% yield, 89% ee); $[\alpha]_D^{25} = +32.0$ (c = 0.10 in MeOH, 89% ee); ¹H NMR (400 MHz, CDCl₃) δ 6.78 (s, 2H), 6.73 (s, 1H), 6.67 (s,

1H), 3.82 (d, J = 19.4 Hz, 1H), 3.76 (s, 3H), 3.42 (d, J = 19.3 Hz, 1H), 3.25 (s, 3H), 3.22 – 3.08 (m, 2H), 1.52 – 1.42 (m, 2H), 1.38 (s, 3H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 195.79, 179.81, 159.60, 156.06, 137.46, 134.46, 112.16, 109.92, 108.45, 55.89, 45.37, 44.26, 41.11, 26.61, 24.97, 22.54, 11.37. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₇H₂₁N₂O₄⁻ 317.1507; Found 317.1511. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.324 min, t (minor) = 10.748 min.

2 10.738 10311313 542544 49.770 0.493	1	8.324	10406640	699542	50.230	0.386
	2	10.738	10311313	542544	49.770	0.493

PUA Chi 20	i ann				
NO.	Ret. Time	Area(uAU*min)	Height (uAU)	Rel. Area %	Resolution(USP)
1	8.324	8877147	588656	94.422	0.389
2	10.748	524458	28691	5. 578	0.485

(*R*)-3-(5-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)-2-oxo-*N*-propylpropanamide (4da)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (24.1 mg, 75% yield, 86% ee); $[\alpha]_D^{25} = +36.7$ (c = 0.12 in MeOH, 86% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 8.3 Hz, 1H), 7.10 (s, 1H), 6.81 (d, J = 8.3 Hz, 1H), 6.68 (s, 1H), 3.83 (d, J = 19.5 Hz, 1H), 3.47 (d, J =19.5 Hz, 1H), 3.27 (s, 3H), 3.24 – 3.13 (tq, J = 12.9, 6.5 Hz, 2H), 1.49 (dd, J = 14.6, 7.3 Hz, 2H), 1.40 (s, 3H), 0.89 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.68, 179.69, 159.46, 142.55, 134.82, 128.17, 127.91, 122.75, 109.14, 45.12, 44.37, 41.16, 26.66, 24.78, 22.54, 11.38. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₆H₁₈ClN₂O₃⁻ 321.1011; Found 321.1003. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda =$ 254 nm, t (major) = 6.631 min, t (minor) = 8.772 min.

(*R*)-3-(5-Fluoro-1,3-dimethyl-2-oxoindolin-3-yl)-2-oxo-*N*-propylpropanamide (4ea)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (26.8 mg, 78% yield, 85% ee); $[\alpha]_D^{25} = -1.3$ (c = 0.16 in MeOH, 85% ee); ¹H NMR (500 MHz, CDCl₃) δ 6.96 (t, J = 8.9 Hz, 1H), 6.87 (d, J =7.8 Hz, 1H), 6.81 – 6.76 (m, 1H), 6.66 (s, 1H), 3.81 (d, J = 19.4 Hz, 1H), 3.45 (d, J =19.4 Hz, 1H), 3.26 (s, 3H), 3.23 – 3.09 (m, 2H), 1.48 (dd, J = 14.5, 7.3 Hz, 2H), 1.39 (s, 3H), 0.87 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.72, 179.81, 159.51, 159.34 (d, ¹ $_{JC-F} = 240.7$ Hz), 139.87, 134.74 (d, ³ $_{JC-F} = 8.8$ Hz), 114.34 (d, ² $_{JC-F} = 23.9$ Hz), 110.50 (d, ² $_{JC-F} = 25.2$ Hz), 108.64 (d, ³ $_{JC-F} = 7.6$ Hz), 45.39, 44.26, 41.16, 26.68, 24.77, 22.54, 11.37; ¹⁹F NMR (471 MHz, CDCl₃) δ -120.65. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₆H₁₈FN₂O₃⁻ 305.1307; Found 305.1304. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.718 min, t (minor) = 8.728 min.

(*R*)-3-(1,3-Dimethyl-2-oxo-5-(trifluoromethyl)indolin-3-yl)-2-oxo-*N*-propylprop anamide (4fa)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (23.5 mg, 66% yield, 89% ee); $[\alpha]_D^{25} = +1.4$ (c = 0.14 in MeOH, 89% ee); ¹**H NMR** (500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.2 Hz, 1H), 7.34 (s, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.65 (s, 1H), 3.86 (d, J = 19.5 Hz, 1H), 3.50 (d, J = 19.5 Hz, 1H), 3.31 (s, 3H), 3.24 – 3.09 (m, 2H), 1.48 (dd, J = 14.6, 7.3 Hz, 2H), 1.43 (d, J = 14.3 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.66, 180.09, 159.39, 146.93, 133.68, 126.13 (q, ${}^{3}J_{C-F} = 3.8$ Hz), 124.78 (q, ${}^{2}J_{C-F} = 32.8$ Hz), 124.48 (q, ${}^{1}J_{C-F} = 272.2$ Hz), 119.14 (q, ${}^{3}J_{C-F} = 3.8$ Hz), 107.94, 44.83, 44.45, 41.14, 26.72, 24.72, 22.49, 11.35; ¹⁹F NMR (471 MHz, CDCl₃) δ -61.38. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₇H₁₈F₃N₂O₃⁻⁻ 355.1275; Found 355.1284. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.500 min, t (minor) = 6.740 min.

