Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

# **Supporting Information**

# Total Synthesis and Stereochemistry Establishment of Tumescenamide A

Hong Xue, Shiming Fan, Jingzhe Xu\*, Shouxin Liu\*

# **Tables**

| 1. General Information                       | S2   |
|----------------------------------------------|------|
| 2. Synthesis Schemes and Tables              | S3   |
| 3. Experimental Procedures                   |      |
| 3.1 Preparation of Dmh                       | S7   |
| 3.2 Preparation of dehydropeptides           | S8   |
| 3.3 Preparation of cyclic peptides           | S9   |
| 4. Data of Products                          | S12  |
| 4.1 Data of Dmh                              | S12  |
| 4.2 Data of dehydropeptides                  | S12  |
| 4.3 Data of compound 1                       |      |
| 4.4 Data of compound 38                      | S28  |
| 4.5 Data of compound 39                      | S31  |
| 4.6 Data of compound 40                      |      |
| 5. NMR Comparision Tables of Tumescenamide A | S34  |
| 6. NMR Comparision Tables of Tumescenamide C | S34  |
| 7. NMR Spectra of Products                   | S38  |
| 8. References                                | S157 |

#### **1. General Information**

Chemicals were purchased from commercial sources without further purification. The solvents were dried using standard conditions. Glassware was dried in oven and cooled before use. <sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectras are recorded on a Bruker AV 500 spectrometer in CDCl<sub>3</sub> and Acetone-d<sub>6</sub>. For <sup>1</sup>H NMR (500 MHz), CDCl<sub>3</sub> ( $\delta = 7.26$  ppm) and Acetone-d<sub>6</sub> ( $\delta = 2.05$  ppm) served as internal standard. The chemical shift ( $\delta$ ) of each signal is reported in parts per million (ppm) and all coupling constants (J) are reported in Hertz (Hz). The multiplicities of the signals are described using the following abbreviations: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet, br = broad. For <sup>13</sup>C NMR (125 MHz), CDCl<sub>3</sub> ( $\delta = 77.16$  ppm) and Acetone-d<sub>6</sub> ( $\delta = 29.84$  ppm) served as internal standard. High-resolution Mass spectral (HRMS) datas were measured on a Bruker Apex II. Optical rotation was measured with a Anton Paar MCP 200. Analytical thin layer chromatography (TLC) was performed using silica gel plate (0.2 mm thickness), visualized using UV light and Phosphomolybdic acid staining solutions followed by heating. Column chromatography was carried out on silica gel (200-300 mesh).

# 2. Synthesis Schemes and Tables







#### Table S1. $\beta$ -elimination of 19a<sup>1-4</sup>



| Entry | Conditions                                                           | Yield(%) <sup>[a]</sup> |
|-------|----------------------------------------------------------------------|-------------------------|
| 1     | (Boc) <sub>2</sub> O, DMAP; then TMG                                 | decomposition           |
| 2     | EDC, CuCl <sub>2</sub>                                               | 15                      |
| 3     | TsCl, DMAP, DBU                                                      | 6                       |
| 4     | Et <sub>3</sub> N, MsCl                                              | 11                      |
| 5     | (Boc) <sub>2</sub> O, DMAP; then Nano K <sub>2</sub> CO <sub>3</sub> | 85                      |

[a] Isolated yields by column chromatography

| I     | BocHN,,,CO <sub>2</sub> Me | base                                  | BocHN  | O <sub>2</sub> Me<br>+ } | KHCO3                    |
|-------|----------------------------|---------------------------------------|--------|--------------------------|--------------------------|
|       | S9                         |                                       | S10    |                          | S11                      |
| Entry | Р                          | Base                                  | T (°C) | Solvent                  | Yield (%) <sup>[b]</sup> |
| 1     | Cbz                        | Normal K <sub>2</sub> CO <sub>3</sub> | 25     | DMF                      | 52                       |
| 2     | Cbz                        | Normal K <sub>2</sub> CO <sub>3</sub> | 65     | DMF                      | 89                       |
| 3     | Cbz                        | Nano-K <sub>2</sub> CO <sub>3</sub>   | 25     | DMF                      | 91                       |
| 4     | Boc                        | Normal K <sub>2</sub> CO <sub>3</sub> | 25     | DMF                      | 4                        |
| 5     | Boc                        | Normal K <sub>2</sub> CO <sub>3</sub> | 65     | DMF                      | 81                       |
| 6     | Boc                        | Nano-K <sub>2</sub> CO <sub>3</sub>   | 25     | DMF                      | 88                       |
| 7     | Boc                        | Nano-K <sub>2</sub> CO <sub>3</sub>   | 25     | THF                      | 73                       |
| 8     | Boc                        | Nano-K <sub>2</sub> CO <sub>3</sub>   | 25     | CH <sub>3</sub> CN       | 93                       |

#### Table S2. β-Elimination reaction of threonine derivates <sup>[a]</sup>

[a] Base (2 equiv), reaction time: 5h. [b] Isolated yields of compounds isolated after column chromatography.

#### Scheme S4. One-pot synthesis of Boc- $\Delta$ Abu-OMe and Boc- $\Delta$ Ala-OMe



S13 R = H, 81% yield on a 1g scale; 78% yield on a 100 g scale





Scheme S6. Synthesis of 38



### Scheme S7. Synthesis of 39 and 40



#### **3. Experimental Procedures**

#### 3.1 Preparation of Dmh



To a cooled (-78 °C) solution of 4-benzyl-2-oxazolidinone **S24** (17.72 g, 100.0 mmol) in THF (500 mL) was added n-BuLi (42.0 mL, 2.5 M, 105.0 mmol) dropwise over a 15 mins period. The resulting solution was allowed to stir at -78 °C for 15 mins and then treated with valeryl chloride **10** (12.46 mL, 105.0 mmol). After an additional 15 mins of stirring, the resulting cold (-78 °C) solution was allowed to warm to 25 °C and then quenched with aqueous NH<sub>4</sub>Cl. The layers were separated, and the aqueous phase was extracted with EtOAc (3 x 100 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), concentrated in vacuo. The crude product was purified via flash chromatographed (SiO<sub>2</sub>, 5-10% gradient, EtOAc-hexane) to provide compound **S25**.



To a cooled (-78 °C) suspension of the imide **S25** (13.06 g, 50.0 mmol) in THF (200 mL) was added LiHMDS (60.0 mL, 60.0 mmol, 1 M) dropwise over a 30 mins period. After 1 h of stirring, the resulting cold (-78 °C) solution was treated with methyl iodide (3.70 mL, 60.0 mmol) and allowed to stir at -78 °C for 3 h before being wakrm to 25 °C overnight. The reaction was quenched with aqueous NH<sub>4</sub>Cl (50 mL), and the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), concentrated in vacuo. The crude product was purified via flash chromatographed (SiO<sub>2</sub>, 5-15% gradient, EtOAc-hexane) to provide compound **S26**.



To a cooled (0 °C) suspension of compound **S26** (11.01 g, 40.0 mmol) in MTBE (50 mL) was added LiAlH<sub>4</sub> (2.28 g, 60.0 mmol) in small portions over a 15 mins period. After an additional 30 mins of stirring, the cold (0 °C) reaction was slowly quenched with brine (10 mL). MTBE (50 mL) was added to precipitate the aluminum salts, which were then filtered and dried (MgSO<sub>4</sub>), and the solution was concentrated in vacuo. The crude product was purified via flash chromatographed (SiO<sub>2</sub>, 15% MTBE-pentane) to provide compound **S27**.



To a cooled (-78 °C) solution of 4-benzyl-2-oxazolidinone **S24** (17.72 g, 100.0 mmol) in THF (500 mL) was added n-BuLi (42.0 mL, 2.5 M, 105.0 mmol) dropwise over a 15 mins period. The resulting solution was allowed to stir at -78 °C for 15 mins and then treated with propionyl chloride **S28** (9.81 mL, 105.0 mmol). After an additional 15 mins of stirring, the resulting cold (-78 °C) solution was allowed to warm to

25 °C and then quenched with aqueous NH<sub>4</sub>Cl. The layers were separated, and the aqueous phase was extracted with EtOAc (3 x 100 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), concentrated in vacuo. The crude product was purified via flash chromatographed (SiO<sub>2</sub>, 5-10% gradient, EtOAc-hexane) to provide compound **S29**.



A stirred solution of compound **S27** (3.68 g, 36.0 mmol) in  $CH_2Cl_2$  (50 mL) under nitrogen atmosphere was cooled to -78 °C, to which pyridine (2.90 mL, 36.0 mmol) and  $Tf_2O$  (6.06 mL, 36.0 mmol) were added. After being stirred for 50 mins at -78 °C, the reaction was quenched with aqueous NH<sub>4</sub>Cl (10 mL). The aqueous layer was extracted with  $CH_2Cl_2$  (20 mL), and the combined organic layers were dried (MgSO<sub>4</sub>) and concentrated in vacuo. The residue was used for the next step quickly.

A stirred solution of compound **S29** (6.99 g, 30.0 mmol) in THF (100 mL) under nitrogen atmosphere was cooled to -78 °C, to which LiHMDS (36.0 mL, 36.0 mmol, 1 M) was added. After being stirred for 30 mins at -78 °C, the obtained material in THF (5 mL) was added. The reaction mixture was warmed to 0 °C and stirred for 3 h, and then quenched with aqueous NH<sub>4</sub>Cl (15 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL), and the combined organic layers were dried (MgSO<sub>4</sub>) and concentrated in vacuo. The crude product was purified via flash chromatographed (SiO<sub>2</sub>, 10-15% gradient, EtOAc-hexane) to give compound **S30**.



Compound **S30** (6.34 g, 20.0 mmol) was dissolved in 1:2 THF/water (200 mL) and cooled to 0 °C. To the resulting solution was added 30% aqueous  $H_2O_2$  (4.90 mL, 160.0 mmol) followed by LiOH (1.92 g, 80.0 mmol). The resulting mixture was stirred at 0 °C for 2 h. The reaction was slowly warmed to ambient temperature. THF was removed on a rotary evaporator. The aqueous solution was washed with EtOAc (20 mL). The solution was acidified with 2 M HCl to pH = 2 and extracted with EtOAc (3 x 50 mL). The extracts were combined, dried (MgSO<sub>4</sub>). The crude product was purified via flash chromatographed (SiO<sub>2</sub>, 15-20% EtOAc-hexane) to give compound **9**.

#### 3.2 Preparation of dehydropeptides



Compound **S31** (5.0 mmol) was dissolved in acetonitrile (5 ml), then DMAP (0.06 g, 0.5 mmol) and  $(Boc)_2O$  (1.26 mL, 5.5 mmol) were added, the reaction mixture was stirred at room temperature for 2 h. Then nano-K<sub>2</sub>CO<sub>3</sub> (1.38 g, 10.0 mmol) was added, the reaction was stirred at room temperature for 5 h. The nano-K<sub>2</sub>CO<sub>3</sub> was recycled by filtration. The solvent was removed in vacuo and water was added. The aqueous solution was extracted with EtOAc (3 x 30 mL). The organics were combined and washed with 1 M KHSO<sub>4</sub> (2 x 20 mL), 1 M NaHCO<sub>3</sub> (2 x 20 mL), dried (MgSO<sub>4</sub>), concentrated in vacuo to give crude product. Pure product **S32** was obtained by recrystallization using EtOAc and n-hexane.

#### 3.3 Preparation of cyclic peptides



A stirred solution of compound **9** (1.58 g, 10.0 mmol) and 4-methylmorpholine (1.12 mL, 10.0 mmol) in THF (50 mL) was cooled to -10 °C. Isobutyl chloroformate (1.26 mL, 10.0 mmol) was added and the reaction was allowed to stir for 30 minutes. The reaction was allowed to warm to 0 °C at which time a solution of compound **S33** (1.43 g, 12.0 mmol) in 1 M NaOH (12 mL) was added. The reaction was allowed to warm to room temperature and stir for 24 hours at which time it was diluted with H<sub>2</sub>O (30 mL). The layers were separated and the aqueous layer was washed with EtOAc (2 x 50 mL). The combined organic layers were then extracted with saturated NaHCO<sub>3</sub> solution (3 x 50 mL). All aqueous layers were combined and acidified to pH = 2 with 1 M HCl and extracted with EtOAc (3 x 100 mL). The combined extractions were then dried (MgSO<sub>4</sub>) and concentrated to give the crude product as a colorless oil which was used without further purification for the next step.

Allyl bromide (1.04 mL, 12.0 mmol) was added to a stirred solution of the crude product and NaHCO<sub>3</sub> (1.68 g, 20.0 mmol) in DMF (30 mL). The reaction was stirred for 24 hours at which time it was diluted with  $H_2O$  (50 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were then washed with  $H_2O$  (2 x 20 mL), dried (MgSO<sub>4</sub>), and concentrated in vacuo. The crude product was purified by recrystallization using EtOAc and n-hexane to give compound **S34**.



EDC (1.84 g, 9.6 mmol) and 4-dimethylaminopyridine (1.17 g, 9.6 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (50 mL). The solution was then added to a mixture of compound **S34** (2.39 g, 8.0 mmol) and Boc-Thr(*t*Bu)-OH (2.64 g, 9.6 mmol) in a reaction flask cooled to 0 °C. This reaction mixture was allowed to warm to room temperature and stir for 24 hours at which time it was diluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL) and washed with a saturated NaHCO<sub>3</sub> solution (3 x 10 mL). The combined aqueous layers were back extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 x 10 mL). All organic layers were combined, dried (MgSO<sub>4</sub>), and concentrated in vacuo. The crude product was purified via flash chromatography (SiO<sub>2</sub>, 15% EtOAc-hexane) to give compound **S35**.



