Synthesis of amidines via iron-catalyzed dearomative amination of βnaphthols with oxadiazolones

Yan-Hui Fan,[†] Xiao-Yu Guan,[†] Wen-Pei Li, Cheng-Zhou Lin, De-Xian Bing, Mei-Zhi Sun, Guo Cheng, Jing Cao,^{*} Jun-Jie Chen and Qing-Hai Deng^{*}

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

E-mail: <u>qinghaideng@shnu.edu.cn</u>

[†]Y.-H. F. and X.-Y. G. contributed equally.

Supporting Information

Table of Contents:

- I. General Information
- **II. Preparation of the Substrates**
- **III. Optimization of Reaction Conditions**
- **IV. General Procedure for Catalytic Reaction**
- **V.** Further Transformations
- **VI.** Mechanistic Experiments
- VII. Crystallographic Data
- VIII. References

IX. NMR Spectra of New Compounds (¹H NMR, ¹³C NMR)

I. General Information

All manipulations were maintained under an atmosphere of nitrogen unless otherwise stated. Commercially available reagents were used without further purification. Solvents were pre-dried over activated 4 Å molecular sieves and were refluxed over sodium-benzophenone (toluene, tetrahydrofurane), phosphorus pentoxide (chloroform) or calcium hydride (dichloromethane, dichloroethane, acetonitrile) under an nitrogen atmosphere and collected by distillation. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 101 MHz NMR spectrometer. Infrared spectra were prepared as KBr pellets and were recorded on a Varian Excalibur 3100 series FT-IR spectrometer. Mass spectra were recorded by the mass spectrometry service of Shanghai Institute of Organic Chemistry.

II. Preparation of the Substrates

 $1a^{[1]}, 1b^{[1]}, 1c^{[1]}, 1e^{[1]}, 1f^{[1]}, 1g^{[1]}, 1h^{[1]}, 1j^{[1]}, 1n^{[1]}, 1n^{[1]}, 1o^{[2]}, 1d^{[2]}, 1i^{[2]}, 1k^{[2]}$ and $1n^{[2]}$ were prepared according to the published procedures. The synthesis of substituted oxadiazolones 2 was accomplished following the reported procedures.^[3, 4, 5, 6].

3-(4-(*tert***-butyl)phenyl)-4-phenyl-1,2,4-oxadiazol-5(4H)-one (2f);** white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.42 (m, 3H), 7.35 – 7.32 (m, 2H), 7.27 – 7.21 (m, 4H), 1.26 (s, 9H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.4, 157.4, 155.5, 132.1, 129.8, 129.5, 127.8, 127.0, 125.9, 120.0, 35.0, 31.0; HRMS (ESI, m/z): calcd for C₁₈H₁₉N₂O₂⁺ [M+H]⁺: 295.1441; found: 295.1446.

4-(2,4-dimethoxyphenyl)-3-(p-tolyl)-1,2,4-oxadiazol-5(4H)-one (2l); white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 1H), 7.13 (d, *J* = 7.6Hz, 2H), 6.54 (dt, *J* = 8.8, 2 Hz,1H), 6.47 (s, 1H), 3.82 (s, 3H), 3.61 (s, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 162.2, 158.9, 158.6, 156.0, 142.0, 129.9, 129.4, 127.2, 120.9, 113.5, 105.3, 99.7, 55.7, 55.6, 21.4; HRMS (ESI, m/z): calcd for C₁₇H₁₇N₂O₄⁺ [M+H]⁺: 313.1183; found: 313.1180.

III. Optimization of Reaction Conditions

 Table S1. Optimization of the Reaction Conditions (Metal Salts) for the Synthesis of

 Product 3aa

	ha ha ha ha ha ha ha ha	Cat. (10 mol %) DCE, 70 °C, N ₂	HN N HN N Jaa
Entry	catalyst	Time (h)	yield b (%)
1	FeCl ₂	16	62
2	Cu(OTf)2	16	\mathbf{NR}^{c}
3	[Ru(p-Cymene)Cl2]2	16	\mathbf{NR}^{c}
4	CoCl ₂	16	NR^{c}
5	Ni(OAc) ₂	16	NR^{c}
6	[Rh(1,5-cod)Cl] ₂	16	NR^{c}
7	[IrCp*Cl2]2	16	trace
8	Pd(OAc) ₂	16	\mathbf{NR}^{c}
9	Zn(OTf)2	16	\mathbf{NR}^{c}

10	Mn(OTf)2	16	NR^{c}
11	FeBr ₂	16	50
12	FeF ₂	16	trace
13	FeI ₂	16	28
14	Fe(ClO ₄) ₂ •H ₂ O	16	16
15	Fe(OAc) ₂	16	\mathbf{NR}^{c}
16	FeCl ₃	16	29
17	FeF ₃	16	20
18	FeBr ₃	16	18
19	Fe(OTf) ₃	16	\mathbf{NR}^{c}

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (1.1 equiv), Cat. (10 mol %), DCE (3mL), 70 ^oC, N₂ atmosphere. ^{*b*} Isolated yield. ^{*c*} No Reaction. DCE = 1,2dichloroethane.

Table S2. Optimization of the Reaction Conditions (solvent, temperature and time) for

 the Synthesis of Product **3aa**

$ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} $ \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\				
Entry	solvent	Temp (°C)	Time (h)	yield ^b (%)
1	DCM	50	16	62
2	MeCN	70	16	34
3	PhCl	70	16	49
4	CHCl ₃	60	16	31
5	CCl4	70	16	NR^{c}
6	Toluene	70	16	45
7	1,4-Dioxane	70	16	trace
8	DCM	40	16	12
9	DCM	rt	16	\mathbf{NR}^{c}

10	DCM	50	36	63
11	DCM	50	48	65

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (1.1 equiv), FeCl₂ (10 mol%), solvent (3 mL), N₂ atmosphere. ^{*b*} Isolated yield. ^{*c*} No Reaction. DCM= Dichloromethane.

 Table S3. Optimization of the Reaction Conditions (additive or base) for the Synthesis

n -

of Product 3aa

	Ta	Za	36	aa	
Entry	solvent	Additive/base	Time (h)	yield ^b (%)	
1	DCM	Bu4NCl	48	74	
2	DCM	Bu4NBr	48	78	
3	DCM	Bu4NI	48	76	
4	DCM	LiCl	48	22	
5	DCM	LiBr	48	23	
6	DCM	KBr	48	21	
7	DCM	NaI	48	trace	
8	DCM	K ₂ CO ₃	48	64	
9	DCM	CsCO ₃	48	62	
10 ^c	DCM	Bu4NBr	48	92	
11 ^{<i>c</i>,<i>d</i>}	DCM	Bu ₄ NBr	48	60	
12 ^{<i>c</i>,<i>e</i>}	DCM	Bu4NBr	48	76	
13 ^{<i>c,f</i>}	DCM	Bu ₄ NBr	48	92	
14 ^{g,f}	DCM	Bu4NBr	48	85	

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (1.1 equiv), FeCl₂ (10 mol %), solvent (3 mL), N₂ atmosphere. ^{*b*} Isolated yield. ^{*c*} 15 mol % of FeCl₂ was used. ^{*d*} 4 equiv of Bu₄NBr was used. ^{*e*} 10 mol % of Bu₄NBr was used. ^{*f*} 1.5 equiv of Bu₄NBr was used. ^{*g*} 12 mol % of FeCl₂ was used.