(*R*)-3-(5-Cyano-1,3-dimethyl-2-oxoindolin-3-yl)-2-oxo-*N*-propylpropanamide (4ga)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (18.9 mg, 60% yield, 85% ee); $[\alpha]_D^{25} = +45.4$ (c = 0.26 in MeOH, 85% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 1H), 7.36 (s, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.65 (s, 1H), 3.84 (d, J = 19.6 Hz, 1H), 3.50 (d, J =19.6 Hz, 1H), 3.29 (s, 3H), 3.17 (tq, J = 13.8, 6.8 Hz, 2H), 1.55 – 1.44 (m, 2H), 1.40 (s, 3H), 0.87 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.62, 179.81, 159.27, 147.84, 134.22, 133.68, 125.46, 119.20, 108.61, 105.64, 44.63, 44.46, 41.16, 26.74, 24.54, 22.49, 11.35. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₇H₁₈N₃O₃⁻ 312.1354; Found 312.1358. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.111 min, t (minor) = 14.149 min.

Methyl

(*R*)-3-(2,3-dioxo-3-(propylamino)propyl)-1,3-dimethyl-2-oxoindoline-5-carboxyl ate (4ha)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (18.5 mg, 53% yield, 83% ee); $[\alpha]_D^{25} = +50.0$ (c = 0.10 in MeOH, 83% ee); ¹**H** NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 8.2 Hz, 1H), 7.77 (s, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.64 (s, 1H), 3.93 – 3.82 (m, 4H), 3.50 (d, J = 19.6 Hz, 1H), 3.30 (s, 3H), 3.26 – 3.06 (m, 2H), 1.54 – 1.42 (m, 2H), 1.40 (s, 3H), 0.86 (t, J =7.4 Hz, 3H); ¹³**C** NMR (126 MHz, CDCl₃) δ 195.71, 180.49, 166.95, 159.40, 148.14, 133.15, 131.09, 124.51, 123.24, 107.77, 52.14, 44.65, 44.59, 41.13, 26.73, 24.82, 22.52, 11.36. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₈H₂₁N₂O₅⁻ 345.1456; Found 345.1464. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.471 min, t (minor) = 13.356 min.

(*R*)-2-oxo-*N*-propyl-3-(1,3,6-trimethyl-2-oxoindolin-3-yl)propenamide (4ia) Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (21.5 mg, 71% yield, 84% ee); $[\alpha]_D^{25} = +1.7$ (c = 0.12 in MeOH, 84% ee); ¹H NMR (500 MHz, CDCl₃) δ 6.99 (d, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 7.4 Hz, 1H), 6.70 (s, 1H), 6.66 (s, 1H), 3.84 (d, *J* = 19.2 Hz, 1H), 3.39 (d, *J* =

19.2 Hz, 1H), 3.26 (s, 3H), 3.21 – 3.06 (m, 2H), 2.37 (s, 3H), 1.51 – 1.40 (m, 2H), 1.37 (s, 3H), 0.86 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 195.95, 180.47, 159.63, 143.97, 138.34, 130.11, 123.00, 121.85, 109.20, 44.76, 44.26, 41.10, 26.49, 24.99, 22.53, 21.95, 11.36. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₇H₂₁N₂O₃⁻ 301.1558; Found 301.1565. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 6.443 min, t (minor) = 7.743 min.

(*S*)-3-(1-Methyl-2-oxo-3-phenylindolin-3-yl)-2-oxo-*N*-propylpropanamide (4ja) Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a yellow solid (9.8 mg, 28% yield, 76% ee): mp 80-83 °C; $[\alpha]_D^{25} =$ -38.0 (c = 0.10 in MeOH, 76% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.19 (m, 7H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.68 (s, 1H), 4.30 (d, *J* = 19.2 Hz, 1H), 3.91 (d, *J* = 19.2 Hz, 1H), 3.27 (s, 3H), 3.21 – 3.11 (m, 2H), 1.53 – 1.40 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.66, 178.35, 159.60, 144.85, 139.13, 131.27, 128.86, 128.75, 127.83, 126.68, 124.38, 122.61, 108.47, 52.76, 44.74, 41.14, 26.81, 22.53, 11.37. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₂₁H₂₁N₂O₃⁻ 349.1558; Found 349.1558. The enantiomeric ratio was determined by Daicel Chiralcel OD-H (0.46 cm×25 cm), Hexanes/IPA = 85/15, 1.0 mL/min, λ = 254 nm, t (major) = 19.929 min, t (minor) = 17.987 min.

mAU

Bn

(*R*)-3-(1-Benzyl-3-methyl-2-oxoindolin-3-yl)-2-oxo-*N*-propylpropanamide (4la) Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:5) gave the product as a yellow solid (23.2 mg, 64% yield, 87% ee): mp 83-85 °C; $[\alpha]_D^{25} =$ -2.5 (c = 0.16 in MeOH, 87% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.3 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.29 – 7.24 (m, 1H), 7.11 (d, *J* = 7.5 Hz, 2H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 2H), 4.97 (s, 2H), 3.93 (d, *J* = 19.3 Hz, 1H), 3.48

(d, J = 19.2 Hz, 1H), 3.27 - 3.08 (m, 2H), 1.53 - 1.40 (m, 5H), 0.87 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.81, 180.22, 159.65, 142.95, 136.18, 133.07, 128.87, 128.12, 127.64, 127.43, 122.58, 122.05, 109.39, 45.06, 44.14, 44.04, 41.13, 25.59, 22.56, 11.39. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₂H₂₃N₂O₃⁻ 363.1714; Found 363.1705. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.824 min, t (minor) = 16.014 min.