TFA (7.0 mL) was added to a stirred solution of compound **S35** (3.89 g, 7.0 mmol) in  $CH_2Cl_2$  (70 mL). Reaction was stirred at room temperature for 30 mins after which the solvent was removed under reduced pressure. The crude material was dissolved in  $CH_2Cl_2$  and concentrated three times to ensure all TFA was removed. The deprotected amine was used in the next reaction without further purification.

To a stirred solution of Boc-D-Tyr(OTBS)-OH (3.32 g, 8.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) were added HBTU (3.19 g, 8.4 mmol), the deprotected amine, and DIPEA (2.68 mL, 15.4mmol) at room temperature. After being stirred at room temperature for 12 h, the reaction mixture was concentrated in vacuo and diluted with EtOAc (100 mL). The organic layer was washed with 1 M HCl (2 x 20 mL), saturated aqueous NaHCO<sub>3</sub> (2 x

20 mL), dried (MgSO<sub>4</sub>), and concentrated in vacuo. The residue was purified via flash chromatography (SiO<sub>2</sub>, 20-30% EtOAc-hexane) to give compound **S36**.



Compound **S36** (4.66 g, 6.0 mmol) was dissolved in acetonitrile (6 ml), then DMAP (0.07 g, 0.6 mmol) and (Boc)<sub>2</sub>O (1.52 mL, 6.6 mmol) were added, the reaction mixture was stirred at room temperature for 2 h. Then nano-K<sub>2</sub>CO<sub>3</sub> (1.66 g, 12.0 mmol) was added, the reaction was stirred at room temperature for 5 h. The nano-K<sub>2</sub>CO<sub>3</sub> was recycled by filtration. The solvent was removed in vacuo and water was added. The aqueous solution was extracted with EtOAc (3 x 30 mL). The organics were combined and washed with 1 M KHSO<sub>4</sub> (2 x 20 mL), 1 M NaHCO<sub>3</sub> (2 x 20 mL), dried (MgSO<sub>4</sub>), concentrated in vacuo to give crude product. Pure product **S37** was obtained by recrystallization using EtOAc and n-hexane.



TFA (5 mL) was added to a stirred solution of compound **S37** (3.80 g, 5.0 mmol) in  $CH_2Cl_2$  (50 mL). Reaction was stirred at room temperature for 30 mins after which the solvent was removed under reduced pressure. The crude material was dissolved in  $CH_2Cl_2$  and concentrated three times to ensure all TFA was removed. The deprotected amine was used in the next reaction without further purification.

To a stirred solution of Boc-Val or Boc-Leu-Val (6 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL) were added HBTU (2.28 g, 6 mmol), the deprotected amine, and DIPEA (1.92 mL, 11.0 mmol) at room temperature. After being stirred at room temperature for 12 h, the reaction mixture was concentrated in vacuo and diluted with EtOAc (100 mL). The organic layer was washed with 1 M HCl ( $2 \times 20 \text{ mL}$ ), saturated aqueous NaHCO<sub>3</sub> ( $2 \times 20 \text{ mL}$ ), dried (MgSO<sub>4</sub>), and concentrated in vacuo. The residue was purified by recrystallization using EtOAc and n-hexane to give compound **S38**.



TFA (3 mL) was added to a stirred solution of compound **S38** (3.43 g, 4.0 mmol) in  $CH_2Cl_2$  (30 mL). Reaction was stirred at room temperature for 30 mins after which the solvent was removed under reduced pressure. The crude material was dissolved in  $CH_2Cl_2$  and concentrated three times to ensure all TFA was removed. The deprotected amine was used in the next reaction without further purification.

To a stirred solution of Boc-Leu (1.11 g, 4.8 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL) were added HBTU (1.82 g, 4.8 mmol), the deprotected amine, and DIPEA (1.53 mL, 8.8 mmol) at room temperature. After being stirred at

room temperature for 12 h, the reaction mixture was concentrated in vacuo and diluted with EtOAc (100 mL). The organic layer was washed with 1 M HCl (2 x 20 mL), saturated aqueous NaHCO<sub>3</sub> (2 x 20 mL), dried (MgSO<sub>4</sub>), and concentrated in vacuo. The residue was purified by recrystallization using EtOAc and n-hexane to give compound **S39**.



To a stirred solution of compound **S39** (485.8 mg, 0.5 mmol) in CHCl<sub>3</sub> (10 mL) were added 4-Methylmorpholine (331.6  $\mu$ L, 3.0 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (231.1 mg, 0.2 mmol) at room temperature. After being stirred at the same temperature for 3 h, the reaction mixture was concentrated in vacuo, and the deprotected product was used for the next reaction without further purification.

To a stirred solution of the above crude product in  $CH_2Cl_2$  (5 mL) were added TFA (0.5 mL). Reaction was stirred at room temperature for 30 mins after which the solvent was removed under reduced pressure. The crude material was dissolved in  $CH_2Cl_2$  and concentrated three times to ensure all TFA was removed. The deprotected product was used in the next reaction without further purification.

To a stirred solution of the deprotected product in  $CH_2Cl_2$  (5 mL) were added HATU (228.1 mg, 0.6 mmol) and DIPEA (191.6  $\mu$ L, 1.1 mmol) at room temperature. After being stirred at the same temperature for 12 h, the reaction mixture was concentrated in vacuo and diluted with EtOAc (10 mL). The organic layer was washed with 1 M HCl (2 x 2 mL), saturated aqueous NaHCO<sub>3</sub> (2 x 2 mL), dried (MgSO<sub>4</sub>), and concentrated in vacuo. The crude product was used without further purification for the next step.

To a stirred solution of the crude product in THF (3 mL) was added 1 M TBAF (0.6 mL, 0.6 mmol) at 0 °C. After being stirred at 0 °C to room temperature for 2 h, the reaction mixture was diluted with EtOAc (10 mL). The organic layer was washed with water, dried (MgSO<sub>4</sub>), and concentrated in vacuo. The residue was purified via flash chromatography (SiO<sub>2</sub>, 1-2% MeOH-CH<sub>2</sub>Cl<sub>2</sub>) to give compound **S40** 

### 4. Data of Products

#### 4.1 Data of Dmh



#### (S)-4-benzyl-3-pentanoyloxazolidin-2-one (12):

Colorless oil, 25.85 g, 99.0% yield.  $R_f = 0.5$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (2H, t, J = 7.0 Hz), 7.35-7.32 (1H, m), 7.27 (2H, d, J = 7.0 Hz), 4.75-4.71 (1H, m), 4.27-4.21 (2H, m), 3.34 (1H, dd, J = 3.0, 13.0 Hz), 3.07-2.93 (2H, m), 2.83 (1H, dd, J = 9.5, 13.0 Hz), 1.79-1.70 (2H, m), 1.51-1.44 (2H, m), 1.02 (3H, t, J = 7.5 Hz);<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  173.55, 153.58, 135.48, 129.54, 129.06, 127.45, 66.27, 55.27, 38.07, 35.37, 26.49, 22.38, 13.96; HRMS (ESI) m/z: [M + Na]<sup>+</sup> found for 284.1264, calcd for C<sub>15</sub>H<sub>19</sub>NO<sub>3</sub>Na 284.1263.



#### (S)-4-benzyl-3-((S)-2-methylpentanoyl)oxazolidin-2-one (13):

Yellow oil, 13.48 g, 98.0% yield;  $R_f = 0.6$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (2H, t, J = 7.0 Hz), 7.29-7.26 (1H, m), 7.21 (2H, d, J = 7.5 Hz), 4.69-4.66 (1H, m), 4.21-4.16 (2H, m), 3.76-3.70 (1H, m), 3.27 (1H, dd, J = 2.5, 13.0 Hz), 2.77 (1H, dd, J = 9.5, 13.0 Hz), 1.76-1.69 (1H, m), 1.44-1.30 (3H, m), 1.22 (3H, d, J = 6.5 Hz), 0.91 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.51, 153.21, 135.51, 129.58, 129.06, 127.46, 66.15, 55.51, 38.07, 37.59, 35.72, 20.54, 17.43, 14.19; HRMS (ESI) m/z: [M + Na]<sup>+</sup> found for 298.1420, calcd for C<sub>16</sub>H<sub>21</sub>NO<sub>3</sub>Na 298.1419.

T T

# 14

ОH

### (S)-2-methylpentan-1-ol (14):

Colorless liquid, 3.88 g, 95.0% yield;  $R_f$ = 0.6 (petroleum/EtOAc = 3:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.52-3.49 (1H, m), 3.43-3.39 (1H, m), 1.69-1.59 (2H, m), 1.42-1.33 (3H, m), 1.32-1.25 (2H, m), 1.12-1.06 (1H, m), 0.91-0.88 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  68.50, 35.61, 35.54, 20.19, 16.65, 14.44; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 103.1120, calcd for C<sub>6</sub>H<sub>15</sub>O 103.1123.



#### (R)-4-benzyl-3-propionyloxazolidin-2-one (15):

Colorless oil, 23.08 g, 99.0% yield.  $R_f = 0.6$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (2H, t, J = 7.5 Hz), 7.29-7.26 (1H, m), 7.21 (2H, d, J = 7.5 Hz), 4.70-4.65 (1H, m), 4.22-4.15 (2H, m), 3.31 (1H, dd, J = 3.0, 13.5 Hz), 3.03-2.89 (2H, m), 2.78 (1H, dd, J = 9.5, 13.0 Hz), 1.21 (3H, t, J = 7.5 Hz);<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.21, 153.63, 135.46, 129.53, 129.07, 127.45, 66.34, 55.28, 38.05, 29.30, 8.42.



#### (R)-4-benzyl-3-((2S, 4S)-2, 4-dimethylheptanoyl)oxazolidin-2-one (16):

Colorless oil, 7.90 g, 83% yield; *R*<sub>f</sub> = 0.5 (petroleum/EtOAc = 4:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.34-7.30 (2H, m), 7.28-7.25 (1H, m), 7.21 (2H, d, *J* = 7.0 Hz), 4.71-4.66 (1H, m), 4.20-4.13 (2H, m), 3.98-3.91 (1H, m), 3.30

(1H, dd, J = 3.0, 13.0 Hz), 2.75-2.70 (1H, m), 1.90-1.84 (1H, m), 1.50-1.42 (1H, m), 1.41-1.25 (3H, m), 1.22-1.19 (1H, m), 1.16 (3H, d, J = 7.0 Hz), 1.14-1.08 (1H, m), 0.91 (3H, d, J = 6.5 Hz), 0.89 (3H, t, J = 7.0 Hz);<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.00, 153.17, 135.56, 129.59, 129.56, 129.07, 127.46, 66.09, 55.49, 41.01, 39.84, 38.19, 35.50, 30.33, 20.18, 19.25, 16.85, 14.43; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 318.2071, calcd for C<sub>19</sub>H<sub>28</sub>NO<sub>3</sub> 318.2069.

#### (2S, 4S)-2, 4-dimethylheptanoic acid (9a):

Colorless oil, 3.16 g, quantitative;  $R_f = 0.6$  (petroleum/EtOAc = 4:1);  $[\alpha]_D^{20}$  +27.86 (c 0.14, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.60-2.52 (1H, m), 1.76-1.70 (1H, m), 1.55-1.44 (1H, m), 1.40-1.32 (1H, m), 1.31-1.22 (2H, m), 1.18 (3H, d, J = 7.0 Hz), 1.17-1.06 (2H, m), 0.90-0.86 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  183.80, 41.37, 39.42, 37.46, 30.58, 19.99, 19.68, 17.94, 14.42; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 159.1382, calcd for C<sub>9</sub>H<sub>19</sub>O<sub>2</sub> 159.1385.

The pure **9a** was analyzed by chiral HPLC (Chiralcel IG columm,  $25^{\circ}$ C, 1.0 mL/min, n-hexane:isopropanol = 90:10). Elution time = 5.143 min, ee% > 99%.





#### (2R, 4R)-2, 4-dimethylheptanoic acid (9b):

Colorless oil, 3.16 g, quantitative;  $R_f = 0.6$  (petroleum/EtOAc = 4:1);  $[\alpha]_D^{20}$  -27.33 (c 0.14, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.60-2.52 (1H, m), 1.76-1.70 (1H, m), 1.53-1.44 (1H, m), 1.40-1.31 (1H, m), 1.30-1.23 (2H, m), 1.18 (3H, d, J = 7.0 Hz), 1.16-1.08 (2H, m), 0.90-0.86 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  184.00, 41.36, 39.41, 37.47, 30.57, 19.98, 19.67, 17.93, 14.42; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 159.1391, calcd for C<sub>9</sub>H<sub>19</sub>O<sub>2</sub> 159.1385.

The pure 9b was analyzed by chiral HPLC (Chiralcel IG columm, 25°C, 1.0 mL/min, n-hexane:isopropanol =

90:10). Elution time = 5.245 min, ee% > 99%.





#### (2R, 4S)-2, 4-dimethylheptanoic acid (9c):

Colorless oil, 3.16 g, quantitative;  $R_f = 0.6$  (petroleum/EtOAc = 4:1);  $[\alpha]_D^{20}$  -12.71 (c 0.14, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.58-2.50 (1H, m), 1.57-1.46 (2H, m), 1.40-1.33 (2H, m), 1.32-1.25 (2H, m), 1.15 (3H, d, J = 7.0 Hz), 1.13-1.09 (1H, m), 0.89-0.85 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  183.86, 40.95, 39.44, 37.30, 30.33, 20.08, 19.44, 16.97, 14.42; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 159.1393, calcd for C<sub>9</sub>H<sub>19</sub>O<sub>2</sub> 159.1385. The pure **9c** was analyzad by chiral HPLC (Chiralcel IG column, 25°C, 1.0 mL/min, n-hexane:isopropanol = 90:10). Elution time = 3.821 min, ee% > 99%.