IV. General Procedure for Catalytic Reaction.

General Procedure:

To a 20 mL over-dried and sealed flask were added **1** (0.2 mmol), **2** (0.22 mmol), FeCl₂ (15 mol %, 0.03 mmol), ^{*n*}Bu₄NBr (0.3 mmol) and anhydrous CH₂Cl₂ (3 mL) under N₂ atmosphere. The mixture was stirred at 50 °C for 48 hours as monitoring by TLC. Upon completion, the crude product was purified by column chromatography via silica gel to afford the desired product **3**.

The procedure for gram Scale:

To a 100 mL over-dried and sealed flask were added **1a** (3.5 mmol), **2a** (3.9 mmol), FeCl₂ (15 mol %, 67 mg), ^{*n*}Bu₄NBr (5.3 mmol) and anhydrous CH₂Cl₂ (50 mL) under N₂ atmosphere. The solution was stirred at 50 °C for 48 hours as monitoring by TLC. Upon completion, the crude product was purified by column chromatography via silica gel to afford the desired product **3aa** (2.9 mmol, 1.10 g, 83% yield).

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-N'-

phenylbenzimidamide (3aa); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; **TLC:** $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid

(m.p.: 293-295 °C); 92% yield (70 mg, 0.19 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.67 (d, J = 8.0 Hz, 1H), 7.35-7.31 (m, 1H), 7.21 (d, J = 4.4 Hz, 3H), 7.16 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 7.6 Hz, 2H), 6.88 (t, J = 7.6 Hz, 2H), 6.69 (t, J = 7.2Hz, 1H), 6.17 (d, J = 8.0 Hz, 2H), 5.52 (br, 1H), 2.28 (s, 3H), 2.10 (s, 3H), 1.44 (s, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.7, 153.6, 149.7, 146.2, 140.2, 139.5, 132.4, 130.9, 130.2, 129.0, 128.7, 128.6, 128.4, 128.1, 126.6, 123.9, 122.3, 121.3, 61.8, 29.1, 21.5, 16.2. IR ν (neat, cm⁻¹): 3297, 2920, 2848, 2360, 1624, 1594, 1489, 823; HRMS (ESI, m/z): calcd for C₂₆H₂₅N₂O⁺ [M+H]⁺: 381.1961; found: 381.1961.

(E)-N-(1-ethyl-3-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-N'-

phenylbenzimidamide (3ba); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 301-303 °C); 91% yield (72 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.62 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.24 – 7.14 (m, 5H), 7.03 (d, J =7.6 Hz, 2H), 6.88 (t, J = 7.6 Hz, 2H), 6.68 (t, J = 7.6 Hz, 1H), 6.16 (d, J = 7.6 Hz, 2H), 5.47 (s, 1H), 2.28 (s, 3H), 2.08 (s, 3H), 2.02 – 1.93 (m, 1H), 1.90 – 1.80 (m, 1H), 0.63 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 201.0, 153.5, 149.7, 144.4, 140.2, 139.4, 134.0, 131.8, 131.0, 129.0, 128.6, 128.4, 128.08, 128.05, 126.6, 124.5, 122.3, 121.2, 64.9, 36.7, 21.5, 16.0, 7.4; IR ν (neat, cm⁻¹): 3321, 2920, 2357, 2334, 1654, 1592, 1499, 502; HRMS (ESI, m/z): calcd for C₂₇H₂₇N₂O⁺ [M+H]⁺: 395.2118; found: 395.2117.

(E)-N-(1-butyl-3-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-N'-

phenylbenzimidamide (3ca); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 286-289 °C); 89% yield (75 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 6.8 Hz, 1H), 7.23 – 7.13(m, 5H), 7.02 (d, J = 8.0 Hz, 2H), 6.87 (t, J = 7.6 Hz, 2H), 6.68 (t, J = 7.6 Hz, 1H), 6.15 (d, J = 7.6Hz, 2H), 5.47 (br, 1H), 2.28 (s, 3H), 2.08 (s, 3H), 1.92 (td, J = 12.4. 4.4 Hz, 1H), 1.78 (td, J = 12, 4.8 Hz, 1H), 1.18 - 1.01 (m, 3H), 0.96 – 0.86 (m, 1H), 0.74 (t, J = 6.4 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 201.0, 153.4, 149.7, 144.8, 140.0, 139.4, 133.8, 131.7, 131.0, 129.0, 128.6, 128.4, 128.1, 126.6, 124.4, 122.3, 121.2, 64.5, 43.5, 24.6, 23.0, 21.5, 16.1, 13.9; IR ν (neat, cm⁻¹): 3317, 2955, 2920, 2860, 2334, 1657, 1594, 1512, 1275, 827, 696, 587, 509; HRMS (ESI, m/z): calcd for C₂₉H₃₁N₂O⁺ [M+H]⁺: 423.2431; found: 423.2430.

(E)-N-(1-allyl-3-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-N'-

phenylbenzimidamide (3da); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 275-277 °C); 87% yield (71 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.63 (d, J = 8.0 Hz, 1H), 7.33 (td, J = 6.8, 2.0 Hz, 1H), 7.24 – 7.15(m, 5H), 7.03 (d, J = 8.0 Hz, 2H), 6.88 (t, J = 7.6 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 6.17 (d, J = 7.6 Hz, 2H), 5.59– 5.48 (m, 2H), 5.06 (s, 1H), 5.02(d, J = 8.0 Hz, 1H), 2.52 (d, J = 7.2 Hz, 2H), 2.29 (s, 3H), 2.07 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.0, 153.4, 149.7, 144.4, 140.2, 139.4, 133.2, 131.04, 131.00, 129.0, 128.6, 128.4, 128.3, 128.1, 126.7, 124.5, 122.2, 121.3, 120.1, 64.4, 46.4, 21.5, 16.1; **IR** *v* (neat, cm⁻¹): 3347, 2915, 2848, 2364, 2342, 1656, 1630, 1591, 1482, 818, 665; **HRMS (ESI, m/z):** calcd for C₂₈H₂₇N₂O⁺ [M+H]⁺: 407.2118; found: 407.2117.

(E)-4-methyl-N-(1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-N'-

phenylbenzimidamide (3ea); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 5:1; TLC: R_f = 0.4 (PE/EA=2 : 1, UV); white solid (m.p.: 298-301 °C); 53% yield (39 mg, 0.11 mmol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 7.6 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.26 – 7.19 (m, 5H), 7.03 (d, J = 7.6 Hz, 2H), 6.94 (t, J = 7.6 Hz, 2H), 6.80 – 6.76 (m, 1H), 6.35 (s, 2H), 6.22 (s, 1H), 2.28 (s, 3H), 1.50 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.7, 155.0, 146.3, 141.7, 139.8, 129.8, 129.7, 129.0, 128.8, 128.2, 126.8, 125.2, 124.8, 123.2, 122.2, 63.6, 27.8, 21.5; IR ν (neat, cm⁻¹): 3295, 2922, 2850, 2359, 1666, 1592, 1482, 823; HRMS (ESI, m/z): calcd for C₂₅H₂₃N₂O⁺ [M+H]⁺: 367.1805; found: 367.1804.