(*R*)-3-(1-(4-Methoxybenzyl)-3-methyl-2-oxoindolin-3-yl)-2-oxo-*N*-propylpropan amide (4ma)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:3) gave the product as a colorless oil (22.9 mg, 58% yield, 88% ee); $[\alpha]_D^{25} = +63.2$ (c = 0.25 in MeOH, 88% ee); ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (d, J = 8.2 Hz, 2H), 7.16 – 7.09 (dd, J = 17.2, 7.8 Hz, 2H), 6.96 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.2 Hz, 2H), 6.74 (d, J = 7.8 Hz, 1H), 6.69 (s, 1H), 4.92 (q, J = 15.5 Hz, 2H), 3.92 (d, J = 19.2 Hz, 1H), 3.78 (s, 3H), 3.47 (d, J = 19.2 Hz, 1H), 3.23 – 3.09 (m, 2H), 1.53 – 1.40 (m, 5H), 0.87 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 195.83, 180.14, 159.67, 159.18, 142.99, 133.11, 128.83, 128.26, 128.10, 122.52, 122.04, 114.30, 109.40, 55.41, 45.07, 44.01, 43.61, 41.14, 25.54, 22.57, 11.40. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₃H₂₅N₂O₄⁻ 393.1820; Found 393.1829. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm×25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.796 min, t (minor) = 17.826 min.

S)-3-(5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl)-2-oxo-N-propylp ropanamide (6aa)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (20.5 mg, 59% yield); $[\alpha]_D^{25} = -42.7$ (c = 0.15 in MeOH, 93% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.50 – 7.35 (m, 5H), 7.33 (td, J = 7.7, 1.2 Hz, 1H), 6.92 (s, 1H), 4.28 (dd, J = 19.0, 11.0 Hz, 1H), 3.84 (dd, J = 11.0, 3.2 Hz, 1H), 3.39 – 3.21 (m, 6H), 1.56 (dd, J = 14.6, 7.3 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.45, 171.51, 160.15, 141.54, 136.83, 136.80, 133.84, 130.01, 128.91, 128.85, 128.59, 127.55, 125.54, 124.02, 122.67, 41.16, 41.07, 36.25, 35.25, 22.63, 11.42. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O₃⁺ 351.1703; Found 351.1693. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 38.9 min, t (major) = 17.6 min.

NO.	Ret.Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)
1	17.587	523551	17337340	49.814	(6720)
2	39.044	238694	17467045	50.186	16.561

NO.	Ret.Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution (USP)
1	17.601	3185297	119471153	96.469	
2	38. 943	61788	4373016	3. 531	16.132

S) - N- benzyl- 3- (5- methyl- 6- oxo- 6,7- dihydro- 5H- dibenzo[b,d]azepin- 7- yl)- 2- oxopin (b,d) azepin- 7- yl) - 2- oxopin (b,d) azepin (b,d

ropanamide (6ab)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (34.2 mg, 86% yield); $[\alpha]_D^{25} = -40.0$ (c = 0.1 in MeOH, 94% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 6.5 Hz, 2H), 7.50 – 7.44 (m, 2H), 7.43-7.37 (m, 3H), 7.33 (t, J = 6.9 Hz, 3H), 7.30-7.25 (m, 3H), 7.18 (s, 1H), 4.49 (d, J = 4.6 Hz, 2H), 4.33 (dd, J = 18.9, 11.1 Hz, 1H), 3.85 (d, J = 10.9 Hz, 1H), 3.36 (d, J = 18.9 Hz, 1H), 3.31 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.16, 171.52, 160.03, 141.54, 137.03, 136.83, 136.81, 133.84, 130.04, 128.96, 128.89, 128.65, 128.04, 127.98, 127.61, 125.59, 124.03, 122.70, 43.63, 41.16, 36.29, 35.34. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₃N₂O₃⁺ 399.1703; Found 399.1697. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 61.1 min, t (major) = 33.3 min.