#### (2S, 4R)-2, 4-dimethylheptanoic acid (9d):

Colorless oil, 3.16 g, quantitative;  $R_f = 0.6$  (petroleum/EtOAc = 4:1);  $[\alpha]_D^{20}$  +13.17 (c 0.14, CHCl<sub>3</sub>); The data of <sup>1</sup>H NMR and <sup>13</sup>C NMR are in the agreement with the reported data.<sup>6</sup>

The pure **9d** was analyzed by chiral HPLC (Chiralcel IG columm, 25°C, 1.0 mL/min, n-hexane:isopropanol = 90:10). Elution time = 3.666 min, ee% > 99%.



#### 4.2 Data of dehydropeptides

BocHN CO<sub>2</sub>Me

#### methyl (Z)-2-((tert-butoxycarbonyl)amino)but-2-enoate (S10):

White solid, 0.90 g, 84% yield;  $R_f = 0.4$  (petroleum/EtOAc = 4:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.68 (1H, q, J = 7.0 Hz), 5.98 (1H, br), 3.77 (3H, s), 1.81 (3H, d, J = 7.0 Hz), 1.47 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.45, 153.25, 132.18, 80.54, 52.34, 28.29, 14.34; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 216.1238, calcd for C<sub>10</sub>H<sub>18</sub>NO<sub>4</sub> 216.1236.



#### methyl 2-((tert-butoxycarbonyl)amino)acrylate (S13):

White solid, 0.81 g, 81% yield;  $R_f = 0.5$  (petroleum/EtOAc = 4:1); <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$  6.01 (1H, br), 5.67 (1H, s), 4.72 (1H, s), 3.81 (3H, s), 1.48 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  164.61, 152.71, 131.43, 105.32, 80.85, 53.02, 28.40; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 202.1073, calcd for C<sub>9</sub>H<sub>16</sub>NO<sub>4</sub> 202.1079.

*tert*-butyl (*S*, *Z*)-2-((1-(allyloxy)-1-oxobut-2-en-2-yl)carbamoyl)pyrrolidine-1-carboxylate (23):

White solid, 1.40 g, 83% yield;  $R_f = 0.3$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.82 (1H, d, J = 45.0 Hz), 5.96-5.89 (1H, m), 5.33 (1H, d, J = 17.0 Hz), 5.24 (1H, d, J = 10.5 Hz), 4.69-4.62 (2H, m), 4.38 (1H, d, J = 40.5 Hz), 3.51-3.37 (2H, m), 2.37-1.93 (5H, m), 1.78 (3H, d, J = 6.5 Hz), 1.48 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  171.25, 164.01, 155.97, 134.65, 132.04, 126.70, 118.76, 80.91, 65.86, 61.56, 47.23, 31.43, 28.43, 24.68, 14.82; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 339.1921, calcd for C<sub>17</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub> 339.1920.



#### $allyl \ (S,Z) - 2 - (2 - ((tert-but oxy carbonyl) a mino) - 4 - methyl pentanamido) but - 2 - enoate \ (24):$

White solid, 1.58 g, 89% yield;  $R_f = 0.2$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (1H, br), 6.86 (1H, q, J = 7.0 Hz), 5.96-5.88 (1H, m), 5.33 (1H, d, J = 17.0 Hz), 5.25 (1H, d, J = 10.0 Hz), 5.02 (1H, s), 4.66 (2H, d, J = 5.5 Hz), 4.22 (1H, s), 2.05 (1H, s), 1.78 (3H, d, J = 7.5 Hz), 1.74 (1H, s), 1.45 (9H, s), 1.26 (1H, s), 0.97-0.92 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  171.12, 164.07, 155.93, 134.58, 131.97, 126.08, 118.61, 80.36, 65.99, 53.35, 41.09, 28.39, 24.84, 23.03, 22.15, 14.65; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 355.2230, calcd for C<sub>18</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> 355.2233.

#### allyl (*S*, *Z*)-2-(2-((*tert*-butoxycarbonyl)amino)-3-methylbutanamido)but-2-enoate (25):

White solid, 1.33 g, 78% yield;  $R_f = 0.3$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (1H, br), 6.84 (1H, q, J = 7.0 Hz), 5.94-5.89 (1H, m), 5.32 (1H, d, J = 17.0 Hz), 5.23 (2H, d, J = 10.0 Hz), 4.64 (2H, d, J = 5.5 Hz), 4.12 (1H, s), 2.20 (1H, s), 1.76 (3H, d, J = 7.0 Hz), 1.44 (9H, s), 1.03 (3H, d, J = 6.5 Hz), 0.98 (3H, d, J = 6.5 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  170.51, 164.01, 156.05, 134.73, 131.90, 126.21, 118.57, 79.99, 65.93, 60.04, 30.94, 28.33, 19.35, 17.90, 14.53; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 341.2077, calcd for C<sub>17</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub> 341.2076.

26

#### allyl (Z)-2-((2S, 3S)-2-((tert-butoxycarbonyl)amino)-3-methylpentanamido)but-2-enoate (26):

White solid, 1.31 g, 74% yield;  $R_f = 0.3$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.83 (1H, br), 5.95-5.87 (1H, m), 5.34 (1H, d, J = 17.0 Hz), 5.26 (1H, d, J = 10.0 Hz), 4.94 (1H, d, J = 6.5 Hz), 4.66 (2H, t, J = 5.0 Hz), 4.63 (1H, dd, J = 1.5, 9.0 Hz), 4.39 (1H, s), 4.21-4.18 (1H, m), 2.10-2.05 (1H, m), 1.63 (1H, s), 1.46 (9H, s), 1.24 (3H, d, J = 6.5 Hz), 0.95 (3H, t, J = 7.5 Hz), 0.89 (3H, d, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  170.50, 164.11, 156.03, 134.80, 131.93, 125.93, 118.73, 80.28, 66.07, 58.54, 37.18, 28.39, 26.48, 14.83, 14.42, 11.82; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 355.2236, calcd for C<sub>18</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> 355.2233.



#### allyl (R, Z)-2-(2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)but-2-enoate (27):

White solid, 1.35 g, 76% yield;  $R_f = 0.2$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (1H, br), 6.84 (1H, q, J = 7.5 Hz), 5.96-5.88 (1H, m), 5.33 (1H, dd, J = 1.5, 17.0 Hz), 5.24 (1H, d, J = 10.5 Hz), 4.90 (1H, s), 4.66 (2H, d, J = 5.5 Hz), 4.22 (1H, s), 1.77 (3H, d, J = 7.0 Hz), 1.66 (1H, s), 1.57 (1H, d, J = 6.0 Hz), 1.45 (9H, s), 1.21 (1H, s), 0.96 (6H, t, J = 6.5 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  171.12, 164.06, 155.92, 134.57, 131.96, 126.07, 118.60, 80.35, 65.98, 53.34, 41.08, 28.38, 24.83, 23.02, 22.14, 14.64; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 355.2233, calcd for C<sub>18</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> 355.2233.



#### allyl (S, Z)-2-(2-((*tert*-butoxycarbonyl)amino)-3-phenylpropanamido)but-2-enoate (28):

White solid, 1.57 g, 81% yield;  $R_f = 0.4$  (petroleum/EtOAc = 1:1); <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.31-7.28 (2H, m), 7.25-7.20 (3H, m), 6.77 (1H, q, J = 7.0 Hz), 5.97-5.89 (1H, m), 5.34-5.30 (1H, m), 5.23 (1H, dd, J = 1.0, 10.5 Hz), 4.63 (2H, d, J = 5.5 Hz), 4.47 (1H, s), 3.20-3.16 (1H, m), 3.02-2.98 (1H, m), 1.67 (3H, d, J = 6.5 Hz), 1.43 (1H, s), 1.39 (1H, s), 1.38 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  169.72, 164.63, 155.55, 136.45, 134.54, 129.40, 128.69, 126.99, 125.75, 80.38, 70.26, 55.90, 52.31, 38.63, 28.24, 14.55; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 389.2073, calcd for C<sub>21</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub> 389.2076.

allyl (*S*, *Z*)-2-(2-((*tert*-butoxycarbonyl)amino)-3-(1*H*-imidazol-4-yl)propanamido)but-2-enoate (29): White solid, 1.63 g, 86% yield;  $R_f$  = 0.2 (petroleum/EtOAc = 3:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (1H, s), 7.26 (1H, q, *J* = 7.0 Hz), 7.20 (1H, s), 7.07 (1H, s), 5.87-5.79 (1H, m), 5.24 (1H, d, *J* = 5.5 Hz), 5.16 (1H, d, *J* = 10.0 Hz), 4.67 (1H, d, *J* = 5.0 Hz), 4.59 (2H, s), 3.51-3.46 (1H, m), 3.26 (1H, d, *J* = 14.5 Hz), 1.67 (3H, d, *J* = 6.5 Hz), 1.52 (9H, s), 1.51 (9H, s), 1.41-1.34 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  169.44, 161.82, 150.61, 148.62, 144.74, 137.20, 136.64, 131.71, 122.61, 118.71, 115.55, 85.90, 84.52, 66.35, 59.34, 28.16, 27.99, 27.85, 13.98; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 479.2508, calcd for C<sub>23</sub>H<sub>35</sub>N<sub>4</sub>O<sub>7</sub> 479.2506.

#### allyl (S, Z)-2-(2-((tert-butoxycarbonyl)amino)-3-(4-hydroxyphenyl)propanamido)but-2-enoate (30):

White solid, 1.64 g, 81% yield;  $R_f = 0.3$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.04 (2H, d, J = 8.5 Hz), 6.73 (2H, d, J = 8.5 Hz), 6.07 (1H, br), 5.93-5.85 (1H, m), 5.33 (1H, d, J = 17.0 Hz), 5.25 (1H, d, J = 10.5 Hz), 5.14 (1H, s), 4.63 (1H, d, J = 4.5 Hz), 4.56 (1H, d, J = 7.0 Hz), 4.35-4.29 (1H, m), 2.99 (2H, t, J = 8.0 Hz), 2.81 (1H, s), 1.75 (1H, s), 1.41 (9H, s), 1.16 (3H, d, J = 6.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  169.71, 163.92, 151.95, 150.20, 134.85, 134.03, 131.96, 130.48, 125.88, 121.59, 118.65, 83.69, 66.03, 55.87, 37.24, 28.36, 27.81, 14.70; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 405.2028, calcd for C<sub>21</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> 405.2026.



**allyl** (*S*, *Z*)-2-(2-((*tert*-butoxycarbonyl)amino)-3-(1*H*-indol-3-yl)propanamido)but-2-enoate (31): White solid, 1.88 g, 88% yield; *R*<sub>f</sub> = 0.3 (petroleum/EtOAc = 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.10 (1H, br), 7.68 (1H, d, *J* = 7.5 Hz), 7.36 (1H, d, *J* = 8.0 Hz), 7.29 (1H, s), 7.21 (1H, t, *J* = 7.0 Hz), 7.15-7.12 (2H, m), 6.80 (1H, q, *J* = 7.0 Hz), 5.93-5.85 (1H, m), 5.31 (1H, d, *J* = 17.0 Hz), 5.23 (1H, d, *J* = 10.5 Hz), 5.13 (1H, s), 4.60 (3H, d, *J* = 5.5 Hz), 1.68-1.66 (3H, m), 1.42 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 170.26, 170.14, 163.95, 136.34, 134.63, 132.01, 129.02, 127.67, 125.91, 123.50, 122.44, 119.96, 119.00, 118.59, 111.32, 65.99, 61.79, 55.44, 29.84, 28.40, 14.72; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 428.2158, calcd for C<sub>23</sub>H<sub>30</sub>N<sub>3</sub>O<sub>5</sub> 428.2158.



allyl (*R*, *Z*)-2-(2-((*tert*-butoxycarbonyl)amino)-3-(naphthalen-2-yl)propanamido)but-2-enoate (32): White solid, 1.88 g, 86% yield;  $R_f$  = 0.4 (petroleum/EtOAc = 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78-7.74 (3H, m), 7.72-7.70 (1H, m), 7.59 (1H, s), 7.46-7.42 (3H, m), 7.20 (1H, dd, *J* = 1.0, 8.0 Hz), 7.05 (1H, q, *J* = 7.0 Hz), 5.90-5.82 (1H, m), 5.29-5.21 (2H, m), 4.90 (1H, dd, *J* = 2.5, 5.0 Hz), 4.62 (2H, t, *J* = 7.0 Hz), 3.79-3.75 (1H, m), 3.51-3.48 (1H, m), 1.67 (9H, s), 0.64 (3H, d, *J* = 7.5 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  171.28, 169.08, 161.54, 149.97, 148.87, 144.53, 133.51, 131.60, 129.25, 127.82, 127.66, 126.48, 122.20, 118.73, 84.88, 66.31, 61.02, 60.52, 34.97, 28.24, 21.18, 14.31, 13.07; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 439.2231, calcd for C<sub>25</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> 439.2233.