(*E*)-*N*-(3-chloro-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-*N*'phenylbenzimidamide (3fa); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; **TLC:** R_f = 0.2 (PE/EA=10 : 1, UV); yellow solid (m.p.: 316-318 °C); 88% yield (71 mg, 0.18 mmol); ¹**H NMR (400 MHz, Chloroform***d*) δ 7.73 (d, J = 8.0 Hz, 1H), 7.54 (s, 1H), 7.41 (td, J = 6.8, 2 Hz, 1H), 7.25 – 7.21(m, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.93 (t, J = 7.6 Hz, 2H), 6.76 (t, 7.2 Hz, 1H), 6.28 (d, J = 7.6Hz, 2H), 5.58 (br, 1H), 2.29 (s, 3H), 1.52 (s, 3H); ¹³C{¹H} **NMR (101 MHz, DMSO-***d6*) δ 191.8, 153.8, 149.3, 146.7, 140.0, 139.0, 130.0, 129.7, 129.2, 128.70, 128.68, 128.56, 128.1, 126.8, 124.2, 122.0, 121.0, 63.1, 27.6, 20.8; **IR** *v* (neat, cm⁻¹): 3357, 3318, 2920, 2850, 2359, 2341, 1674, 1593, 1486, 925, 739; **HRMS** (**ESI, m/z):** calcd for C₂₅H₂₂ClN₂O⁺ [M+H]⁺: 401.1415; found: 401.1416.

(*E*)-*N*-(3-bromo-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-*N*'phenylbenzimidamide (3ga); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); yellow solid (m.p.: 315-317 °C); 90% yield (80 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.82 (s, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.26 – 7.22 (m, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.92 (t, J = 7.6 Hz, 2H), 6.74 (t, J =7.2 Hz, 1H), 6.26 (d, J = 7.6 Hz, 2H), 5.64 (br, 1H), 2.29 (s, 3H), 1.51 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 193.7, 153.8, 148.7, 146.2, 144.7, 139.8, 130.2, 130.1, 129.6, 129.0, 128.9, 128.6, 128.2, 127.1, 124.4, 122.5, 122.2, 121.9, 63.5, 28.5, 21.5; IR ν (neat, cm⁻¹): 3355, 2920, 2843, 2356, 2339, 1674, 1591, 1483, 824, 695; HRMS (ESI, m/z): calcd for C₂₅H₂₂BrN₂O⁺ [M+H]⁺: 445.0910; found: 445.0909.

(E)-N-(3-iodo-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-N'-

phenylbenzimidamide (3ha); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); yellow solid (m.p.: 324-326 °C); 92% yield (91 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroformd) δ 8.14 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.43 (td, J = 7.2, 2.0 Hz, 1H), 7.26 – 7.21(m, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.91 (t, J = 7.6 Hz, 2H), 6.73 (t, J = 7.6 Hz, 1H), 6.23 (d, J = 7.6 Hz, 2H), 5.62 (br, 1H), 2.29 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 194.7, 153.7, 152.5, 148.9, 146.9, 139.8, 130.8, 130.4, 130.2, 129.0, 128.8, 128.7, 128.2, 126.9, 124.3, 122.4, 121.8, 101.7, 62.1, 28.8, 21.5; IR ν (neat, cm⁻¹): 3351, 2920, 2845, 2339, 1661, 1631, 1589, 1482, 824, 665; HRMS (ESI, m/z): calcd for C₂₅H₂₂IN₂O⁺ [M+H]⁺: 493.0771; found: 493.0771.

3ia

(E)-N-(3-ethyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-N'-

phenylbenzimidamide (3ia); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 300-304 °C); 85% yield (67 mg, 0.17 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.68 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 6.4 Hz, 1H), 7.26 – 7.17 (m, 5H), 7.04 (d, J = 8.0 Hz, 2H), 6.88 (t, J = 7.6 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 6.17 (d, J = 8.0 Hz, 2H), 5.53 (br, 1H), 2.52 (q, J = 7.6 Hz, 2H), 2.29 (s, 3H), 1.44 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.2, 153.6, 149.9, 146.1, 139.4, 138.6, 137.9, 130.9, 130.2, 128.9, 128.71, 128.65, 128.6, 128.0, 126.6, 123.8, 122.2, 121.2, 61.9, 29.0, 22.8, 21.4, 13.1; **IR** *v* (neat, cm⁻¹): 3353, 3304, 2920, 2850, 1656, 1630, 1593, 1484, 1379, 821, 509; **HRMS (ESI, m/z):** calcd for C₂₇H₂₇N₂O⁺ [M+H]⁺: 395.2118; found: 395.2117.

(E)-4-methyl-N-(1-methyl-2-oxo-3-phenyl-1,2-dihydronaphthalen-1-yl)-N'-

phenylbenzimidamide (3ja); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); yellow solid (m.p.: 276-279 °C); 95% yield (84 mg, 0.19 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.75 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.2 Hz, 2H), 7.51 (s, 1H), 7.48 – 7.34 (m, 5H), 7.26 (t, J = 9.2 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 7.6 Hz, 2H), 6.88 (t, J = 7.6 Hz, 2H), 6.69 (t, J = 7.2 Hz, 1H), 6.20 (d, J = 7.6 Hz, 2H), 5.64 (s, 1H), 2.29 (s, 3H), 1.55 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 198.9, 153.7, 149.7, 146.7, 141.6, 139.5, 136.6, 135.5, 130.8, 129.9, 129.62, 129.60, 129.04, 128.98, 128.7, 128.2, 128.1, 127.9, 126.8, 123.9, 122.2, 121.3, 62.5, 29.0, 21.5; IR ν (neat, cm⁻¹): 3359, 3321, 2920, 2848, 2357, 1662, 1628, 1591, 1487, 825, 695; HRMS (ESI, m/z): calcd for C₃₁H₂₇N₂O⁺ [M+H]⁺: 443.2118; found:443.2117.

(*E*)-*N*-(3-benzyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-*N*'phenylbenzimidamide (3ka) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 302-305 °C); 89% yield (81 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.67 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.26 – 7.16 (m, 9H), 7.04 (t, J = 10.0 Hz, 3H), 6.88 (t, J = 7.6 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.10 (d, J = 7.6 Hz, 2H), 5.51 (br, 1H), 3.84 (s, 2H), 2.28 (s, 3H), 1.43 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 199.9, 153.5, 149.7, 146.3, 141.0, 139.8, 139.5, 135.6, 130.8, 129.9, 129.3, 129.1, 129.0, 128.7, 128.5, 128.1, 126.6, 126.1, 123.8, 122.3, 121.3, 62.1, 35.6, 29.0, 21.5; **IR** *v* (neat, cm⁻¹): 3359, 3316, 2920, 2848, 2360, 2341, 1661, 1653, 1486, 821, 418; **HRMS (ESI, m/z):** calcd for C₃₂H₂₉N₂O⁺ [M+H]⁺: 457.2274; found:457.2271.

3la

(E)-N-(3-allyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-N'-

phenylbenzimidamide (3la) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 276-279 °C); 77% yield (63 mg, 0.15 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.69 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 6.0 Hz, 1H), 7.26 – 7.17 (m, 5H), 7.03 (d, J = 8 Hz, 2H), 6.89 (t, J = 7.6 Hz, 2H), 6.70 (t, J = 7.6 Hz, 1H), 6.19 (d, J = 8.0 Hz, 2H), 6.03 – 5.93 (m, 1H), 5.58 (br, 1H), 5.19 – 5.10(m, 2H), 3.31 – 3.20 (m, 2H), 2.29 (s, 3H), 1.45 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 198.7, 153.7, 149.5, 146.1, 140.1, 139.5, 135.8, 134.4, 130.7, 129.9, 129.0, 128.9, 128.8, 128.7, 128.1, 126.7, 123.9, 122.4, 121.4, 116.8, 62.1, 33.6, 28.9, 21.4; IR ν (neat, cm⁻¹): 3299, 2921, 2845, 2341, 1659, 1629, 1483, 1442, 823, 421; HRMS (ESI, m/z): calcd for C₂₈H₂₇N₂O⁺ [M+H]⁺: 407.2118; found: 407.2119.