S)-*N*-(4-chlorobenzyl)-3-(5-methyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-y l)-2-oxopropanamide (6ad)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a white solid (34.8 mg, 81% yield): mp 162-165 °C; $[\alpha]_D^{25} = -24.0$ (c = 0.1 in MeOH, 93% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 7.3Hz, 2H), 7.50-7.45 (m, 2H), 7.42 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 7.5 Hz, 1H), 7.35-7.29 (m, 3H), 7.21 (d, J = 7.8 Hz, 3H), 4.46 (d, J = 5.8 Hz, 2H), 4.34 (dd, J =18.8, 11.1 Hz, 1H), 3.86 (d, J = 11.0 Hz, 1H), 3.33 (d, J = 19.5 Hz, 1H), 3.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.08, 171.53, 160.11, 141.51, 136.83, 136.74, 135.60, 133.86, 133.82, 130.05, 129.37, 129.10, 128.96, 128.91, 128.68, 127.65, 125.62, 124.00, 122.70, 42.91, 41.20, 36.31, 35.30. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₂₂ClN₂O₃⁺ 433.1313; Found 433.1321. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0

mL/min, $\lambda = 254$ nm, t (minor) = 68.7 min, t (major) = 37.6 min.

						(
N	NO.	Ret. Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)
	1	37.604	239721	17956914	96. 629	
	2	68.754	5790	626430	3.371	12.651

S)-3-(5-methyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-*N*-octyl-2-oxopro panamide (6ae)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:5) gave the product as a colorless oil (30.8 mg, 73% yield); $[\alpha]_D^{25} = -54.0$ (c = 0.1 in MeOH, 95% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (t, J = 5.6 Hz, 2H), 7.50-7.32 (m, 5H), 7.34 (t, J = 7.0 Hz, 1H), 6.88 (s, 1H), 4.29 (dd, J = 19.0, 11.0 Hz, 1H), 3.84 (d, J = 10.9 Hz, 1H), 3.40 – 3.27 (m, 6H), 1.53 (t, J = 6.1 Hz, 2H), 1.36-1.20 (m, 10H), 0.88 (t, J = 6.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.51, 171.54, 160.11, 141.57, 136.86, 136.83, 133.87, 130.05, 128.95, 128.88, 128.63, 127.59, 125.58, 124.07, 122.71, 41.09, 39.54, 36.30, 35.29, 31.89, 29.35, 29.31, 29.28, 26.99, 22.76, 14.20. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₃N₂O₃⁺ 421.2486; Found 421.2483. The enantiomeric ratio was determined by FLM Chiralcel MX(2) (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 33.6 min, t (major) = 24.6 min.

PDA Ch	11 254nm				
NO.	Ret.Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)
1	24.614	714827	71970445	97.478	
2	33.566	16766	1861916	2.522	3.200

(a*R*,

S)-3-(5-methyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-2-oxo-*N*-(2-(thio phen-2-yl)ethyl)propenamide (6af)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (31.6 mg, 76% yield); $[\alpha]_D^{25} = -50.0$ (c = 0.1 in MeOH, 92% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.55 (m, 2H), 7.47 (dd, J =15.9, 7.9 Hz, 2H), 7.42 (d, J = 7.6 Hz, 2H), 7.37 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.15 (d, J = 4.3 Hz, 1H), 7.03 (s, 1H), 6.93 (s, 1H), 6.83 (s, 1H), 4.29 (dd, J =18.7, 11.2 Hz, 1H), 3.84 (d, J = 10.7 Hz, 1H), 3.68 – 3.51 (m, 2H), 3.34 (d, J =21.3 Hz, 1H), 3.32 (s, 3H), 3.07 (t, J = 6.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.11, 171.50, 160.13, 141.53, 140.57, 136.83, 133.84, 130.04, 128.95, 128.89, 128.65, 127.61, 127.28, 125.72, 125.59, 124.32, 124.02, 122.71, 41.08, 40.77, 36.30, 35.25, 29.72. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₃N₂O₃S⁺ 419.1424; Found 419.1431. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda =$ 254 nm, t (minor) = 68.4 min, t (major) = 37.4 min.

S)-*N*-cyclohexyl-3-(5-methyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-2-o xo-propanamide (6ai)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:5) gave the product as a colorless oil (31.2 mg, 80% yield); $[\alpha]_D^{25} = -70.0$ (c = 0.1 in MeOH, 93% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.62-7.57 (m, 2H), 7.51 – 7.37 (m, 5H), 7.33 (t, J = 7.3 Hz, 1H), 6.78 (d, J = 7.4 Hz, 1H), 4.27 (dd, J = 19.0, 11.0 Hz, 1H), 3.83 (d, J = 11.0 Hz, 1H), 3.76 (d, J = 9.5 Hz, 1H), 3.37 (d, J = 19.1 Hz, 1H), 3.33 (s, 3H), 1.91 (dd, J = 23.1, 12.4 Hz, 2H), 1.72 (t, J = 12.7 Hz, 2H), 1.65-1.60 (m, 2H), 1.43-1.32 (m, 2H), 1.21 – 1.16 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.76, 171.54, 159.12, 141.58, 136.89, 136.82, 133.88, 130.04, 128.95, 128.88, 128.61, 127.58, 125.57, 124.08, 122.70, 48.42, 41.04, 36.28, 35.30, 32.80, 32.73, 25.51, 24.76. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₇N₂O₃⁺ 391.2016; Found 391.2029. The enantiomeric ratio was determined by FLM Chiralcel MX(2) (0.46 cm \times 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 35.6 min, t (major) = 21.7 min.