#### allyl (2-((tert-butoxycarbonyl)amino)acryloyl)-L-phenylalaninate (33):

White solid, 1.53 g, 82% yield;  $R_f = 0.4$  (petroleum/EtOAc = 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.37 (1H, br), 7.28-7.25 (2H, m), 7.20-7.19 (3H, m), 6.62 (1H, s), 5.93-5.86 (2H, m), 5.43 (1H, s), 5.31 (1H, dd, J = 1.0, 17.0 Hz), 5.26-5.24 (1H, m), 4.65 (2H, d, J = 5.5 Hz), 4.52 (1H, s), 3.20-3.16 (1H, m), 3.04 (1H, s), 1.38 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  170.18, 162.82, 136.22, 130.96, 130.43, 128.82, 128.22, 126.50, 118.45, 109.02, 66.03, 37.66, 27.80; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 375.1917, calcd for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub> 375.1920.



# methyl (6*S*, 9*S*)-9-benzyl-6-isobutyl-2, 2-dimethyl-12-methylene-4, 7, 10-trioxo-3-oxa-5, 8, 11-triazatridecan -13-oate (34):

White solid, 1.85 g, 80% yield;  $R_f = 0.2$  (petroleum/EtOAc = 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (1H, br), 7.28-7.25 (2H, m), 7.23-7.18 (4H, m), 7.00 (1H, br), 6.53 (1H, s), 5.88 (1H, s), 5.07 (1H, s), 4.84-4.77 (1H, m), 3.77 (3H, s), 3.14-3.08 (2H, m), 1.64-1.55 (2H, m), 1.46 (1H, s), 1.42 (9H, s), 0.90 (6H, d, J = 6.5 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  169.70, 163.84, 155.68, 136.17, 130.80, 129.26, 128.64, 127.02, 109.83, 60.40, 55.06, 52.87, 41.21, 38.16, 28.29, 27.67, 24.70, 22.94; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 462.2067, calcd for C<sub>24</sub>H<sub>36</sub>N<sub>3</sub>O<sub>6</sub> 462.2064.

methyl (2-((*R*)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanamido)acryloyl)-*L*-phenylalaninate (35): White solid, 1.87 g, 81% yield;  $R_f = 0.2$  (petroleum/EtOAc = 1:1); <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.25-7.17 (6H, m), 6.85 (1H, d, J = 8.0 Hz), 6.19 (1H, s), 5.73 (1H, d, J = 9.0 Hz), 4.75 (1H, q, J = 8.0 Hz), 3.75-3.62 (3H, m), 3.06-2.99 (1H, m), 2.88-2.75 (1H, m), 1.48-1.44 (1H, m), 1.42 (1H, s), 1.36 (9H, s), 1.31-1.23 (3H, m), 0.81 (3H, d, J = 6.5 Hz), 0.78 (3H, d, J = 6.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>)  $\delta$  173.06, 171.26, 164.12, 155.62, 137.81, 132.83, 129.72, 128.74, 126.74, 110.25, 78.54, 54.40, 53.42, 53.09, 41.30, 28.63, 27.78, 24.62, 23.29, 22.03; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 462.2065, calcd for C<sub>24</sub>H<sub>36</sub>N<sub>3</sub>O<sub>6</sub> 462.2064.



#### (S)-3-benzyl-6-methylenepiperazine-2, 5-dione (36):

White solid, 0.85 g, 79% yield;  $R_f = 0.2$  (petroleum/EtOAc = 4:1); <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.25-7.20 (3H, m), 7.12 (2H, d, J = 6.5 Hz), 4.90 (1H, s), 4.50 (1H, s), 4.38 (1H, t, J = 4.0 Hz), 4.04 (1H, s), 3.31 (1H, s), 3.14 (1H, dd, J = 3.5, 14.0 Hz), 2.90 (1H, dd, J = 5.0, 13.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>)  $\delta$  165.11, 158.06, 135.40, 134.21, 130.03, 128.04, 126.72, 98.50, 56.09, 55.99; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 217.0975, calcd for C<sub>12</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub> 217.0977.



#### (S, Z)-3-benzyl-6-ethylidenepiperazine-2, 5-dione (37):

White solid, 0.94 g, 82% yield;  $R_f = 0.4$  (petroleum/EtOAc = 3:1); <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$  7.23-7.21 (3H,

m), 7.17-7.15 (2H, m), 5.63 (1H, q, J = 7.5 Hz), 4.35 (1H, t, J = 4.5 Hz), 3.20 (1H, dd, J = 4.5, 13.5 Hz), 3.00 (1H, dd, J = 4.5, 13.5 Hz), 1.51 (3H, d, J = 7.5 Hz); <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD)  $\delta$  168.16, 162.46, 135.93, 131.43, 129.41, 128.31, 128.26, 115.11, 57.98, 41.39, 10.81; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 231.1138, calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> 231.1134.

#### 4.3 Data of compound 1

allyl ((2S, 4S)-2, 4-dimethylheptanoyl)-L-threoninate (17a):

White solid, 2.54 g, 85.0% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.35 (1H, br), 5.91-5.83 (1H, m), 5.31 (1H, d, J = 17.0 Hz), 5.22 (1H, d, J = 10.5 Hz), 4.63-4.60 (3H, m), 4.37-4.35 (1H, m), 2.87 (1H, br), 2.46-2.38 (1H, m), 1.73-1.67 (1H, m), 1.48-1.42 (1H, m), 1.35-1.20 (3H, m), 1.18 (3H, d, J = 6.5 Hz), 1.14 (3H, d, J = 7.0 Hz), 1.12-1.02 (2H, m), 0.86 (3H, d, J = 6.5 Hz), 0.83 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.53, 170.95, 131.60, 119.00, 68.12, 66.22, 57.01, 41.88, 39.63, 39.35, 30.40, 20.02, 19.70, 19.01, 14.42; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 300.2179, calcd for C<sub>16</sub>H<sub>30</sub>NO<sub>4</sub> 300.2175.

#### allyl ((2R, 4R)-2, 4-dimethylheptanoyl)-L-threoninate (17b):

White solid, 2.57 g, 86% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.25-6.22 (1H, m), 5.94-5.86 (1H, m), 5.36-5.24 (2H, m), 4.69-4.64 (2H, m), 4.63 (1H, d, J = 2.5 Hz), 4.41-4.32 (1H, m), 2.47-2.40 (1H, m), 2.27-2.21 (1H, m), 1.76-1.70 (1H, m), 1.54-1.39 (1H, m), 1.37-1.31 (1H, m), 1.29-1.23 (2H, m), 1.21 (3H, d, J = 6.5 Hz), 1.16 (3H, d, J = 7.0 Hz), 1.14-1.05 (1H, m), 0.92 (1H, d, J = 6.5 Hz), 0.89 (2H, d, J = 6.5 Hz), 0.86 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.45, 171.05, 131.59, 119.05, 68.13, 66.26, 57.08, 41.84, 39.63, 39.43, 30.59, 20.10, 20.05, 19.64, 18.81, 14.40; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 300.2178, calcd for C<sub>16</sub>H<sub>30</sub>NO<sub>4</sub> 300.2175.

#### allyl ((2R, 4S)-2, 4-dimethylheptanoyl)-L-threoninate (17c):

White solid, 2.54 g, 85% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.30 (1H, d, J = 8.5 Hz), 5.94-5.86 (1H, m), 5.35-5.31 (1H, m), 5.26-5.23 (1H, m), 4.67-4.64 (2H, m), 4.62 (1H, dd, J = 2.5, 9.0 Hz), 4.40-4.34 (1H, m), 2.52-2.48 (1H, m), 2.41 (1H, q, J = 7.0 Hz), 1.53-1.45 (2H, m), 1.39-1.33 (1H, m), 1.32-1.23 (2H, m), 1.21 (3H, d, J = 6.5 Hz), 1.13 (3H, d, J = 7.0 Hz), 1.11-1.07 (1H, m), 0.92 (1H, d, J = 6.5 Hz), 0.88-0.84 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.83, 171.02, 131.62, 118.90, 67.99, 66.17, 57.19, 41.48, 39.34, 39.20, 30.34, 20.10, 20.03, 19.60, 17.82, 14.43; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 300.2176, calcd for C<sub>16</sub>H<sub>30</sub>NO<sub>4</sub> 300.2175.



# allyl *O-(N-(tert*-butoxycarbonyl)-*O-(tert*-butyl)-*L*-threonyl)-*N-((2S, 4S)-2, 4-dimethylheptanoyl)- L-*threoninate (18a):

Colorless oil, 4.36 g, 98% yield;  $R_f = 0.3$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.20 (1H, d, J = 9.0 Hz), 5.91-5.83 (1H, m), 5.42-5.41 (1H, m), 5.30 (1H, d, J = 17.0 Hz), 5.22 (2H, d, J = 10.5 Hz), 4.84-4.82 (1H, m), 4.64-4.60 (2H, m), 4.10-4.03 (2H, m), 2.47-2.41 (1H, m), 1.75-1.71 (1H, m), 1.43 (9H, s), 1.32 (1H, d, J = 6.5 Hz), 1.27 (3H, d, J = 6.5 Hz), 1.25-1.20 (2H, m), 1.18-1.16 (6H, m), 1.12 (9H, s), 0.92 (1H, d, J = 6.5 Hz), 0.88 (3H, d, J = 6.0 Hz), 0.84 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.23, 170.64, 169.40, 156.04, 131.61, 119.25, 79.85, 74.07, 71.96, 67.08, 66.59, 59.41, 55.28, 41.69, 39.56, 39.24, 30.40, 28.61, 28.41, 20.66, 20.02, 19.77, 19.08, 17.30, 14.40; HRMS (ESI) m/z: [M + Na]<sup>+</sup> found for 579.3625, calcd for C<sub>29</sub>H<sub>52</sub>N<sub>2</sub>O<sub>8</sub>Na 579.3621.

# allyl *O-(N-(tert*-butoxycarbonyl)-*O-(tert*-butyl)-*L*-threonyl)-*N-((2R, 4R)-2, 4-dimethylheptanoyl)-L*-threoninate (18b):

Colorless oil, 4.41 g, 99% yield;  $R_f = 0.3$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.26 (1H, d, J = 9.0 Hz), 5.92-5.84 (1H, m), 5.45-5.41 (1H, m), 5.31 (1H, d, J = 17.0 Hz), 5.25-5.22 (2H, m), 4.83 (1H, dd, J = 2.5, 9.0 Hz), 4.62 (2H, d, J = 6.0 Hz), 4.05 (2H, d, J = 7.0 Hz), 2.49-2.45 (1H, m), 1.71-1.72 (1H, m), 1.44 (11H, s), 1.29 (3H, d, J = 6.5 Hz), 1.26-1.22 (2H, m), 1.19-1.15 (7H, m), 1.13 (10H, s), 1.78 (3H, d, J = 6.5 Hz), 0.88 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.23, 170.59, 169.51, 156.03, 131.66, 119.29, 79.91, 74.14, 72.05, 67.18, 66.63, 59.40, 55.34, 41.82, 39.63, 39.32, 30.62, 28.66, 28.45, 20.57, 20.06, 19.62, 18.75, 17.39, 14.39; HRMS (ESI) m/z: [M + Na]<sup>+</sup> found for 579.3621, calcd for C<sub>29</sub>H<sub>52</sub>N<sub>2</sub>O<sub>8</sub>Na 579.3621.



allyl *O*-(*N*-(*tert*-butoxycarbonyl)-*O*-(*tert*-butyl)-*L*-threonyl)-*N*-((2*R*, 4*S*)-2, 4-dimethylheptanoyl)-*L*-threoninate (18c):

Colorless oil, 4.27 g, 96% yield;  $R_f = 0.3$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.26 (1H, d, J = 9.0 Hz), 5.95-5.84 (1H, m), 5.45-5.41 (1H, m), 5.34-5.29 (1H, m), 5.25-5.23 (2H, m), 4.83 (1H, dd, J = 2.5, 9.0 Hz), 4.65-4.61 (2H, m), 4.07-4.04 (2H, m), 2.47-2.42 (1H, m), 1.55-1.47 (2H, m), 1.44 (9H, s), 1.41-1.32 (2H, m), 1.29 (3H, d, J = 6.5 Hz), 1.27-1.22 (2H, m), 1.17 (3H, d, J = 6.0 Hz), 1.14 (3H, s), 1.13 (9H, s), 0.96-0.92 (1H, m), 0.89-0.86 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.55, 170.60, 169.52, 156.04, 131.65, 119.27, 79.89, 74.11, 71.99, 67.11, 66.63, 59.38, 55.34, 41.49, 39.31, 39.14, 30.39, 28.63, 28.42, 20.60, 20.04, 19.68, 17.83, 17.37, 14.47; HRMS (ESI) m/z: [M + Na]<sup>+</sup> found for 579.3621, calcd for C<sub>29</sub>H<sub>52</sub>N<sub>2</sub>O<sub>8</sub>Na 579.3621.

́́ОН ÓTBS 19a

### allyl *O*-(((*R*)-2-((*tert*-butoxycarbonyl)amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)propanoyl)-*L*-threonyl) -*N*-((2*S*, 4*S*)-2, 4-dimethylheptanoyl)-*L*-threoninate (19a):

White amorphous solid, 4.63 g, 85% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.08 (2H, d, J = 8.5 Hz), 6.77 (2H, d, J = 8.0 Hz), 6.70 (1H, s), 6.58 (1H, d, J = 7.5 Hz), 5.93-5.85 (1H, m), 5.48-5.46 (1H, m), 5.35-5.30 (1H, m), 5.27-5.25 (1H, m), 5.08 (1H, br), 4.76 (1H, d, J = 8.0 Hz), 4.60 (2H, d, J = 6.0 Hz), 4.35-4.28 (2H, m), 4.24-4.22 (1H, m), 3.09-3.05 (1H, m), 2.96-2.91 (1H, m), 1.76-1.70 (1H, m), 1.41 (2H, d, J = 3.0 Hz), 1.40 (9H, s), 1.29 (4H, d, J = 7.0 Hz), 1.27-1.21 (3H, m), 1.16 (3H, d, J = 7.0 Hz), 1.14-1.06 (2H, m), 1.03 (3H, d, J = 5.0 Hz), 0.97 (9H, s), 0.90 (3H, d, J = 6.5 Hz), 0.85 (3H, t, J = 7.0 Hz), 0.18 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.94, 172.46, 170.69, 169.92, 154.90, 131.48, 130.49, 130.30, 129.17, 120.45, 120.28, 119.47, 71.57, 67.49, 66.81, 57.75, 55.51, 41.97, 39.67, 38.74, 37.60, 30.42, 28.43, 25.80, 20.08, 19.80, 19.78, 19.01, 18.32, 17.08, 14.45, -4.31; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 778.4672, calcd for C<sub>40</sub>H<sub>68</sub>N<sub>3</sub>O<sub>10</sub>Si 778.4674.