(*E*)-4-methyl-*N*-(1-methyl-2-oxo-3-(phenylethynyl)-1,2-dihydronaphthalen-1-yl)-*N*'-phenylbenzimidamide (3ma); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 5:1; TLC: R_f = 0.2 (PE/EA=5 : 1, UV); yellow solid (m.p.: 231-234 °C); 76% yield (71 mg, 0.15 mmol); ¹H NMR (400 MHz, Chloroform*d*) δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.32 (m, 9H), 7.25 – 7.22 (m, 3H), 7.05 – 7.00(m, 4H), 6.92 (br, 1H), 6.63 (br, 1H), 2.27 (s, 3H), 1.61 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 145.1, 139.8, 131.9, 130.3, 129.3, 128.9, 128.6, 128.5, 128.4, 128.3, 127.0, 125.9, 124.1, 122.9, 120.2, 95.1, 85.7, 66.7, 29.8, 21.5; IR *v* (neat, cm⁻¹): 3349, 3061, 2923, 2853, 2360, 2340, 1664, 1630, 1593, 1489, 1366, 1156, 824,, 519; HRMS (ESI, m/z): calcd for C₃₃H₂₇N₂O⁺ [M+H]⁺: 467.2118; found: 467.2117.

(*E*)-*N*-(7-methoxy-1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methyl-*N'*phenylbenzimidamide (3na) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 319-322 °C); 85% yield (70 mg, 0.17 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.25 (s, 1H), 7.17(t, J = 6.8 Hz, 4H), 7.04 (d, J = 7.6 Hz, 2H), 6.90 (t, J = 7.6 Hz, 2H), 6.76 – 6.70 (m, 2H), 6.22 (d, J = 7.6 Hz, 2H), 5.52 (br, 1H), 3.86 (s, 3H), 2.28 (s, 3H), 2.07 (s, 3H), 1.43 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.8, 160.5, 153.6, 149.7, 148.5, 140.2, 139.4, 130.9, 129.9, 129.8, 128.9, 128.6, 128.1, 123.6, 122.3, 121.3, 111.3, 110.4, 62.0, 55.4, 29.4, 21.4, 16.1; **IR** *v* (neat, cm⁻¹): 3356, 3299, 2920, 2850, 2362, 1631, 1628, 1594, 1493, 1425, 1207, 823, 509; **HRMS (ESI, m/z)**: calcd for C₂₇H₂₇N₂O₂⁺ [M+H]⁺: 411.2067; found:411.2067.

(*E*)-*N*-(1,3-dimethyl-2-oxo-6-phenyl-1,2-dihydronaphthalen-1-yl)-4-methyl-*N*'phenylbenzimidamide (3oa) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 285-288 °C); 78% yield (71 mg, 0.16 mmol); ¹H NMR (400 MHz, Chloroform*d*) δ 7.75 (d, *J* =8.0 Hz, 1H), 7.61 – 7.57 (t, *J* = 8.0 Hz, 3H), 7.44 (t, *J* = 8.4 Hz, 3H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.28 (s, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.90 (t, *J* = 7.6 Hz, 2H), 6.70 (t, *J* = 7.6 Hz, 1H), 6.22 (d, *J* = 7.6 Hz, 2H), 5.56 (s, 1H), 2.29 (s, 3H), 2.13 (s, 3H), 1.48 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.4, 153.7, 149.6, 145.1, 140.6, 140.0, 139.51, 139.46, 132.8, 130.8, 130.5, 129.0, 128.9, 128.7, 128.1, 127.4, 127.1, 127.0, 124.5, 122.4, 121.4, 61.7, 29.0, 21.4, 16.3; IR ν (neat, cm⁻¹): 3349, 3054, 2923, 2854, 2237, 1666, 1630, 1592, 1483, 1367, 1115, 824, 696, 518; HRMS (ESI, m/z): calcd for C₃₂H₂₉N₂O⁺ [M+H]⁺: 457.2274; found: 457.2275.

3ab

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-3-methyl-N'phenylbenzimidamide (3ab); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; **TLC**: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 295-298 °C); 82% yield (62 mg, 0.16 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.68 (d, J = 7.6 Hz, 1H), 7.36 – 7.26 (m, 1H), 7.22 (d, J = 4.4 Hz, 3H), 7.18 – 7.05 (m, 3H), 7.01 (s, 1H), 6.88 (t, J = 7.6 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 6.18 (d, J = 7.6 Hz, 2H), 5.52 (br, 1H), 2.26 (s, 3H), 2.10 (s, 3H), 1.45 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.5, 153.7, 149.5, 146.2, 140.2, 138.0, 133.7, 132.4, 130.12, 130.09, 129.1, 128.7, 128.4, 128.1, 128.0, 126.6, 125.8, 123.9, 122.3, 121.4, 61.9, 29.0, 21.4, 16.2; **IR** ν (neat, cm⁻¹): 3298, 2920, 2850, 2359, 1659, 1630, 1589, 1482, 793; **HRMS (ESI, m/z):** calcd for C₂₆H₂₅N₂O⁺ [M+H]⁺: 381.1961; found: 381.1962.

3ac

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-2-methyl-N'-

phenylbenzimidamide (3ac) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 5:1; TLC: R_f = 0.2 (PE/EA=5 : 1, UV); yellow oil; 96% yield (73 mg, 0.19 mmol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, J = 7.6 Hz, 1H), 7.43 – 7.26 (m, 5H), 7.22 – 7.10 (m, 2H), 7.03 (d, J = 7.6 Hz, 1H), 6.84 (t, J = 7.6 Hz, 2H), 6.66 (t, J = 7.2 Hz, 1H), 6.16 (d, J = 8.0 Hz, 2H), 5.43 (s, 1H), 2.12 (s, 6H), 1.43 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.8, 154.1, 149.1, 146.3, 140.3, 136.0, 134.1, 132.4, 130.2, 130.1, 129.6, 129.0, 128.7, 128.4, 127.8, 126.6, 125.4, 124.0, 122.1, 121.6, 61.6, 29.0, 19.5, 16.3; IR ν (neat, cm⁻¹): 3360, 2922, 2848, 2359, 2341, 1661, 1630, 1593, 1485, 695; HRMS (ESI, m/z): calcd for C₂₆H₂₅N₂O⁺ [M+H]⁺: 381.1961; found: 381.1959.

3ad

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-N'-

phenylbenzimidamide (3ad); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 275-279 °C); 83% yield (61 mg, 0.17 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.69 (d, J = 7.6 Hz, 1H), 7.41 – 7.32 (m, 2H), 7.32 – 7.26 (m, 4H), 7.24 – 7.19 (m, 3H), 6.88 (t, J = 7.6 Hz, 2H), 6.69 (t, J = 7.6 Hz, 1H), 6.18 (d, J = 7.6 Hz, 2H), 5.57 (br, 1H), 2.11 (s, 3H), 1.45 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.7, 153.6, 149.5, 146.1, 140.2, 133.8, 132.4, 130.1, 129.4, 128.74, 128.69, 128.4, 128.3, 128.1, 126.6, 123.9, 122.3, 121.4, 61.8, 29.1, 16.2; IR v (neat, cm⁻¹): 3339, 2985, 2922, 2848, 1661, 1632, 1592, 1484, 1260, 750, 698; HRMS (ESI, m/z): calcd for C₂₅H₂₃N₂O⁺ [M+H]⁺: 367.1805; found: 367.1804.