NO.	Ret.Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)
1	21.724	376384	36069917	96. 434	
2	35.643	10726	1333720	3. 566	4.955

S)-3-(5-methyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-1-(pyrrolidin-1-y l)propane-1,2-dione (6ak)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:2) gave the product as a colorless oil (18.2 mg, 50% yield); $[\alpha]_D^{25} = -36.0(c = 0.1 \text{ in MeOH}, 95\% \text{ ee}, >20:1 \text{ dr})$; ¹**H NMR** (500 MHz, CDCl₃) δ 7.59 (t, J = 6.4 Hz, 2H), 7.51-7.40 (m, 4H), 7.34 (t, J = 7.6 Hz, 2H), 4.03 (dd, J = 18.2, 11.3 Hz, 1H), 3.90 (dd, J = 11.3, 2.7 Hz, 1H), 3.67-3.52 (m, 4H), 3.41 (dd, J = 18.2, 3.1 Hz, 1H), 3.32 (s, 3H), 1.98 – 1.83 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 198.91, 171.80, 163.29, 141.57, 136.96, 136.94, 133.89, 130.06, 128.88, 128.64, 127.55, 125.59, 124.04, 122.76, 47.39, 46.35, 40.89, 37.50, 36.37, 26.47, 23.86. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₃N₂O₃⁺ 363.1703; Found 363.1691. The enantiomeric ratio was determined by FLM Chiralcel MX(2) (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 82.0 min, t (major) = 53.9 min.

S)-*N*-benzyl-3-(3,5-dimethyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-2-o xo-propanamide (6bb)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (37.0 mg, 90% yield); $[\alpha]_D^{25} = -46.0$ (c = 0.1 in MeOH, 93% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 7.2 Hz, 1H), 7.48-7.36 (m, 4H), 7.34 – 7.30 (m, 2H), 7.26 (d, J = 8.7 Hz, 3H), 7.20 (d, J = 9.4 Hz, 2H), 7.14 (d, J = 7.7 Hz, 1H), 4.48 (d, J = 5.5 Hz, 2H), 4.33 (dd, J = 18.7, 11.1 Hz, 1H), 3.84 (d, J = 10.8 Hz, 1H), 3.34 (d, J = 19.0 Hz, 1H), 3.30 (s, 3H), 2.45 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.23, 171.43, 160.02, 141.35, 139.01, 137.03, 136.83, 136.56, 131.00, 129.80, 128.93, 128.65, 128.43, 128.01, 127.95, 127.53, 126.55, 123.98, 123.07, 43.59, 41.18, 36.27, 35.36, 21.39. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₆H₂₅N₂O₃⁺ 413.1860; Found 413.1831. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm \times 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 52.2 min, t (major) = 25.3 min.

NO.	Ret.Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)
1	25.333	405869	25956307	96.637	
2	52.168	7849	903261	3. 363	11.208

S)-*N*-benzyl-3-(5,10-dimethyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-2oxo propanamide (6cb)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a white solid (36.7 mg, 89% yield): mp 159-162 °C; $[\alpha]_D^{25} = -38.0$ (c = 0.1 in MeOH, 91% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 7.7Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.42-7.38 (m, 2H), 7.35 – 7.31 (m, 3H), 7.30-7.25 (m, 5H), 7.18 (s, 1H), 4.49 (d, J = 5.6 Hz, 2H), 4.31 (dd, J = 18.9, 11.0 Hz, 1H), 3.81 (d, J = 10.8 Hz, 1H), 3.34 (dd, J = 19.2, 2.7 Hz, 1H), 3.30 (s, 3H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.23, 171.69, 160.04, 141.54, 137.28, 137.04, 136.65, 134.02, 133.92, 129.97, 129.68, 129.29, 128.95, 128.76, 128.03, 127.96, 125.51, 123.91, 122.69, 43.60, 40.80, 36.29, 35.36, 21.27. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₆H₂₅N₂O₃⁺ 413.1860; Found 413.1868. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 73.5 min, t (major) = 35.6 min.

S)-*N*-benzyl-3-(3-methoxy-5-methyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7 -yl)-2-oxopropanamide (6db)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4) gave the product as a colorless oil (37.1 mg, 87% yield); $[\alpha]_D^{25} = -48.0$ (c = 0.1 in MeOH, 92% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (dd, J = 13.3, 8.0 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.36-7.25 (m, 6H), 7.20 (s, 1H), 6.93-6.85 (m, 2H), 4.48 (d, J =5.3 Hz, 2H), 4.33 (dd, J = 18.8, 11.2 Hz, 1H), 3.89 (s, 3H), 3.85 (d, J = 10.6 Hz, 1H), 3.34 (d, J = 19.4 Hz, 1H), 3.29 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.19, 171.38, 160.01, 142.46, 137.02, 136.70, 136.20, 130.91, 128.93, 128.38, 128.28, 128.01, 127.94, 127.60, 127.54, 126.66, 124.00, 111.65, 107.97, 55.67, 43.58, 41.22, 36.29, 35.36. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅N₂O₄⁺ 429.1809; Found 429.1822. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46

cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 80.7 min, t

NO.	Ret.Time	Height(uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)
1	62.344	404409	46412587	96. 222	
2	80.662	13344	1822219	3. 778	5. 379