### allyl *O*-(((*R*)-2-((*tert*-butoxycarbonyl)amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)propanoyl)-*L*-threonyl)-*N*-((2*R*, 4*R*)-2, 4-dimethylheptanoyl)-*L*-threoninate (19b):

White amorphous solid, 4.68 g, 86% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.09-7.06 (2H, m), 6.77-6.73 (3H, m), 6.54 (1H, s), 5.92-5.84 (1H, m), 5.49-5.45 (1H, m), 5.34-5.31 (1H, m), 5.25 (1H, d, J = 10.5 Hz), 5.09 (1H, d, J = 7.5 Hz), 4.78 (1H, d, J = 7.5 Hz), 4.60 (2H, d, J = 6.0 Hz), 4.40-4.31 (2H, m), 4.21-4.20 (1H, m), 3.13-3.09 (1H, m), 2.95-2.91 (1H, m), 2.56-2.50 (1H, m), 1.77-1.71 (1H, m), 1.38 (9H, s), 1.34-1.22 (5H, m), 2.30 (3H, d, J = 7.0 Hz), 1.13-1.05 (4H, m), 0.96 (9H, s), 0.91-0.88 (5H, m), 0.84 (3H, t, J = 7.0 Hz), 0.18 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.67, 172.45, 172.39, 170.61, 169.97, 169.85, 154.81, 154.79, 131.45, 130.33, 130.30, 129.31, 120.38, 119.51, 67.49, 66.85, 57.67, 55.32, 41.68, 39.66, 39.04, 30.64, 28.38, 25.78, 20.07, 19.72, 19.61, 19.14, 18.89, 18.29, 17.14, 14.41, -4.33; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 778.4658, calcd for C<sub>40</sub>H<sub>68</sub>N<sub>3</sub>O<sub>10</sub>Si 778.4674.



## allyl *O*-(((*R*)-2-((*tert*-butoxycarbonyl)amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)propanoyl)-*L*-threonyl)-*N*-((2*R*, 4*S*)-2, 4-dimethylheptanoyl)-*L*-threoninate (19c):

White amorphous solid, 4.57 g, 84% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.07 (2H, d, J = 8.0 Hz), 6.76 (2H, d, J = 8.0 Hz), 6.71 (1H, d, J = 8.0 Hz), 6.51 (1H, s), 5.92-5.84 (1H, m), 5.49-5.45 (1H, m), 5.33 (1H, dd, J = 1.5, 17.0 Hz), 5.25 (1H, dd, J = 1.0, 10.5 Hz), 5.07 (1H, s), 4.77 (1H, d, J = 7.5 Hz), 4.61 (2H, d, J = 6.0 Hz), 4.40-4.32 (2H, m), 4.21 (1H, d, J = 6.5 Hz), 3.14-3.10 (1H, m), 2.95-2.90 (1H, m), 2.63 (1H, s), 2.53-2.47 (1H, m), 1.54-1.47 (1H, m), 1.46-1.41 (2H, m), 1.38 (9H, s), 1.35-1.31 (2H, m), 1.29 (3H, d, J = 6.5 Hz), 1.26-1.21 (1H, m), 1.14 (3H, d, J = 6.5 Hz), 1.07 (3H, d, J = 6.5 Hz), 0.96 (9H, s), 0.91-0.88 (2H, m), 0.87-0.84 (5H, m), 0.17 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.01, 172.44, 172.37, 170.55, 169.99, 169.85, 154.80, 131.45, 130.30, 129.30, 120.37, 119.50, 80.40, 71.67, 67.42, 66.83, 57.64, 55.38, 41.30, 39.44, 38.95, 37.53, 30.43, 28.39, 25.77, 20.10, 19.73, 19.61, 19.13, 18.29, 17.95, 17.15, 14.46, -4.34; HRMS (ESI)

m/z:  $[M + H]^+$  found for 778.4673, calcd for  $C_{40}H_{68}N_3O_{10}Si$  778.4674.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (*Z*)-2-((*R*)-2-((*kert* -butoxycarbonyl)amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)propanamido)but-2-enoate (20a): Yellow solid, 3.87 g, 85%;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.20 (1H, s), 7.10 (2H, d, *J* = 8.5 Hz), 6.88 (1H, s), 6.79-6.77 (3H, m), 5.91-5.83 (1H, m), 5.45 (1H, s), 5.33-5.29 (1H, m), 5.21 (1H, d, *J* = 10.0 Hz), 4.94 (1H, s), 4.91 (1H, dd, *J* = 3.0, 9.0 Hz), 4.63 (2H, d, *J* = 6.0 Hz), 4.44 (1H, d, *J* = 6.0 Hz), 3.09-3.04 (2H, m), 1.79-1.74 (1H, m), 1.69-1.66 (4H, m), 1.43 (9H, s), 1.35-1.31 (2H, m), 1.28 (3H, d, *J* = 6.5 Hz), 1.26-1.21 (2H, m), 1.15 (3H, d, *J* = 7.0 Hz), 1.11-1.06 (2H, m), 0.97 (9H, s), 0.91 (3H, d, *J* = 6.5 Hz), 0.86 (3H, t, *J* = 7.0 Hz), 0.18 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.82, 170.48, 169.68, 162.96, 154.95, 135.73, 131.72, 130.49, 130.44, 128.98, 126.33, 120.52, 119.33, 119.24, 80.77, 72.23, 66.58, 55.47, 41.96, 39.83, 38.77, 36.59, 30.51, 28.38, 25.80, 20.10, 19.73, 19.30, 18.33, 16.92, 14.47, 14.41, -4.30; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 760.4564, calcd for C<sub>40</sub>H<sub>66</sub>N<sub>3</sub>O<sub>9</sub>Si 760.4568.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*R*, 4*R*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (*Z*)-2-((*R*)-2-((*tert*-butyx))amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)propanamido)but-2-enoate (20b): Yellow solid, 3.74 g, 82%;  $R_f = 0.6$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 (1H, s), 7.10 (2H, d, *J* = 8.0 Hz), 6.78-6.70 (3H, m), 5.91-5.83 (1H, m), 5.43-5.41 (1H, m), 5.33-5.29 (1H, m), 5.26-5.21 (1H, m), 4.95 (1H, s), 4.87 (1H, dd, *J* = 3.0, 9.0 Hz), 4.66-4.56 (2H, m), 4.43 (1H, s), 3.88-3.07 (2H, m), 1.83-1.74 (1H, m), 1.70-1.66 (4H, m), 1.42 (9H, s), 1.37 (2H, d, *J* = 6.5 Hz), 1.35-1.31 (1H, m), 1.29 (3H, d, *J* = 6.5 Hz), 1.27-1.21 (2H, m), 1.17 (3H, d, *J* = 6.5 Hz), 1.13-1.07 (1H, m), 0.97 (9H, s), 0.92 (2H, d, *J* = 6.5 Hz), 0.88-0.83 (5H, m), 0.18 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.57, 170.47, 169.74, 163.06, 154.90, 135.10, 131.65, 130.45, 130.36, 130.30, 129.08, 120.49, 120.43, 120.31, 119.27, 72.23, 66.62, 55.56, 41.60, 39.76, 39.10, 30.69, 28.40, 25.80, 20.09, 19.70, 19.17, 19.09, 18.32, 17.05, 16.88, 14.44, -4.30; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 760.4577, calcd for C<sub>40</sub>H<sub>66</sub>N<sub>3</sub>O<sub>9</sub>Si 760.4568.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*R*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (*Z*)-2-((*R*)-2-((*tert*-butyldimethylsilyl)oxy)phenyl)propanamido)but-2-enoate (20c): Yellow solid, 3.78 g, 83%;  $R_f$  = 0.5 (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 (1H, s), 7.10 (2H, d, *J* = 8.0 Hz), 6.77 (2H, d, *J* = 8.0 Hz), 6.72 (1H, q, *J* = 7.0 Hz), 6.55 (1H, s), 5.91-5.83 (1H, m), 5.42-5.40 (1H, m), 5.31 (1H, dd, *J* = 1.5, 17.0 Hz), 5.22 (1H, dd, *J* = 1.0, 10.0 Hz), 4.98 (1H, s), 4.86 (1H, dd, *J* = 3.5, 9.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 3.11-3.03 (2H, m), 2.53-2.48 (1H, m), 1.87-1.74 (1H, m), 1.69 (3H, d, *J* = 7.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 3.11-3.03 (2H, m), 2.53-2.48 (1H, m), 1.87-1.74 (1H, m), 1.69 (3H, d, *J* = 7.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 3.11-3.03 (2H, m), 2.53-2.48 (1H, m), 1.87-1.74 (1H, m), 1.69 (3H, d, *J* = 7.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 3.11-3.03 (2H, m), 2.53-2.48 (1H, m), 1.87-1.74 (1H, m), 1.69 (3H, d, *J* = 7.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 4.11-3.03 (2H, m), 2.53-2.48 (1H, m), 1.87-1.74 (1H, m), 1.69 (3H, d, *J* = 7.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 3.11-3.03 (2H, m), 2.53-2.48 (1H, m), 1.87-1.74 (1H, m), 1.69 (3H, d, *J* = 7.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 3.11-3.03 (2H, m), 2.53-2.48 (1H, m), 1.87-1.74 (1H, m), 1.69 (3H, d, *J* = 7.5 Hz), 4.64-4.62 (2H, m), 4.43 (1H, s), 4.45 ( Hz), 1.57-1.51 (1H, m), 1.49-1.44 (1H, m), 1.41 (9H, s), 1.38-1.31 (1H, m), 1.29 (3H, d, J = 6.0 Hz), 1.27-1.17 (1H, m), 1.15 (3H, d, J = 7.0 Hz), 1.10-1.03 (1H, m), 0.97 (9H, s), 0.91 (1H, d, J = 7.0 Hz), 0.88-0.84 (6H, m), 0.17 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.89, 170.46, 169.74, 163.05, 154.87, 135.06, 131.61, 130.43, 129.09, 126.24, 120.46, 119.29, 80.62, 72.22, 66.60, 55.60, 41.27, 39.41, 39.02, 36.87, 30.50, 28.39, 25.78, 20.10, 20.07, 19.73, 19.15, 18.30, 18.23, 17.07, 14.47, 14.43, -4.33; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 760.4561, calcd for C<sub>40</sub>H<sub>66</sub>N<sub>3</sub>O<sub>9</sub>Si 760.4568.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*S*, 9*R*, *Z*)-9-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-12-ethylidene-6-isopropyl-2,2-dimethyl-4, 7, 10-trioxo-3-oxa-5, 8, 11-triazatridecan-13-oate (21a):

White amorphous solid, 4.08 g, 90% over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (1H, s), 7.78 (1H, d, J = 10.0 Hz), 7.08 (2H, d, J = 8.5 Hz), 6.76-6.73 (3H, m), 6.13 (1H, d, J = 8.0 Hz), 5.97-5.89 (1H, m), 5.47-5.44 (1H, m), 5.33-5.29 (1H, m), 5.20 (1H, d, J = 11.0 Hz), 4.95 (1H, dd, J = 2.5, 9.5 Hz), 4.90 (1H, d, J = 6.0 Hz), 4.85 (1H, q, J = 7.0 Hz), 4.71 (2H, d, J = 5.5 Hz), 3.39 (1H, t, J = 7.0 Hz), 3.16-3.10 (2H, m), 2.83 (1H, s), 1.85-1.77 (2H, m), 1.68 (3H, d, J = 7.0 Hz), 1.45-1.40 (2H, m), 1.32 (2H, s), 1.28 (9H, s), 1.19 (3H, d, J = 6.5 Hz), 1.16 (3H, d, J = 7.0 Hz), 1.09-1.00 (2H, m), 0.96 (9H, s), 0.92 (3H, d, J = 6.5 Hz), 0.86-0.82 (6H, m), 0.77 (3H, d, J = 6.5 Hz), 0.17 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.08, 172.35, 170.62, 169.45, 163.29, 156.75, 155.03, 135.49, 132.22, 130.34, 129.04, 127.90, 120.59, 118.56, 80.79, 72.46, 66.60, 62.32, 55.09, 54.25, 41.56, 39.93, 38.15, 35.93, 30.51, 29.93, 28.34, 28.29, 25.78, 20.11, 19.74, 19.63, 19.22, 19.19, 18.96, 18.31, 16.75, 14.47, 13.48, -4.33; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 859.5255, calcd for C<sub>40</sub>H<sub>75</sub>N<sub>6</sub>O<sub>12</sub>Si 859.5252.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*R*, 4R)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*S*, 9*R*, *Z*)-9-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-12-ethylidene-6-isopropyl-2, 2-dimethyl-4, 7, 10-trioxo-3-oxa-5, 8, 11-triazatridecan-13-oate (21b):