3ae

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-methoxy-N'-

phenylbenzimidamide (3ae); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); yellow solid (m.p.: 276-278 °C); 87% yield (69 mg, 0.17 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.68 (d, J = 7.6 Hz, 1H), 7.37 – 7.29 (m, 1H), 7.26 – 7.12 (m, 5H), 6.90 (t, J = 7.6 Hz, 2H), 6.80 – 6.62 (m, 3H), 6.37 – 6.09 (m, 2H), 5.56 (s, 1H), 3.75 (s, 3H), 2.09 (s, 3H), 1.44 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.2, 160.4, 153.4, 149.6, 146.1, 140.0, 132.4, 130.3, 130.1, 128.7, 128.4, 128.1, 126.6, 125.8, 123.9, 122.4, 121.4, 113.6, 61.9, 55.3, 28.9, 16.2; **IR** *v* (neat, cm⁻¹): 3358, 2917, 2848, 2362, 1664, 1631, 1589, 1482, 1437, 1172, 1028, 833, 514; **HRMS (ESI, m/z):** calcd for C₂₆H₂₅N₂O₂⁺ [M+H]⁺: 397.1911; found: 397.1912.

(E)-4-(tert-butyl)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-N'-

phenylbenzimidamide (3af) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 276-279 °C); 98% yield (83 mg, 0.19 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.67 (d, J = 8.0 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.28 – 7.13 (m, 7H), 6.89 (t, J = 7.6 Hz, 2H), 6.70 (t, J = 7.6 Hz, 1H), 6.19 (d, J = 7.6 Hz, 2H), 5.54 (s, 1H), 2.10 (s, 3H), 1.44 (s, 3H), 1.26 (s, 9H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.8, 153.4, 152.6, 149.7, 146.3, 140.2, 132.5, 130.8, 130.2, 128.7, 128.5, 128.4, 128.1, 126.6, 125.2, 123.9, 122.2, 121.3, 61.8, 34.8, 31.3, 29.1, 16.2; IR ν (neat, cm⁻¹): 3328, 2962, 2848, 2362, 1662, 1623, 1592, 1485, 1437, 1126, 841, 695; HRMS (ESI, m/z): calcd for C₂₉H₃₁N₂O⁺ [M+H]⁺: 423.2431; found: 423.2432.

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4-fluoro-N'-

phenylbenzimidamide (3ag); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 298-302 °C); 86% yield (66 mg, 0.17 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.66 (d, J = 7.6 Hz, 1H), 7.36 – 7.32 (m, 1H), 7.28 -7.25 (m, 2H), 7.24 – 7.17 (m, 3H), 6.91 (dd, J = 18.4, 8.8 Hz, 4H), 6.70 (t, J = 7.6 Hz, 1H), 6.16 (d, J = 8.0 Hz, 2H), 5.51 (s, 1H), 2.10 (s, 3H), 1.45 (s, 3H); ¹³C{¹H} **NMR (101 MHz, Chloroform-***d***)** δ 200.5, 163.2 (d, J = 250.7 Hz) 152.7, 149.3, 146.0, 140.3, 132.4, 130.8 (d, J = 8.4 Hz), 130.1, 129.8, 128.8, 128.5, 128.2, 126.7, 123.8, 122.2, 121.7, 115.4 (d, J = 21.6 Hz), 62.0, 29.1, 16.2; **IR** ν (neat, cm⁻¹): 3344, 2921, 2848, 1663, 1631, 1592, 1483, 1152, 841, 507; **HRMS (ESI, m/z):** calcd for C₂₅H₂₂FN₂O⁺ [M+H]⁺: 385.1711; found: 385.1711.

(E)-4-bromo-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-N'-

phenylbenzimidamide (3ah) : reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 299-302 °C); 77% yield (69 mg, 0.15 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.65 (d, J = 7.6 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.26 – 7.21 (m, 3H), 7.15 (d, J = 8.0Hz, 2H), 6.90 (t, J = 7.6 Hz, 2H), 6.71 (t, J = 7.6 Hz, 1H), 6.15 (d, J = 8.0 Hz, 2H), 5.51 (s, 1H), 2.10 (s, 3H), 1.45 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.7, 152.6, 149.1, 145.9, 140.4, 132.7, 132.4, 131.6, 130.3, 130.1, 128.8, 128.5, 128.3, 126.7, 123.8, 122.1, 121.8, 62.0, 29.1, 16.2; IR ν (neat, cm⁻¹): 3284, 3060, 2922, 2850, 2357, 2334, 1649, 1628, 1587, 1483, 1442, 1175, 1113, 827, 694; HRMS (ESI, m/z): calcd for C₂₅H₂₂BrN₂O⁺ [M+H]⁺: 445.0910; found: 445.0911.

(*E*)-*N*-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-*N*'-(4-methoxyphenyl)-4methylbenzimidamide (3ai) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); yellow solid (m.p.: 251-254 °C); 82% yield (67 mg, 0.16 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.68 (d, J = 7.6 Hz, 1H), 7.38 – 7.30 (m, 1H), 7.24 – 7.09 (m, 5H), 7.04 (d, J = 7.6Hz, 2H), 6.46 (d, J = 8.4 Hz, 2H), 6.14 (s, 2H), 5.29 (br, 1H), 3.61 (s, 3H), 2.29 (s, 3H), 2.07 (s, 3H), 1.43 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 199.4, 154.7, 154.0, 146.1, 142.5, 139.4, 132.4, 130.7, 130.1, 129.0, 128.71, 128.66, 128.2, 126.6, 124.1, 123.3, 113.5, 62.1, 55.3, 28.6, 21.4, 16.3; IR ν (neat, cm⁻¹): 3349, 2920, 2848, 2357, 2334, 1661, 1632, 1502, 1237, 1177, 1118, 1030, 830, 694; HRMS (ESI, m/z): calcd for C₂₇H₂₇N₂O₂⁺ [M+H]⁺: 411.2067; found: 411.2065.

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-N'-(p-

tolyl)benzimidamide (3aj) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 273-275 °C); 91% yield (69 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.68 (d, J = 7.6 Hz, 1H), 7.37 – 7.26 (m, 5H), 7.24 – 7.20 (m, 4H), 6.68 (d, J = 8.0 Hz, 2H), 6.07 (d, J = 7.6 Hz, 2H), 5.51 (br, 1H), 2.09 (s, 6H), 1.44 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.6, 153.4, 146.7, 146.2, 140.1, 134.0, 132.5, 130.7, 130.2, 129.4, 128.74, 128.71, 128.4, 128.3, 126.6, 123.9, 122.1, 61.9, 29.0, 20.8, 16.3; IR ν (neat, cm⁻¹): 3334, 2919, 2848, 2282, 1659, 1621, 1598, 1527, 1504, 1443, 1331, 1031, 830, 501; HRMS (ESI, m/z): calcd for C₂₆H₂₅N₂O⁺ [M+H]⁺: 381.1961; found: 381.1961.