S)-N-benzyl-2-(3-methoxy-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7 -yl)acetamide

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:2) gave the product as a colorless oil (65.0 mg, 16% yield, 1 mmol scale); $[\alpha]_D^{25} = -78.0$ (c = 0.10 in MeOH, 85% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.47 (m, 2H), 7.37 (dd, J = 9.3, 5.7 Hz, 2H), 7.30 (dd, J = 13.7, 6.4 Hz, 3H), 7.24 – 7.14 (m, 3H), 7.04 (s, 1H), 6.95 – 6.82 (m, 2H), 4.42 (ddd, J = 38.1, 14.8, 5.6 Hz, 2H), 3.97 (dd, J = 10.6, 3.3 Hz, 1H), 3.88 (s, 3H), 3.46 (dd, J = 13.9, 10.9 Hz, 1H), 3.22 (s, 3H), 2.77 (dd, J = 14.1, 3.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.88, 171.43, 159.90, 142.12, 138.65, 137.15, 136.61, 130.85, 128.55, 128.14, 128.11, 127.66, 127.31, 127.23, 126.61, 123.38, 111.79, 108.02, 55.59, 43.49, 42.78, 36.19, 34.49. HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₂₅H₂₃N₂O₃⁻ 399.1714; Found 399.1712. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 17.046 min, t (major) = 22.328 min.

S)-*N*-benzyl-3-(3-fluoro-5-methyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-2-oxopropanamide (6eb)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:5) gave the product as a colorless oil (36.5 mg, 88% yield); $[\alpha]_D^{25} = -80.0$ (c = 0.23 in MeOH, 95% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.57-7.50 (m, 2H), 7.46 (t, J = 7.2Hz, 1H), 7.40 (dd, J = 19.9, 7.4 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.29 – 7.24 (m, 3H), 7.19 (s, 1H), 7.12 (d, J = 10.0 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H), 4.49 (d, J = 5.6 Hz, 2H), 4.33 (dd, J = 18.8, 11.1 Hz, 1H), 3.83 (d, J = 10.9 Hz, 1H), 3.36 (d, J = 18.9 Hz, 1H), 3.29 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.05, 171.29, 162.66 (d, J =249.1 Hz), 159.93, 142.63(d, J = 9.7 Hz), 137.00, 136.36, 136.07, 131.46 (d, J = 9.2Hz), 130.02 (d, J = 3.2 Hz), 129.02, 128.95, 128.55, 128.02, 127.98, 127.71, 124.13, 112.92 (d, J = 21.4 Hz), 109.60 (d, J = 23.8Hz), 43.60, 41.18, 36.19, 35.32. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.08. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₂₂FN₂O₃⁺ 417.1609; Found 417.1626. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 89.2 min, t (major) = 39.8 min.

475633

2.269

12.710

2

89.183

2538

S)-*N*-benzyl-3-(5-methyl-6-oxo-3-(trifluoromethyl)-6,7-dihydro-5*H*-dibenzo[*b*,*d*] azepin-7-yl)-2-oxopropanamide (6fb)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:5) gave the product as a colorless oil (32.4 mg, 70% yield); $[\alpha]_D^{25} = -36.0$ (c = 0.1 in MeOH, 96% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.66 (s, 1H), 7.61-7.56 (m, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.48 – 7.39 (m, 2H), 7.38 – 7.24 (m, 5H), 7.18 (s, 1H), 4.49 (d, *J* = 5.5 Hz, 2H), 4.34 (dd, *J* = 18.9, 11.0 Hz, 1H), 3.81 (d, *J* = 10.7 Hz, 1H), 3.39 (d, *J* = 19.0 Hz, 1H), 3.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.98, 171.31, 159.89, 141.75, 137.06, 136.96, 136.88, 135.64, 131.10 (q, *J* = 33.1 Hz), 130.77, 129.85, 128.97, 128.81, 128.01, 127.89, 124.30, 123.81 (q, *J* = 272.9 Hz), 122.08 (q, *J* = 3.5 Hz), 119.71 (q, *J* = 3.8 Hz), 43.63, 41.15, 36.33, 35.26. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.45. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₆H₂₂F₃N₂O₃⁺ 467.1577; Found 467.1577. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 33.8 min, t (major) = 22.5 min.

_	<u> </u>	1 2011111				
	NO.	Ret. Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)
	1	20.332	276150	19890999	49.742	
	2	31.434	224309	20097565	50.258	5.206

NO.	Ket. lime	Height (UAU)	Area(uAU*min)	Kel. Area %	Resolution(USP)
1	22.500	582187	32674584	98. 164	
2	33. 791	9231	611273	1.836	6.810

S) - N - benzyl - 3 - (3 - chloro - 5 - methyl - 6 - oxo - 6, 7 - dihydro - 5 H - dibenzo[b, d] a zepin - 7 - yl - benzyl - 3 - (b, d) - benzyl - 3 - benzyl - 3 - benzyl - 3 - benzyl - 5 - benzyl - ben