White amorphous solid, 3.95 g, 92% over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 (1H, s), 7.81 (1H, d, J = 9.5 Hz), 7.09 (2H, d, J = 8.5 Hz), 6.75-6.71 (3H, m), 6.24-6.23 (1H, m), 5.95-5.90 (1H, m), 5.47-5.45 (1H, m), 5.30 (1H, d, J = 17.5 Hz), 5.19 (1H, d, J = 10.5 Hz), 4.94 (1H, d, J = 9.5 Hz), 4.86 (2H, d, J = 5.0 Hz), 4.72 (2H, d, J = 5.5 Hz), 3.39 (1H, t, J = 6.5 Hz), 3.12 (2H, d, J = 5.5 Hz), 1.81-1.76 (2H, m), 1.68 (3H, d, J = 7.0 Hz), 1.44-1.36 (3H, m), 1.31 (2H, s), 1.26 (9H, s), 1.18 (3H, d, J = 6.5 Hz), 1.12 (3H, d, J = 6.5 Hz), 1.09-0.99 (2H, m), 0.95 (9H, s), 0.91 (6H, d, J = 6.5 Hz), 0.83 (3H, t, J = 7.0 Hz), 0.77 (3H, d, J = 6.5 Hz), 0.16 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.35, 172.36, 170.86, 169.42, 165.91, 163.32, 156.74, 154.94, 135.41, 132.26, 130.32, 129.23, 128.09, 120.52, 118.43, 80.66, 72.00, 66.61, 62.25, 55.22, 54.30, 41.57, 39.92, 38.72, 38.22, 35.75, 30.67, 29.89, 28.22, 25.75, 20.13, 19.58, 19.11, 18.81, 18.28, 16.67, 14.38, -4.37;

HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 859.5250, calcd for C<sub>40</sub>H<sub>75</sub>N<sub>6</sub>O<sub>12</sub>Si 859.5252.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*R*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*S*, 9*R*, *Z*)-9-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-12-ethylidene-6-isopropyl-2, 2-dimethyl-4, 7, 10-trioxo-3-oxa-5, 8, 11-triazatridecan-13-oate (21c):

White amorphous solid, 4.08 g, 90% over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (1H, s), 7.54 (1H, d, J = 9.0 Hz), 7.09 (2H, d, J = 8.5 Hz), 6.94 (1H, s), 6.77-6.73 (3H, m), 6.24 (1H, d, J = 7.5 Hz), 5.96-5.86 (1H, m), 5.47-5.43 (1H, m), 5.34-5.29 (1H, m), 5.22-5.19 (1H, m), 4.95-4.90 (1H, m), 4.83 (1H, q, J = 7.0 Hz), 4.71 (2H, d, J = 5.5 Hz), 4.65-4.58 (1H, m), 4.20-4.19 (1H, m), 3.43 (1H, t, J = 7.5 Hz), 3.20-3.09 (1H, m), 2.72 (1H, q, J = 6.5 Hz), 2.26-2.20 (1H, m), 2.06-1.81 (2H, m), 1.69 (2H, d, J = 7.0 Hz), 1.54-1.46 (1H, m), 1.44-1.39 (1H, m), 1.37-1.32 (3H, m), 1.30 (9H, s), 1.22 (3H, d, J = 6.5 Hz), 1.13 (3H, d, J = 6.5 Hz), 1.07 (3H, d, J = 7.0 Hz), 1.01 (3H, d, J = 6.5 Hz), 0.97 (9H, s), 0.91 (3H, t, J = 9.0 Hz), 0.87 (3H, d, J = 6.5 Hz), 0.17 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.66, 172.35, 170.70, 169.57, 163.33, 156.76, 155.05, 135.40, 132.23, 130.38, 129.11, 127.99, 120.61, 120.52, 118.62, 80.81, 72.22, 66.67, 62.47, 55.32, 54.27, 41.04, 39.64, 38.35, 35.91, 30.39, 29.91, 28.36, 28.29, 25.80, 20.08, 19.68, 19.20, 19.05, 18.33, 17.98, 16.80, 14.54, 13.49, -4.31; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 859.5255, calcd for C<sub>40</sub>H<sub>75</sub>N<sub>6</sub>O<sub>12</sub>Si 859.5252.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*S*, 9*S*, 12*R*, *Z*)-12-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-15-ethylidene-6-isobutyl-9-isopropyl-2, 2-dimethyl-4, 7, 10, 13-tetraoxo-3-oxa-5, 8, 11, 14-tetraazahexadecan-16-oate (22a):

White amorphous solid, 3.26 g, 84% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (1H, s), 7.63 (1H, d, J = 9.0 Hz), 7.08 (2H, d, J = 8.0 Hz), 6.83 (1H, s), 6.75-6.70 (3H, m), 6.56 (1H, d, J = 8.0 Hz), 5.93-5.86 (1H, m), 5.47-5.46 (1H, m), 5.30 (1H, dd, J = 1.5, 17.0 Hz), 5.22-5.15 (1H, m), 4.94 (1H, d, J = 2.0, 9.5 Hz), 4.89 (1H, d, J = 6.5 Hz), 4.73 (1H, d, J = 5.5 Hz), 4.66 (2H, d, J = 5.5 Hz), 4.02 (1H, d, J = 6.0 Hz), 3.87 (1H, d, J = 7.0 Hz), 3.75 (1H, t, J = 6.5 Hz), 3.26-3.18 (1H, m), 3.10-2.99 (1H, m), 2.73 (1H, s), 2.07-2.01 (2H, m), 1.93-1.89 (2H, m), 1.81-1.76 (1H, m), 1.67-1.64 (3H, m), 1.53-1.43 (4H, m), 1.40 (9H, s), 1.35-1.30 (2H, m), 1.23 (3H, d, J = 6.5 Hz), 1.16 (2H, d, J = 7.0 Hz), 1.09-1.02 (2H, m), 0.96 (9H, s), 0.91 (2H, d, J = 7.0 Hz), 0.87-0.85 (8H, m), 0.84-0.83 (4H, m), 0.77 (2H, d, J = 6.5 Hz), 0.16 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.21, 174.66, 170.74, 170.59, 169.42, 163.42, 156.51, 154.58, 134.03, 132.32, 130.60, 130.17, 127.82, 120.34, 118.53, 81.25, 72.29, 66.52, 60.28, 55.09, 54.85, 54.28, 41.78, 40.05, 38.16, 35.37, 30.48, 28.96, 28.62, 25.79, 24.78, 22.71, 22.31, 20.13, 19.69, 19.59, 19.43, 18.31, 16.90, 16.78, 14.48, 13.71, -4.34; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 972.6093, calcd for C<sub>51</sub>H<sub>86</sub>N<sub>5</sub>O<sub>11</sub>Si 972.6093.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*R*, 4*R*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*S*, 9*S*, 12*R*, *Z*)-12-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-15-ethylidene-6-isobutyl-9-isopropyl-2, 2-dimethyl-4, 7, 10, 13-tetraoxo-3 -oxa-5, 8, 11, 14-tetraazahexadecan-16-oate (22b):

White amorphous solid, 3.38 g, 87% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (1H, s), 7.62 (1H, s), 7.10-7.06 (3H, m), 6.83-6.74 (4H, m), 5.95-5.87 (1H, m), 5.51 (1H, s), 5.31 (1H, d, J = 18.5 Hz), 5.21 (1H, d, J = 10.0 Hz), 5.07 (1H, s), 4.93-4.90 (1H, m), 4.74 (1H, s), 4.68-4.54 (3H, m), 4.05 (1H, s), 3.94-3.87 (1H, m), 3.76-3.68 (1H, m), 3.27-3.23 (1H, m), 3.07-3.03 (1H, m), 2.67 (1H, s), 2.27-2.22 (1H, m), 2.08-2.02 (2H, m), 1.92-1.81 (1H, m), 1.69 (3H, d, J = 7.0 Hz), 1.65 (2H, d, J = 7.0 Hz), 1.43-1.41 (6H, m), 1.40 (9H, s), 1.36-1.31 (2H, m), 1.26 (3H, d, J = 6.5 Hz), 1.14 (3H, d, J = 7.0 Hz), 1.09-1.03 (1H, m), 0.97 (9H, s), 0.95-0.91 (5H, m), 0.89-0.83 (5H, m), 0.76 (2H, d, J = 6.0 Hz), 0.17 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 178.16, 173.99, 171.75, 169.92, 163.15, 156.20, 154.89, 135.48, 131.96, 130.23, 129.41, 127.06, 120.50, 120.42, 118.90, 80.81, 71.72, 66.62, 61.01, 57.16, 55.40, 55.10, 41.60, 41.51, 39.94, 39.91, 38.79, 38.60, 30.72, 28.41, 25.80, 24.71, 22.88, 22.07, 20.13, 19.65, 19.20, 19.16, 19.09, 18.32, 17.09, 14.42, 14.08, -4.32; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 972.6092, calcd for C<sub>51</sub>H<sub>86</sub>N<sub>5</sub>O<sub>11</sub>Si 972.6093.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*R*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*S*, 9*S*, 12*R*, *Z*)-12-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-15-ethylidene-6-isobutyl-9-isopropyl-2, 2-dimethyl-4, 7, 10, 13-tetraoxo-3-oxa-5, 8, 11, 14-tetraazahexadecan-16-oate (22c):

White amorphous solid, 3.19 g, 82% yield over two steps;  $R_J$  = 0.5 (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.03 (1H, s), 7.41 (1H, s), 7.09 (2H, d, J = 9.0 Hz), 6.83 (1H, s), 6.75-6.71 (3H, m), 6.61 (1H, d, J = 8.5 Hz), 5.93-5.85 (1H, m), 5.48-5.47 (1H, m), 5.30 (1H, dd, J = 1.5, 17.0 Hz), 5.20 (1H, d, J = 10.0 Hz), 5.08-5.03 (1H, m), 4.90 (1H, dd, J = 2.0, 9.0 Hz), 4.73 (1H, d, J = 5.0 Hz), 4.64 (2H, d, J = 5.5 Hz), 4.57-4.52 (1H, m), 4.11 (1H, q, J = 7.0 Hz), 4.04 (1H, s), 3.88-3.79 (1H, m), 3.26-3.22 (1H, m), 3.06-3.02 (1H, m), 2.63-2.59 (1H, m), 2.25-2.22 (1H, m), 2.07-2.01 (2H, m), 1.67 (3H, d, J = 6.5 Hz), 1.53-1.47 (2H, m), 1.43 (6H, s), 1.39 (9H, s), 1.36-1.29 (2H, m), 1.27-1.24 (4H, m), 1.13 (3H, d, J = 7.0 Hz), 0.96 (9H, s), 0.93-0.89 (4H, m), 0.88-0.81 (7H, m), 0.75 (3H, d, J = 6.5 Hz), 0.16 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) 8178.55, 173.80, 171.73, 170.00, 169.88, 163.13, 156.18, 154.83, 135.27, 131.89, 130.25, 129.43, 127.03, 120.44, 120.38, 118.96, 80.75, 71.87, 66.59, 60.70, 57.18, 55.44, 55.08, 41.53, 41.00, 39.62, 38.64, 30.46, 28.40, 25.79, 24.80, 24.73, 22.88, 22.10, 20.11, 19.67, 19.15, 18.30, 18.07, 17.70, 17.11, 14.51, 14.06, -4.33; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 972.6099, calcd for C<sub>51</sub>H<sub>86</sub>N<sub>5</sub>O<sub>11</sub>Si 972.6093.



(2*S*, 4*S*)-*N*-((*6R*, 9*S*, 12*S*, 15*S*, 16*R*, *Z*)-3-ethylidene-6-(4-hydroxybenzyl)-12-isobutyl-9-isopropyl-16-methyl-2, 5, 8, 11, 14-pentaoxo-1-oxa-4, 7, 10, 13-tetraazacyclohexadecan-15-yl)-2, 4-dimethylheptanamide (1a): White solid, 164.4 mg, 47% yield over four steps;  $R_f = 0.5$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 40:1);  $[\alpha]_D^{20}$  -30.77 (c 0.65, MeOH); <sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>)  $\delta$  8.50-8.46 (1H, m), 8.42 (1H, s), 8.19 (1H, s), 7.91-7.87 (1H, m), 7.38 (1H, t, *J* = 7.0 Hz), 7.22 (2H, t, *J* = 8.5 Hz), 6.76 (2H, d, *J* = 8.0 Hz), 6.61-6.55 (1H, m), 5.22-5.19 (1H, m), 4.95-4.56 (1H, m), 4.43-4.32 (1H, m), 4.22-4.20 (1H, m), 3.81-3.77 (1H, m), 3.35-3.32 (1H, m), 3.30-3.25 (1H, m), 3.03-2.94 (1H, m), 2.82 (3H, s), 2.48-2.43 (1H, m), 1.97-1.77 (1H, m), 1.70 (3H, d, *J* = 7.0 Hz), 1.69-1.64 (2H, m), 1.59-1.54 (2H, m), 1.42-1.39 (2H, m), 1.35 (3H, d, *J* = 6.0 Hz), 1.20-1.14 (2H, m), 1.06 (2H, d, *J* = 7.0 Hz), 1.05-1.01 (1H, m), 0.99-0.94 (9H, m), 0.89-0.86 (2H, m), 0.83-0.78 (6H, m), 0.75 (3H, d, *J* = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, Acetone-d<sub>6</sub>)  $\delta$  177.25, 175.33, 171.37, 170.42, 170.38, 156.86, 134.61, 134.28, 131.00, 130.82, 128.57, 116.04, 74.91, 71.61, 60.67, 58.36, 57.46, 57.09, 55.56, 54.90, 42.56, 41.13, 39.94, 39.29, 36.92, 31.04, 28.79, 25.33, 23.19, 21.97, 20.61, 20.25, 19.77, 19.15, 16.37; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 700.4277, calcd for C<sub>37</sub>H<sub>58</sub>N<sub>5</sub>O<sub>8</sub> 700.4285.