(*E*)-*N'*-(4-chlorophenyl)-*N*-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-4methylbenzimidamide (3ak) ; reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 15:1; TLC: $R_f = 0.2$ (PE/EA=10 : 1, UV); white solid (m.p.: 279-282 °C); 86% yield (74 mg, 0.17 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.64 (d, J = 7.6 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.26 – 7.21 (m, 3H), 7.15 (d, J = 7.6Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 6.07 (d, J = 8.0 Hz, 2H), 5.58 (s, 1H), 2.30 (s, 3H), 2.09 (s, 3H), 1.44 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.6, 154.1, 148.3, 146.1, 140.2, 139.7, 132.4, 130.4, 130.1, 129.1, 128.8, 128.6, 128.4, 128.1, 126.6, 126.3, 123.7, 123.4, 61.8, 29.0, 21.4, 16.1; IR ν (neat, cm⁻¹): 3349, 2987, 2920, 2848, 2359, 2342, 1666, 1628, 1581, 1483, 1275, 1260, 1083, 836, 750; HRMS (ESI, m/z): calcd for C₂₆H₂₄ClN₂O⁺ [M+H]⁺: 415.1572; found: 415.1571.

3al

(E)-N'-(2,4-dimethoxyphenyl)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-

yl)-4-methylbenzimidamide (3al); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: *R*_f = 0.2 (PE/EA=10 : 1, UV); yellow solid (m.p.: 251-254 °C); 91% yield (80 mg, 0.18 mmol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.21 – 7.12 (m, 4H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.20 (s, 3H), 3.64 (s, 3H), 3.30 (s, 3H), 2.25 (s, 3H), 1.96 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-*d6*) δ 199.0, 154.9, 152.0, 146.7, 138.5, 131.8, 129.8,

128.2, 128.1, 127.4, 126.1, 124.3, 104.8, 100.5, 61.6, 55.6, 54.9, 27.8, 20.8, 16.2; **IR** *v* (neat, cm⁻¹): 3366, 3007, 2920, 2848, 2362, 2334, 1634, 1499, 1469, 1275, 1260, 1207, 1157, 1035, 824, 504; **HRMS (ESI, m/z):** calcd for C₂₈H₂₉N₂O₃⁺ [M+H]⁺: 441.2173; found: 441.2172.

(*E*)-*N*'-benzyl-*N*-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)benzimidamide (3am); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: R_f = 0.2 (PE/EA=10 : 1, UV); yellow oil; 81% yield (62 mg, 0.16 mmol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 7.6 Hz, 1H), 7.37 – 7.34 (m, 6H), 7.30 – 7.22 (m, 3H), 7.03 (s, 3H), 6.57 (s, 2H), 4.19 (d, *J* = 16.4 Hz, 1H), 3.99 (d, *J* = 16.4 Hz, 1H), 1.98 (s, 3H), 1.43 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 202.4, 156.7, 146.3, 142.0, 138.9, 133.6, 132.3, 130.2, 129.4, 128.8, 128.5, 128.1, 127.82, 127.75, 126.6, 126.5, 125.6, 124.6, 63.0, 52.7, 28.6, 16.5; IR *v* (neat, cm⁻¹): 3349, 3059, 2986, 2920, 2848, 1648, 1599, 1494, 1443, 1293, 1260, 1027, 948, 751; HRMS (ESI, m/z): calcd for C₂₆H₂₅N₂O⁺ [M+H]⁺: 381.1961; found:381.1962.

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-N',4-

dimethylbenzimidamide (3an); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 5:1; **TLC:** R_f = 0.2 (PE/EA=2 : 1, UV); yellow oil; 39% yield (25 mg, 0.08 mmol); ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.69 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 7.6 Hz, 2H), 7.26 – 7.14 (m, 5H), 7.00 (d, J = 7.6 Hz, 1H), 6.51 (s,

1H), 2.79 (s, 3H), 2.35 (s, 3H), 2.14 (s, 3H), 1.53 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 203.2, 164.0, 142.7, 140.1, 131.9, 130.1, 129.0, 128.6, 128.0, 127.2, 126.8, 125.9, 71.5, 30.7, 23.7, 21.5, 18.6; **IR** *ν* (neat, cm⁻¹): 3349, 3052, 2924, 2359, 1661, 1616, 1586, 1514, 1442, 1375, 1118, 1019, 951, 825, 579; **HRMS (ESI, m/z)**: calcd for C₂₁H₂₃N₂O⁺ [M+H]⁺: 319.1805; found: 319.1805.

3ao

(*E*)-*N*-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-*N*'-phenylacetimidamide (3ao): reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.2$ (PE/EA=5 : 1, UV); white solid (m.p.: 255-257 °C); 82% yield (50 mg, 0.16 mmol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.26 – 7.18 (m, 2H), 7.15 (s, 1H), 7.06 (t, J = 7.6 Hz, 2H), 6.84 (t, J = 7.2 Hz, 1H), 6.30 (d, J = 8.0 Hz, 2H), 5.29 (br, 1H), 2.00 (s, 3H), 1.78 (s, 3H), 1.42 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 199.0, 152.4, 149.9, 146.1, 139.8, 132.1, 130.0, 128.6, 128.5, 128.2, 126.5, 124.1, 122.0, 121.8, 61.8, 28.8, 16.28, 16.25; IR *v* (neat, cm⁻¹): 3348, 2919, 2848, 2359, 1667, 1646, 1628, 1589, 1509, 1484, 1374, 1260, 1083, 836, 796; HRMS (ESI, m/z): calcd for C₂₀H₂₁N₂O⁺ [M+H]⁺: 305.1648; found: 305.1649.

(E)-N-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-N',2-

diphenylacetimidamide (3ap); reaction temperature: 50 °C; reaction time: 48 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.2$ (PE/EA=5 : 1, UV); white solid

(m.p.: 231-234 °C); 66% yield (50 mg, 0.13 mmol); ¹H NMR (400 MHz, Chloroformd) δ 7.38 (t, J = 7.2 Hz, 2H), 7.31 – 7.28 (m, 3H), 7.24 – 7.21 (m, 4H), 7.17 (s, 1H), 7.06 (t, J = 7.6 Hz, 2H), 6.83 (t, J = 7.2 Hz, 1H), 6.31 (d, J = 7.6 Hz, 2H), 5.12 (s, 1H), 3.49 (q, J = 15.6 Hz, 2H), 2.02 (s, 3H), 1.28 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 200.6, 152.4, 149.9, 146.2, 140.1, 136.3, 132.2, 130.2, 129.2, 128.9, 128.53, 128.47, 128.2, 127.0, 126.5, 123.9, 122.0, 121.6, 61.3, 35.8, 28.7, 16.2; IR ν (neat, cm⁻¹): 3349, 3048, 2919, 2850, 2341, 1659, 1641, 1592, 1589, 1509, 1483, 1031, 901, 668; HRMS (ESI, m/z): calcd for C₂₆H₂₅N₂O⁺ [M+H]⁺: 381.1961; found: 381.1959.

V. Further Transformations

Compound 4 was prepared according to the reported procedures^[7].