)-2- oxopropanamide (6gb)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:5) gave the product as a colorless oil (32.6 mg, 75% yield); $[\alpha]_D^{25} = -52.0$ (c = 0.1 in MeOH, 96% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.53 (t, J = 8.1 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 7.43-7.37 (m, 3H), 7.36 – 7.26 (m, 6H), 7.19 (s, 1H), 4.49 (d, J = 5.6Hz, 2H), 4.33 (dd, J = 18.8, 11.1 Hz, 1H), 3.81 (d, J = 10.8 Hz, 1H), 3.36 (d, J = 18.9 Hz, 1H), 3.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.01, 171.27, 159.92, 142.33, 136.99, 136.51, 135.90, 134.51, 132.29, 131.06, 129.28, 128.96, 128.52, 128.02, 127.98, 127.76, 125.77, 124.19, 122.74, 43.61, 41.17, 36.26, 35.30. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₂ClN₂O₃⁺ 433.1313; Found 433.1303. The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 73.9 min, t (major) = 46.6 min.

S)-*N*-benzyl-3-(5-benzyl-6-oxo-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-7-yl)-2-oxopr opanamide (6hb)

Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1:5) gave the product as a colorless oil (41.2 mg, 87% yield); $[\alpha]_D^{25} = -78.0$ (c = 0.1 in MeOH, 96% ee, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.46 (m, 3H), 7.42 (t, J =6.7 Hz, 2H), 7.38 (d, J = 7.9 Hz, 1H), 7.35-7.31 (m, 3H), 7.29-7.23 (m, 5H), 7.17 – 7.11 (m, 3H), 6.95 (d, J = 6.9 Hz, 2H), 5.06 – 4.94 (m, 2H), 4.48 (qd, J = 14.9, 6.0 Hz, 2H), 4.37 (dd, J = 19.1, 11.3 Hz, 1H), 3.95 (dd, J = 11.2, 2.5 Hz, 1H), 3.44 (dd, J =19.1, 2.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.17, 171.06, 160.01, 140.59, 137.46, 137.03, 136.89, 136.42, 134.52, 130.01, 129.05, 128.93, 128.85, 128.55, 128.47, 128.01, 127.94, 127.65, 126.92, 126.64, 125.93, 124.08, 123.03, 52.45, 43.57, 41.15, 35.50. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₇N₂O₃⁺ 475.2016;

Found 475.2019. The enantiomeric ratio was determined by Daicel Chiralcel OD-H (0.46 cm \times 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 47.2 min, t (major) = 20.5 min.

PDA Cr	PDA Chi 254nm							
NO.	Ret.Time	Height (uAU)	Area(uAU*min)	Rel.Area %	Resolution(USP)			
1	20.465	382659	31050544	98.481				
2	47.244	3112	479045	1.519	8. 553			

(2*S*,3a*R*)-3a,8-Dimethyl-*N*-propyl-3,3a,8,8a-tetrahydro-2*H*-furo[2,3-*b*]indole-2-c arboxamidev(7)

The 6:1 dr was determinded by ¹H NMR. Flash column chromatography on silica gel (ethyl acetate/petroleum ether 1:2) gave the product as a colorless oil (24.4 mg, 45% yield); $[\alpha]_D{}^{25} = +60.0$ (c = 0.11 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.10 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 7.3 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.42 (d, J = 7.8 Hz, 1H), 6.22 (s, 1H), 5.12 (s, 1H), 4.51 (dd, J = 9.1, 2.8 Hz, 1H), 3.03 (s, 3H), 2.83 (td, J = 13.3, 7.0 Hz, 1H), 2.76 – 2.63 (m, 2H), 2.49 (dd, J = 12.9, 9.2 Hz, 1H), 1.36 (s, 3H), 1.18 – 1.09 (m, 2H), 0.74 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.53, 148.75, 134.60, 128.57, 123.17, 119.10, 107.44, 106.39, 79.18, 51.93, 42.70, 40.60, 32.03, 24.06, 22.61, 11.49. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₆H₂₁N₂O₂⁻ 273.1609; Found 273.1609.

 $(\mathbf{a}\mathbf{R},$

4b*S*,6*R*,7a*S*)-*N*-benzyl-10-methoxy-8-methyl-4b,5,7a,8-tetrahydro-6*H*-dibenzo[*b*,*d*]furo[3,2-*f*]azepine-6-carboxamide (8)

The 3:1 dr was determinded by ¹H NMR. Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 2:1) gave the product as a colorless oil (15.8 mg, 38% yield); $[\alpha]_D^{25} = +134.0$ (c = 0.1 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.31 (m, 4H), 7.31 – 7.26 (m, 3H), 7.25-7.23 (m, 1H), 7.18 (d, *J* = 7.2 Hz, 2H), 6.72 (t, *J* = 4.5 Hz, 1H), 6.68 – 6.60 (m, 2H), 5.57 (d, *J* = 8.8 Hz, 1H), 4.47 (dd, *J* = 15.0,

7.3 Hz, 1H), 4.28 (dd, J = 11.1, 5.9 Hz, 1H), 4.10 (dd, J = 15.0, 5.0 Hz, 1H), 3.66 (s, 3H), 3.53 (dt, J = 13.4, 8.2 Hz, 1H), 2.92 (s, 3H), 2.29 – 2.20 (m, 1H), 1.78 (dd, J = 24.4, 12.5 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 171.94, 159.88, 146.99, 138.71, 138.20, 136.50, 130.31, 130.08, 129.89, 128.87, 128.75, 128.03, 127.48, 127.41, 127.31, 108.34, 108.16, 104.47, 77.54, 55.22, 49.12, 42.69, 40.69, 35.40. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₇N₂O₃⁺ 415.2016; Found 415.2008.