The proton signals 4.95-4.56 (1H, m) in the <sup>1</sup>H NMR spectrum of compound 1a clearly depicted two sets of signals, which is because of either rotamerism or epimerization during macrolactamization.



(2*R*, 4*R*)-*N*-((6*R*, 9*S*, 12*S*, 15*S*, 16*R*, *Z*)-3-ethylidene-6-(4-hydroxybenzyl)-12-isobutyl-9-isopropyl-16-methyl -2, 5, 8, 11, 14-pentaoxo-1-oxa-4, 7, 10, 13-tetraazacyclohexadecan-15-yl)-2, 4-dimethylheptanamide (1b): White solid, 157.4 mg, 45% yield over four steps;  $R_f = 0.5$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 40:1);  $[\alpha]_D^{20}$  -30.7 (c 0.65, MeOH); <sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>)  $\delta$  8.47 (1H, d, J = 7.0 Hz), 8.42 (1H, s), 8.20-8.19 (1H, m), 7.91-7.88 (1H, m), 7.41-7.38 (1H, m), 7.23-7.20 (2H, m), 7.08 (1H, d, J = 9.0 Hz), 6.76 (2H, d, J = 8.5 Hz), 6.61-6.56 (1H, m), 5.23-5.20 (1H, m), 4.89-4.52 (1H, m), 4.43-4.34 (1H, m), 4.22-4.18 (1H, m), 3.83-3.77 (1H, m), 3.34 (1H, t, J =6.5 Hz), 3.27 (1H, dd, J = 3.5, 14.5 Hz), 3.03-2.94 (1H, m), 2.83 (3H, s), 2.67-2.62 (1H, m), 2.47-2.43 (1H, m), 1.89-1.83 (1H, m), 1.71 (3H, d, J = 7.0 Hz), 1.68-1.64 (1H, m), 1.59-1.53 (1H, m), 1.42-1.39 (1H, m), 1.37 (3H, d, J = 6.0 Hz), 1.24-1.16 (2H, m), 1.07 (3H, d, J = 7.0 Hz), 0.99-0.94 (10H, m), 0.89-0.86 (1H, m), 0.83-0.81 (4H, m), 0.80 (3H, d, J = 4.0 Hz); <sup>13</sup>C NMR (125 MHz, Acetone-d<sub>6</sub>)  $\delta$  177.28, 175.36, 171.44, 170.45, 169.72, 165.46, 156.88, 134.44, 130.88, 130.82, 130.42, 128.57, 116.09, 116.00, 74.56, 71.61, 60.65, 57.36, 55.00, 42.50, 41.09, 40.28, 39.19, 36.83, 31.19, 28.79, 25.34, 23.17, 22.00, 21.77, 20.57, 19.86, 19.77, 19.27, 16.57, 14.79, 14.51; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 700.4288, calcd for C<sub>37</sub>H<sub>58</sub>N<sub>5</sub>O<sub>8</sub> 700.4285. The proton signals 4.89-4.52 (1H, m) in the <sup>1</sup>H NMR spectrum of compound 1b clearly depicted two sets of signals, which is because of either rotamerism or epimerization during macrolactamization.



(2*R*, 4*S*)-*N*-((6*R*, 9*S*, 12*S*, 15*S*, 16*R*, *Z*)-3-ethylidene-6-(4-hydroxybenzyl)-12-isobutyl-9-isopropyl-16-methyl-2, 5, 8, 11, 14-pentaoxo-1-oxa-4, 7, 10, 13-tetraazacyclohexadecan-15-yl)-2, 4-dimethylheptanamide (1c): White solid, 150.4 mg, 43% yield over four steps;  $R_f = 0.5$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 40:1);  $[\alpha]_D^{20}$  -16.4 (c 0.65, MeOH); <sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>)  $\delta$  8.46 (1H, d, J = 7.5 Hz), 8.42 (1H, s), 8.20-8.18 (1H, m), 7.90-7.88 (1H, m), 7.38 (1H, d, J = 8.0 Hz), 7.20 (2H, d, J = 8.0 Hz), 6.76 (2H, d, J = 8.0 Hz), 6.59 (1H, q, J = 7.0 Hz), 5.94 (1H, d, J = 9.0 Hz), 5.36-5.32 (1H, m), 5.22-5.19 (1H, m), 4.57 (1H, dd, J = 3.0, 9.0 Hz), 4.43-4.39 (1H, m), 4.23-4.19 (1H, m), 3.80-3.79 (2H, m), 3.35-3.30 (2H, m), 3.04-2.94 (1H, m), 2.81 (6H, s), 2.48-2.42 (1H, m), 2.14 (1H, t, J = 7.5 Hz), 1.96 (1H, d, J = 8.0 Hz), 1.89-1.77 (1H, m), 1.70 (3H, d, J = 7.0 Hz), 1.68-1.64 (1H, m), 1.59-1.53 (1H, m), 1.40 (3H, d, J = 6.0 Hz), 1.38-1.36 (1H, m), 1.05 (1H, dd, J = 1.5, 7.0 Hz), 0.98 (6H, t, J = 6.0 Hz), 0.95 (3H, d, J = 6.5 Hz), 0.88 (3H, t, J = 7.0 Hz), 0.84-0.80 (4H, m), 0.78 (2H, d, J = 6.0 Hz); <sup>13</sup>C NMR (125 MHz, Acetone-d<sub>6</sub>)  $\delta$  175.28, 171.39, 170.49, 169.98, 165.54, 157.83, 156.84, 134.77, 130.81, 130.58, 130.27, 128.42, 116.05, 74.69, 71.62, 60.67, 57.19, 55.05, 41.02, 30.58, 28.79, 27.77, 26.33, 25.33, 23.32, 23.13, 22.00, 21.74, 20.04, 19.75, 19.19, 16.43, 14.73, 14.30; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 700.4279, calcd for C<sub>37</sub>H<sub>58</sub>N<sub>5</sub>O<sub>8</sub> 700.4285.

#### 4.4 Data of compound 38



#### allyl ((2S, 4S)-2,4-dimethylheptanoyl)-D-threoninate (S15):

White solid, 2.45 g, 82% yield over two steps;  $R_f = 0.4$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.38-6.36 (1H, m), 5.92-5.85 (1H, m), 5.34-5.30 (1H, m), 5.24-5.22 (1H, m), 4.64-4.60 (3H, m), 4.36 (1H, s), 3.86-2.68 (1H, m), 2.47-2.40 (1H, m), 1.74-1.68 (1H, m), 1.46-1.37 (1H, m), 1.35-1.29 (1H, m), 1.27-1.21 (2H, m), 1.19 (3H, d, *J* = 6.5 Hz), 1.14 (3H, d, *J* = 7.0 Hz), 1.12-1.05 (2H, m), 0.91 (1H, d, *J* = 6.5 Hz), 0.87 (2H, d, *J* = 6.5 Hz), 0.84 (3H, t, *J* = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.53, 171.02, 131.60, 118.94, 68.00, 66.20, 57.14, 41.79, 39.61, 39.36, 30.55, 20.05, 20.01, 19.59, 18.78, 14.36; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 300.2178, calcd for C<sub>16</sub>H<sub>30</sub>NO<sub>4</sub> 300.2175.



### allyl *O*-(*N*-(*tert*-butoxycarbonyl)-*O*-(*tert*-butyl)-*L*-threonyl)-*N*-((2*S*, 4*S*)-2, 4-dimethylheptanoyl)-*D*-threoninate (S16):

Colorless oil, 4.36 g, 98% yield;  $R_f = 0.3$  (petroleum/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.24 (1H, d, J = 9.0 Hz), 5.91-5.80 (1H, m), 5.39 (1H, dd, J = 2.0, 6.0 Hz), 5.30-5.19 (3H, m), 4.72 (1H, d, J = 7.5 Hz), 4.61-4.51 (2H, m), 4.07-4.04 (2H, m), 2.48-2.40 (1H, m), 1.75-1.68 (1H, m), 1.42 (9H, s), 1.32-1.29 (1H, m), 1.26 (3H, d, J = 6.0 Hz), 1.24-1.16 (3H, m), 1.14-1.10 (5H, m), 1.09 (9H, s), 1.06-1.02 (1H, m), 0.85 (3H, d, J = 6.5 Hz), 0.81

 $(3H, t, J = 7.0 \text{ Hz}); {}^{13}\text{C} \text{ NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 177.34, 170.42, 169.37, 155.87, 131.51, 119.00, 79.87, 74.12, 71.69, 67.32, 66.40, 59.41, 55.33, 41.47, 39.50, 39.16, 30.53, 28.56, 28.42, 20.40, 19.98, 19.65, 17.72, 17.38, 14.32; HRMS (ESI) m/z: [M + Na]<sup>+</sup> found for 579.3619, calcd for C<sub>29</sub>H<sub>52</sub>N<sub>2</sub>O<sub>8</sub>Na 579.3621.$ 

allyl *O*-(((*S*)-2-((*tert*-butoxycarbonyl)amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)propanoyl)-*L*-threonyl)-*N*-((*2S*, *4S*)-2, 4-dimethylheptanoyl)-*D*-threoninate (S17):

White amorphous solid, 5.22 g, 96% yield over two steps;  $R_f = 0.4$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.02 (2H, d, J = 6.5 Hz), 6.92 (1H, d, J = 9.0 Hz), 6.71 (2H, d, J = 8.0 Hz), 6.66 (1H, s), 5.90-5.82 (1H, m), 5.47-5.45 (1H, m), 5.29 (1H, d, J = 17.0 Hz), 5.21 (1H, d, J = 10.5 Hz), 5.11 (1H, s), 4.81 (1H, dd, J = 2.0, 9.0 Hz), 4.61-4.53 (2H, m), 4.49 (1H, d, J = 7.0 Hz), 4.38 (1H, s), 4.25 (1H, s), 3.24 (1H, s), 3.06-3.02 (1H, m), 2.96 (1H, s), 2.54-2.49 (1H, m), 1.76-1.70 (1H, m), 1.40 (1H, d, J = 7.5 Hz), 1.36 (9H, s), 1.32-1.30 (1H, m), 1.26 (3H, d, J = 6.5 Hz), 1.24-1.19 (2H, m), 1.13-1.08 (6H, m), 1.07-0.97 (1H, m), 0.93 (9H, s), 0.90-0.86 (4H, m), 0.83 (3H, t, J = 7.0 Hz), 0.14 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.56, 172.34, 170.18, 169.35, 155.60, 154.67, 131.50, 130.34, 129.07, 120.21, 119.16, 80.27, 71.89, 67.79, 66.73, 57.66, 55.78, 55.15, 41.57, 39.62, 38.99, 36.95, 30.59, 28.28, 25.70, 20.00, 19.57, 19.05, 18.87, 18.19, 17.22, 14.33, -4.42; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 778.4677, calcd for C<sub>40</sub>H<sub>68</sub>N<sub>3</sub>O<sub>10</sub>Si 778.4674.



(2*S*, 3*R*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (*Z*)-2-((*S*)-2-((*tert*-butydimethylsilyl)oxy)phenyl)propanamido)but-2-enoate (S18): Yellow solid, 2.87 g, 86% yield;  $R_f$  = 0.3 (petroleum/EtOAc = 3:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (1H, s), 7.09 (2H, d, *J* = 8.5 Hz), 6.76 (2H, d, *J* = 8.0 Hz), 6.71 (1H, q, *J* = 7.0 Hz), 6.60 (1H, s), 5.90-5.82 (1H, m), 5.42-5.40 (1H, m), 5.29 (1H, dd, *J* = 1.5, 17.0 Hz), 5.21 (1H, dd, *J* = 1.0, 10.5 Hz), 5.00 (1H, d, *J* = 7.5 Hz), 4.86 (1H, dd, *J* = 3.0, 9.0 Hz), 4.62 (2H, d, *J* = 5.0 Hz), 4.43 (1H, s), 3.10-3.05 (2H, m), 2.53 (1H, s), 1.78-1.73 (1H, m), 1.68 (3H, d, *J* = 7.0 Hz), 1.40 (9H, s), 1.35-1.31 (1H, m), 1.28 (3H, d, *J* = 6.5 Hz), 1.25-1.20 (2H, m), 1.15 (3H, d, *J* = 7.0 Hz), 1.12-1.02 (2H, m), 0.95 (9H, s), 0.90 (1H, d, *J* = 6.5 Hz), 0.86 (3H, d, *J* = 6.5 Hz), 0.83 (3H, t, *J* = 7.0 Hz), 0.16 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.54, 170.48, 169.70, 163.02, 154.84, 135.03, 131.62, 130.41, 129.09, 126.27, 120.42, 119.20, 80.59, 72.15, 66.56, 55.53, 41.56, 39.72, 39.04, 36.81, 30.65, 28.36, 25.76, 20.04, 19.66, 19.13, 19.04, 18.28, 17.02, 14.39, -4.35; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 760.4568, calcd for C<sub>40</sub>H<sub>66</sub>N<sub>3</sub>O<sub>9</sub>Si 760.4568.