To a solution of **3aa** (0.2 mmol, 76 mg) in anhydrous diethyl ether (5 mL), methyl lithium (0.27 mL, 3 M in Et₂O, 0.8 mmol, 4.0 equiv) was added at 0 °C. The reaction was then stirred at room temperature for 2 h. The reaction was quenched with water and extracted with ethyl acetate for three times. The combined organic extracts were dried over MgSO4 and concentrated in a vacuum. The crude product was purified by column chromatography(petroleum ether/ethylacetate = 10:1) to give **4**. Yield: 89%, 71 mg; White solid, m.p. 231-234 °C; ¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.93 (s, 1H), 7.57 – 7.52 (m, 1H), 7.31 (d, *J* = 7.6 Hz, 2H), 7.22 (t, *J* = 3.6 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.08 (t, *J* = 7.2 Hz, 2H), 7.03 – 7.00(m, 1H), 6.87 (t, *J* = 7.2 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 2H), 6.06 (s, 1H), 5.39 (s, 1H), 2.33 (s, 3H), 2.05 (s, 3H), 1.83 (s, 3H), 1.31 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 159.1, 148.0, 145.8, 141.9, 140.4, 133.0, 132.2, 129.4, 129.0, 128.5, 127.9, 127.2, 126.5, 123.5, 122.6, 122.3, 120.0, 78.9, 68.1, 23.9, 21.5, 21.3, 18.1; HRMS (ESI, m/z): calcd for C₂₆H₂₇N₂O⁺ [M+H]⁺:

Compound 5 was prepared according to the reported procedures^[8].

To a solution of **3aa** (0.4 mmol, 152 mg) in anhydrous diethyl ether (5 mL), LiAlH4 (1.4 mmol, 53.1 mg) was added slowly at 0 °C. The suspension was stirred at room temperature for 2 h. Then the mixture was quenched with water and was extracted with ethyl acetate for three times. The combined organic extracts were dried over MgSO4 and concentrated in a vacuum. The crude product was purified by column chromatography (petroleum ether/ethylacetate = 10:1) to give **5**. Yield: 37%, 57 mg; White solid, m.p. 226-228 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.54 (m, 1H), 7.28 (s, 1H), 7.23 (dd, *J* = 6.0, 3.1 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.12 – 7.05 (m, 4H), 7.02 (t, *J* = 4.2 Hz, 1H), 6.86 (t, *J* = 7.4 Hz, 1H), 6.69 (t, *J* = 7.4 Hz, 3H), 6.13 (s, 1H), 5.39 (s, 1H), 5.11 (s, 1H), 2.32 (s, 3H), 2.06 (s, 3H), 1.77 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.8, 148.3, 140.9, 140.8, 140.2, 133.0, 132.0, 129.3, 129.0, 128.5, 128.0, 127.2, 126.4, 123.4, 123.3, 122.1, 121.3, 79.2, 65.1, 21.4, 20.1, 19.1; HRMS (ESI, m/z): calcd for C₂₆H₂₇N₂O⁺ [M+H]⁺: 383.2118; found: 383.2127.

VI. Mechanistic Experiments

(a) Control Experiments

To a 20 mL over-dried and sealed flask were added **1a** (0.1 mmol), **6a** (0.11 mmol), FeCl₂ (0.015 mmol), ^{*n*}Bu₄NBr (0.15 mmol) and anhydrous CH₂Cl₂ (2 ml) under N₂

atmosphere. After stirring at 50 °C for 48 hours, the reaction did not work monitored by TLC.

To a 20 mL over-dried and sealed flask were added 7 (0.1 mmol), **2a** (0.11 mmol), FeCl₂ (15 mol %, 0.015 mmol), ^{*n*}Bu₄NBr (0.15 mmol) and anhydrous CH₂Cl₂ (2 mL) under N₂ atmosphere. After stirring at 50 °C for 48 hours, the reaction did not work monitored by TLC.

To a 20 mL over-dried and sealed flask were added **1a** (0.1 mmol), **9** (0.11 mmol), FeCl₂ (15 mol %, 0.015 mmol), "Bu₄NBr (0.15 mmol) and anhydrous CH₂Cl₂ (2 mL) under N₂ atmosphere. After stirring at 50 °C for 48 hours, the reaction mixture was purified by column chromatography via silica gel to afford the product **10** (0.023 mmol, 7.1 mg, 23% yield). **1,3-dimethylnaphthalen-2-yl p-tolylcarbamate** (**10**), oil; ¹H NMR (**400 MHz, Chloroform-d**) δ 7.96 (d, *J* = 8Hz, 1H), 7.77 (d, *J* = 12Hz, 1H), 7.57 (s, 1H), 7.50 - 7.42 (m, 2H), 7.37 (d, *J* = 8Hz, 2H), 7.14 (d, *J* = 8Hz, 2H), 7.08 (brs, 1H), 2.56 (s, 3H), 2.41 (s, 3H), 2.32 (s, 3H).

(b) Radical inhibition reactions

To a 20 mL over-dried and sealed flask were added **1a** (0.1 mmol), **2a** (0.11 mmol), FeCl₂ (15 mol %, 0.015 mmol), ^{*n*}Bu₄NBr (0.15 mmol), radical scavenger (3 equiv, 0.3 mmol) and anhydrous CH₂Cl₂ (3 ml) under N₂ atmosphere. The solution was stirred at 50 °C for 48 hours as monitoring by TLC. Upon completion, the crude product was purified by column chromatography via silica gel to afford the desired product **3aa**.

VII. Crystallographic Data

Table S4. Crystal data and structure refinement for 3aa

Identification code	mo_ddz20013_0m	
Empirical formula	C26 H24 N2 O	
Formula weight	380.47	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 12.6708(10) Å	α=90°.
	b = 6.6613(5) Å	β=108.489(2)°.
	c = 12.8991(11) Å	$\gamma = 90^{\circ}$.

Volume	1032.54(14) Å ³
Z	2
Density (calculated)	1.224 Mg/m ³
Absorption coefficient	0.075 mm ⁻¹
F(000)	404
Crystal size	0.200 x 0.120 x 0.090 mm ³
Theta range for data collection	2.727 to 25.991°.
Index ranges	-15<=h<=15, -8<=k<=8, -15<=l<=13
Reflections collected	9850
Independent reflections	4023 [R(int) = 0.0270]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6347
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4023 / 1 / 266
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.0928
R indices (all data)	R1 = 0.0579, wR2 = 0.1035
Absolute structure parameter	-0.1(9)
Extinction coefficient	0.038(5)
Largest diff. peak and hole	0.165 and -0.153 e.Å ⁻³

$210512 fyh_1_0m$
C27 H28 N2 O
396.51
193.0 K
1.34139 Å

Triclinic	
P-1	
a = 9.5678(8) Å	α=99.125(3)°.
b = 10.2437(8) Å	β=106.904(3)°.
c = 12.1688(9) Å	$\gamma = 96.828(3)^{\circ}$.
1109.37(15) Å ³	
2	
1.187 Mg/m ³	
0.359 mm ⁻¹	
424	
$0.07 \ x \ 0.06 \ x \ 0.05 \ mm^3$	
3.862 to 54.923°.	
-11<=h<=11, -9<=k<=12, -14<	<=l<=14
11819	
4093 [R(int) = 0.0433]	
97.5 %	
Semi-empirical from equivalent	its
0.7508 and 0.5667	
Full-matrix least-squares on F ²	
4093 / 0 / 276	
1.059	
R1 = 0.0577, wR2 = 0.1591	
R1 = 0.0660, wR2 = 0.1695	
n/a	
0.269 and -0.263 e.Å ⁻³	
	Triclinic P-1 a = 9.5678(8) Å b = 10.2437(8) Å c = 12.1688(9) Å $1109.37(15) Å^3$ 2 $1.187 Mg/m^3$ $0.359 mm^{-1}$ 424 $0.07 x 0.06 x 0.05 mm^3$ $3.862 to 54.923^\circ$. -11<=h<=11, -9<=k<=12, -14< 11819 4093 [R(int) = 0.0433] 97.5 % Semi-empirical from equivalent 0.7508 and 0.5667 Full-matrix least-squares on F ² 4093 / 0 / 276 1.059 R1 = 0.0577, wR2 = 0.1591 R1 = 0.0660, wR2 = 0.1695 n/a $0.269 and -0.263 e.Å^{-3}$