4. References

- [1] Y. Feng, S. Yang, S. Zhao, D.-P. Zhang, X. Li, H. Liu, Y. Dong, F.-G. Sun, Nickel-Catalyzed Reductive Aryl Thiocarbonylation of Alkene via Thioester Group Transfer Strategy, *Org. Lett.* 2020, 22, 6734–6738.
- H. Hu, Y. Peng, T. Yu, S. Cheng, S. Luo, Q. Zhu, Palladium-Catalyzed Enantioselective 7-exo-Trig Carbopalladation/Carbonylation: Cascade Reactions To Achieve Atropisomeric Dibenzo[b,d]azepin-6-ones, Org. Lett. 2021, 23, 3636–3640.

5. Copies of NMR and NOE Spectra

¹H NMR of 4aa (500 MHz, CDCl₃, *solvent)

¹H NMR of 3aa (400 MHz, CDCI₃, *solvent)

¹³C NMR of 3aa (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ab (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ab (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ac (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ac (126 MHz, CDCI₃, *solvent)

¹H NMR of 4ad (500 MHz, CDCI₃, *solvent)

¹³C NMR of 4ad (126 MHz, CDCI₃, *solvent)

¹H NMR of 4ae (500 MHz, CDCI₃, *solvent)

¹³C NMR of 4ae (126 MHz, CDCl₃, *solvent)

¹H NMR of 4af (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4af (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ag (500 MHz, CDCl₃, *solvent)

¹H NMR of 4ag' (500 MHz, CDCl₃, *solvent)

¹H NMR of 4ah (500 MHz, CDCI₃, *solvent)

¹³C NMR of 4ah (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ai (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ai (126 MHz, CDCl₃, *solvent)

¹H NMR of 4aj (500 MHz, CDCI₃, *solvent)

¹³C NMR of 4aj (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ak (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ak (126 MHz, CDCI₃, *solvent)

¹H NMR of 4al (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4al (126 MHz, CDCl₃, *solvent)

¹H NMR of 4am (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4am (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ba (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ba (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ca (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ca (126 MHz, CDCl₃, *solvent)

¹H NMR of 4da (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4da (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ea (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ea (126 MHz, CDCl₃, *solvent)

¹H NMR of 4fa (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4fa (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ga (500 MHz, CDCI₃, *solvent)

¹³C NMR of 4ga (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ha (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ha (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ia (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ia (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ja (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ja (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ka (500 MHz, CDCI₃, *solvent)

¹³C NMR of 4ka (126 MHz, CDCl₃, *solvent)

¹H NMR of 4Ia (500 MHz, CDCI₃, *solvent)

¹³C NMR of 4la (126 MHz, CDCl₃, *solvent)

¹H NMR of 4ma (500 MHz, CDCl₃, *solvent)

¹³C NMR of 4ma (126 MHz, CDCl₃, *solvent)

¹H NMR of 6aa (500 MHz, CDCI₃, *solvent)

¹³C NMR of 6aa (126 MHz, CDCl₃, *solvent)

¹H NMR of 6ab (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6ab (126 MHz, CDCl₃, *solvent)

¹H NMR of 6ad (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6ad (126 MHz, CDCl₃, *solvent)

¹H NMR of 6ae (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6ae (126 MHz, CDCl₃, *solvent)

¹H NMR of 6af (500 MHz, CDCl₃, *solvent)

¹H NMR of 6af (126 MHz, CDCI₃, *solvent)

¹H NMR of 6ai (500 MHz, CDCI₃, *solvent)

¹H NMR of 6ai (126 MHz, CDCI₃, *solvent)

¹H NMR of 6ak (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6ak(126 MHz, CDCl₃, *solvent)

¹H NMR of 6bb (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6bb (126 MHz, CDCl₃, *solvent)

S106

¹H NMR of 6cb (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6cb (126 MHz, CDCl₃, *solvent)

¹H NMR of 6db (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6db (126 MHz, CDCI₃, *solvent)

¹H NMR of mono insertion (500 MHz, CDCl₃, *solvent)

¹³C NMR of mono insertion (126 MHz, CDCI₃, *solvent)

S109

¹H NMR of 6eb (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6eb (126 MHz, CDCl₃, *solvent)

¹H NMR of 6fb (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6fb (126 MHz, CDCl₃, *solvent)

¹H NMR of 6gb (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6gb (126 MHz, CDCl₃, *solvent)

¹H NMR of 6hb (500 MHz, CDCl₃, *solvent)

¹³C NMR of 6hb (126 MHz, CDCl₃, *solvent)

¹H NMR of 7 (500 MHz, CDCl₃, *solvent)

¹³C NMR of 7 (126 MHz, CDCI₃, *solvent)

¹H NMR of 8 (500 MHz, CDCl₃, *solvent)

¹³C NMR of 8 (126 MHz, CDCl₃, *solvent)

S116