 Table S6. Crystal data and structure refinement for 5

Identification code

210512fyh_2

Empirical formula	C26 H26 N2 O	
Formula weight	382.49	
Temperature	192.99 K	
Wavelength	1.34139 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	$a = 19.3797(3)$ Å $\alpha = 90^{\circ}$.	
	$b = 10.5232(2) \text{ Å} \qquad \beta = 90^{\circ}.$	
	$c = 20.7635(3) \text{ Å}$ $\gamma = 90^{\circ}.$	
Volume	4234.44(12) Å ³	
Ζ	8	
Density (calculated)	1.200 Mg/m ³	
Absorption coefficient	0.365 mm ⁻¹	
F(000)	1632	
Crystal size	0.09 x 0.07 x 0.05 mm ³	
Theta range for data collection	3.704 to 54.959°.	
Index ranges	-23<=h<=23, -11<=k<=12, -25<=l<=25	
Reflections collected	43616	
Independent reflections	4018 [R(int) = 0.0406]	
Completeness to theta = 53.594°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.6413	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4018 / 0 / 269	
Goodness-of-fit on F ²	1.045	
Final R indices [I>2sigma(I)]	R1 = 0.0398, $wR2 = 0.0995$	
R indices (all data)	R1 = 0.0475, wR2 = 0.1055	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.272 and -0.252 e.Å ⁻³	

VIII. References

- T. Oguma and T. Katsuki, Iron-Catalyzed Dioxygen-Driven C-C Bond Formation: Oxidative Dearomatization of 2-Naphthols with Construction of a Chiral Quaternary Stereocenter, *J. Am. Chem. Soc.*, 2012, **134**, 20017-20020.
- [2] S.-G. Wang, X.-J. Liu, Q.-C. Zhao, C. Zheng, S.-B. Wang and S.-L. You, Asymmetric dearomatization of β-naphthols through a bifunctional-thiourea-catalyzed Michael reaction, *Angew. Chem., Int. Ed.*, 2015, 54, 14929-14932.

- [3] T. Gerfaud, H.-L. Wei, L. Neuville and J. Zhu, Unexpected C-C Bond Cleavage: Synthesis of 1,2,4-Oxadiazol-5-ones from Amidoximes with Pentafluorophenyl or Trifluoromethyl Anion Acting as Leaving Group, *Org. Lett.*, 2011, 13, 6172-6175.
- [4] S. V. Bhat, D. Robinson, J. E. Moses and P. Sharma, Synthesis of Oxadiazol-5-imines via the Cyclizative Capture of in Situ Generated Cyanamide Ions and Nitrile Oxides, *Org. Lett.*, 2016, 18, 1100-1103.
- [5] W. Phakhodee, C. Duangkamol, N. Wiriya and M. Pattarawarapan, A convenient one-pot synthesis of N-substituted amidoximes and their application toward 1,2,4-oxadiazol-5-ones, *RSC Adv.*, 2018, 8, 38281-38288.
- [6] Y. Zhao, Y. Hu, X. Li and B. Wan, Tf2NH-catalyzed formal [3 + 2] cycloaddition of oxadiazolones with ynamides: a simple access to aminoimidazoles, *Org. Biomol. Chem.*, 2017, 15, 3413-3417.
- [7] S.-B. Tang, H.-F. Tu, X. Zhang and S.-L. You, Rhodium-Catalyzed Asymmetric Allylic Dearomatization of β-Naphthols: Enantioselective Control of Prochiral Nucleophiles, *Org. Lett.*, 2019, **21**, 6130-6134.
- [8] D. Yang, L. Wang, F. Han, D. Li, D. Zhao and R. Wang, Intermolecular Enantioselective Dearomatization Reaction of β-Naphthol Using meso-Aziridine: A Bifunctional In Situ Generated Magnesium Catalyst, *Angew. Chem., Int. Ed.*, 2015, **54**, 2185-2189.
- [9] [9]. Shou-Guo Wang.; Qin Yin.; Chun-Xiang Zhuo.; Shu-Li You., Angew. Chem. Int. Ed. 2015, 54, 647 –65

 $\overset{\rm f1}{\textbf{SI-32}}^{(\text{ppm})}$

----5.517

f1 (ppm) SI-45

f1 (ppm) SI-47 Ó

-10

-1.614

 $\sum_{6.168}^{16.681} 662 \\ 662 \\ 6.187 \\ 6.168 \\ 168$

----2. 263 ----2. 097 ---1. 447

----0. 001

3ab

3ac

 $<_{5.432}^{5.437}$

----0.013

055 065 301	$\begin{array}{c} 2251\\ 253\\ 067\\ 067\\ 1176\\ 141\\ 1555\\ 5555\\ 681\\ 681\\ 681\\ 682\\ 833\\ 833\\ 833\\ 611\\ 611\\ 611\\ 611\\ 611\\ 611\\ 611\\ 6$
	132. 136. 137. 137. 130. 130. 130. 137. 130. 127. 127. 127. 127. 127. 127. 127. 127

3ac

----0.010

f1 (ppm) SI-71

-1.442

----0.004

10.0

9.5

9.0

1.13-

7.5

8.0

8.5

7.0

2.00-

6.0

6.5

0.95-]

5.5

5.0 4 f1 (ppm) **ŠI-78**

4.5

4.0

3.5

----5.514

3. 08. I

1.5

1.0

0.5

0.0

-0.5

3. 00. J

2.0

2.5

3.0

----0. 007

3ak

1. 00. I 1. 96 0.93-3. 03- 2.00-6.0 10.5 10.0 9.0 8.0 7.5 7.0 6.5 5.5 5 5.0 f1 ^(ppm) SI-84 4.0 3.5 3.0 2.5 2.0 1.5 -0.5 9.5 4.5 1.0 0.0 8.5 0.5

-6.198

 $\begin{array}{c}
 33 \\
 12 \\
 92 \\
 92
 \end{array}$

-3.644

→ 0. 074 → 0. 004

3am

-156.737

f1 (ppm) **SI-89** Ò -1

3an

3ao

-5.118

 $\overbrace{\begin{subarray}{c} 3.529\\ \hline 3.490\\ \hline 3.462\\ \hline 3.422\\ \end{subarray}$

— 1. 279

-0.009

----5. 387

L6.865 L6.846 L6.737 L6.717 -6.056

80

 $17 \\ 09$

2. 336	 	— 1. 313

140	
159.	
- T	

$\begin{array}{c} 0.07 \\ 8.19 \\ 8.54 \\ 3.52 \end{array}$	958 217 217 217 217 6446 043 043 8988 8988 8988 1868 517 517 517 517 045 045
148. 145. 141.	132. 132. 129. 129. 127. 127. 123. 122. 122. 122. 122.
- 77 51	