(2S, 3R)-4-(allyloxy)-3-((2S, 4S)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6R, 9S, Z)-9-(4-((tert-

# butyldimethylsilyl)oxy)benzyl)-12-ethylidene-6-isopropyl-2,2-dimethyl-4, 7, 10-trioxo-3-oxa-5, 8, 11-triazatridecan-13-oate (S19):

White amorphous solid, 3.78 g, 88% over two steps;  $R_f = 0.4$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 (1H, s), 7.76 (1H, d, J = 10.0 Hz), 7.09 (2H, d, J = 8.5 Hz), 6.76 (2H, d, J = 8.5 Hz), 6.75-6.73 (1H, m), 6.03 (1H, d, J = 8.5 Hz), 5.97-5.90 (1H, m), 5.48-5.45 (1H, m), 5.32 (1H, dd, J = 1.5, 17.0 Hz), 5.21 (1H, dd, J = 1.0, 10.5 Hz), 4.95 (1H, dd, J = 2.0, 9.5 Hz), 4.89-4.84 (2H, m), 4.73 (2H, d, J = 5.5 Hz), 3.37 (1H, t, J = 6.5 Hz), 3.20-3.16 (1H, m), 3.11-3.08 (1H, m), 2.83-2.80 (1H, m), 1.86-1.78 (2H, m), 1.69 (3H, d, J = 7.0 Hz), 1.45-1.41 (2H, m), 1.33 (2H, s), 1.28 (9H, s), 1.25-1.22 (1H, m), 1.19 (3H, d, J = 6.0 Hz), 1.14 (3H, d, J = 7.0 Hz), 1.10-1.00 (2H, m), 0.97 (9H, s), 0.94-0.92 (5H, m), 0.85 (3H, t, J = 7.0 Hz), 0.80 (3H, d, J = 6.5 Hz), 0.17 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.29, 172.31, 170.77, 169.51, 163.34, 156.79, 155.05, 135.49, 132.29, 130.38, 129.10, 128.08, 120.62, 118.49, 80.80, 72.11, 66.66, 62.39, 55.26, 54.23, 41.63, 39.97, 38.31, 35.84, 30.72, 29.91, 28.27, 25.80, 20.18, 19.66, 19.25, 19.15, 18.89, 18.33, 16.72, 14.43, 13.42, -4.30; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 859.5245, calcd for C<sub>40</sub>H<sub>75</sub>N<sub>6</sub>O<sub>12</sub>Si 859.5252.



(2*S*, 3*R*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*R*, 9*R*, 12*S*, *Z*)-12-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-15-ethylidene-6-isobutyl-9-isopropyl-2, 2-dimethyl-4, 7, 10, 13-tetraoxo-3-oxa-5, 8, 11, 14-tetraazahexadecan-16-oate (S20):

White amorphous solid, 3.30 g, 85% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (1H, s), 7.58 (1H, d, J = 10.0 Hz), 7.08 (2H, d, J = 8.0 Hz), 6.78 (1H, s), 6.75-6.71 (3H, m), 6.50 (1H, d, J = 7.5 Hz), 5.93-5.86 (1H, m), 5.50 (1H, d, J = 4.5 Hz), 5.30 (1H, dd, J = 1.5, 17.0 Hz), 5.20 (1H, d, J = 10.0 Hz), 5.05 (1H, d, J = 7.0 Hz), 4.91 (1H, dd, J = 2.0, 9.5 Hz), 4.73 (1H, d, J = 5.0 Hz), 4.65 (2H, d, J = 5.5 Hz), 4.03 (1H, d, J = 7.0 Hz), 3.74 (1H, t, J = 6.5 Hz), 3.24 (1H, dd, J = 5.0, 14.0 Hz), 3.06-3.02 (1H, m), 2.65 (1H, s), 2.03 (2H, s), 1.83-1.77 (1H, m), 1.68 (3H, d, J = 7.0 Hz), 1.57-1.51 (1H, m), 1.48-1.43 (2H, m), 1.38 (9H, s), 1.36-1.30 (2H, m), 1.24 (3H, d, J = 6.0 Hz), 1.23 (1H, s), 1.13 (3H, d, J = 7.0 Hz), 1.09-1.02 (2H, m), 0.96 (9H, s), 0.92-0.90 (4H, m), 0.87-0.82 (11H, m), 0.75 (3H, d, J = 6.0 Hz), 0.15 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  177.97, 173.87, 171.67, 169.88, 169.84, 163.16, 156.16, 154.84, 135.21, 131.99, 130.22, 129.48, 127.17, 120.44, 118.81, 80.69, 71.71, 66.55, 60.94, 55.35, 55.07, 52.99, 41.53, 40.27, 39.92, 38.57, 35.92, 30.70, 29.63, 28.39, 25.78, 24.69, 22.87, 22.07, 20.10, 19.63, 19.17, 19.07, 18.50, 18.29, 17.06, 14.40, 14.00, -4.34; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 972.6094, calcd for C<sub>51</sub>H<sub>86</sub>N<sub>5</sub>O<sub>11</sub>Si 972.6093.



(2*S*, 4*S*)-*N*-((6*S*, 9*R*, 12*R*, 15*R*, 16*S*, *Z*)-3-ethylidene-6-(4-hydroxybenzyl)-12-isobutyl-9-isopropyl-16-methyl-2, 5, 8, 11, 14-pentaoxo-1-oxa-4, 7, 10, 13-tetraazacyclohexadecan-15-yl)-2, 4-dimethylheptanamide (38):

White solid, 139.9 mg, 40% yield over four steps;  $R_f = 0.4$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 40:1);  $[\alpha]_D^{20}$  +17.95 (c 0.65, MeOH); <sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>)  $\delta$  8.46 (1H, d, J = 7.0 Hz), 8.42 (1H, s), 8.20 (1H, br), 7.89 (1H, s), 7.40 (1H, d, J = 7.5 Hz), 7.22 (2H, d, J = 8.5 Hz), 7.06 (1H, d, J = 9.0 Hz), 6.76 (2H, d, J = 8.5 Hz), 6.58 (1H, q, J = 7.0 Hz), 5.35 (1H, t, J = 4.5 Hz), 5.23-5.21 (1H, m), 4.88 (1H, dd, J = 3.0, 9.0 Hz), 4.40-4.35 (1H, m), 4.22-4.18 (1H, m), 3.35 (1H, t, J = 6.5 Hz), 3.28 (1H, dd, J = 3.0, 14.0 Hz), 3.00 (1H, t, J = 13.0 Hz), 2.67-2.62 (1H, m), 2.48-2.41 (1H, m), 2.15 (1H, t, J = 7.0 Hz), 1.92-1.85 (1H, m), 1.71 (3H, d, J = 7.0 Hz), 1.68-1.64 (1H, m), 1.59-1.54 (2H, m), 1.37 (3H, d, J = 6.0 Hz), 1.23-1.17 (2H, m), 1.06 (3H, d, J = 7.0 Hz), 0.80 (3H, d, J = 4.0 Hz); <sup>13</sup>C NMR (125 MHz, Acetone-d<sub>6</sub>)  $\delta$  177.29, 175.36, 171.46, 170.47, 169.78, 165.46, 156.90, 134.48, 130.88, 130.59, 128.59, 116.10, 74.56, 60.67, 57.34, 55.97, 55.03, 42.52, 41.12, 40.30, 39.23, 36.84, 31.21, 27.79, 25.35, 23.18, 22.02, 21.77, 20.58, 19.87, 19.77, 19.27, 16.57, 14.77, 14.51; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 700.4280, calcd for C<sub>37</sub>H<sub>58</sub>N<sub>5</sub>O<sub>8</sub> 700.4285.

#### 4.5 Data of compound 39

OAllv о́твs S21

# (2*R*, 3*S*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*R*, 9*R*, *Z*)-9-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-12-ethylidene-6-isopropyl-2, 2-dimethyl-4, 7, 10-trioxo-3-oxa-5, 8, 11-triazatridecan-13-oate (S21):

White amorphous solid, 3.95 g, 92% over two steps;  $R_f = 0.4$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (1H, d, J = 9.0 Hz), 7.68 (1H, s), 7.06 (2H, d, J = 8.5 Hz), 6.81 (1H, q, J = 7.0 Hz), 6.75 (2H, d, J = 8.5 Hz), 6.45 (1H, d, J = 7.5 Hz), 5.93-5.85 (1H, m), 5.52-5.51 (1H, m), 5.30 (1H, dd, J = 1.5, 17.0 Hz), 5.19 (1H, dd, J = 1.0, 10.5 Hz), 4.97 (1H, dd, J = 2.5, 9.5 Hz), 4.79-4.76 (2H, m), 4.64 (2H, d, J = 9.5 Hz), 3.79 (1H, t, J = 4.5 Hz), 3.27-3.25 (1H, m), 3.01-2.99 (1H, m), 2.82 (1H, s), 2.17-2.11 (1H, m), 1.83-1.77 (1H, m), 1.62 (3H, d, J = 7.0 Hz), 1.43-1.35 (2H, m), 1.31 (9H, s), 1.29-1.26 (2H, m), 1.24 (3H, d, J = 6.5 Hz), 1.22-1.19 (1H, m), 1.16 (3H, d, J = 7.0 Hz), 1.09-1.01 (2H, m), 0.96 (9H, s), 0.94 (3H, d, J = 7.0 Hz), 0.89-0.87 (5H, m), 0.84 (3H, t, J = 7.5 Hz), 0.16 (6H, d, J = 3.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  178.10, 171.33, 169.79, 169.46, 163.13, 156.70, 155.09, 136.00, 132.07, 130.36, 128.73, 126.89, 120.58, 118.73, 81.32, 72.30, 66.45, 61.58, 55.22, 53.82, 41.72, 39.98, 38.25, 35.98, 30.51, 29.98, 28.20, 25.74, 20.10, 19.67, 19.62, 19.34, 18.26, 17.73, 16.60, 14.48, 14.10, -4.33; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 859.5251, calcd for C<sub>40</sub>H<sub>75</sub>N<sub>6</sub>O<sub>12</sub>Si 859.5252.



(2*R*, 3*S*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*R*, 9*R*, 12*R*, *Z*)-12-(4-((*tert* -butyldimethylsilyl)oxy)benzyl)-15-ethylidene-6-isobutyl-9-isopropyl-2, 2-dimethyl-4, 7, 10, 13-tetraoxo -3-oxa-5, 8, 11, 14-tetraozahexadecan-16-oate (S22):

White amorphous solid, 3.61 g, 93% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (1H, s), 7.80 (1H, d, J = 9.0 Hz), 7.09 (2H, d, J = 8.0 Hz), 6.88 (1H, d, J = 8.0 Hz), 6.76-6.72 (2H, m), 6.70 (2H, d, J = 8.0 Hz), 5.94-5.86 (1H, m), 5.51 (1H, q, J = 6.0 Hz), 5.28 (1H, d, J = 17.5 Hz), 5.15 (1H, d, J = 10.5 Hz), 5.05 (1H, s), 4.96 (2H, d, J = 9.0 Hz), 4.72-4.63 (2H, m), 3.99 (1H, t, J = 4.0 Hz), 3.90-3.86 (1H, m), 3.38 (1H, d, J = 12.0 Hz), 2.94-2.89 (2H, m), 2.15-2.11 (1H, m), 2.05-2.02 (1H, m), 1.82-1.77 (1H, m), 1.73 (3H, d, J = 7.0 Hz), 1.68-1.63 (1H, m), 1.57-1.52 (1H, m), 1.50-1.43 (1H, m), 1.42 (9H, s), 1.34-1.28 (2H, m), 1.23 (3H, d, J = 6.5 Hz), 1.15 (3H, d, J = 6.5 Hz), 1.08-0.99 (2H, m), 0.95 (9H, s), 0.92 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.0 Hz), 0.87 (3H, d, J = 6.5 Hz), 0.84-0.81 (3H, m), 0.76 (3H, d, J = 7.0 Hz), 0.13 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 178.24, 174.53, 170.80, 170.75, 169.37, 163.42, 156.75, 154.50, 134.82, 132.28, 130.05, 129.75, 127.78, 120.24, 118.45, 81.50, 72.16, 66.51, 60.68, 55.13, 54.48, 53.96, 41.74, 39.98, 38.08, 35.69, 30.48, 29.28, 28.37, 25.77, 24.89, 22.95, 21.69, 20.09, 19.65, 19.61, 19.19, 18.30, 17.54, 16.77, 14.45, 13.64, -4.37; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 972.6094, calcd for C<sub>51</sub>H<sub>86</sub>N<sub>5</sub>O<sub>11</sub>Si 972.6093.



(2S, 4S)-N-((6R, 9R, 12R, 15S, 16R, Z)-3-ethylidene-6-(4-hydroxybenzyl)-12-isobutyl-9-isopropyl-16-methyl -2, 5, 8, 11, 14-pentaoxo-1-oxa-4, 7, 10, 13-tetraazacyclohexadecan-15-yl)-2, 4-dimethylheptanamide (39): White solid, 160.9 mg, 46% yield over four steps;  $R_f = 0.4$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 40:1);  $[\alpha]_D^{20}$  +6.8 (c 0.65, MeOH); <sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>)  $\delta$  8.14 (1H, d, J = 25.0 Hz), 8.07 (1H, s), 7.79 (1H, s), 7.48 (1H, s), 7.20-7.18 (3H, m), 6.76 (2H, d, J = 8.0 Hz), 6.61 (1H, q, J = 7.0 Hz), 5.23 (1H, s), 4.77 (1H, s), 4.48 (1H, s), 4.05 (1H, s), 3.86 (1H, s), 3.33 (1H, dd, J = 3.5, 14.0 Hz), 3.00 (1H, t, J = 13.0 Hz), 2.70 (2H, q, J = 7.0 Hz), 2.03-2.01 (2H, m), 1.76-1.76 (2H, m), 1.66 (3H, d, J = 7.0 Hz), 1.61-1.49 (1H, m), 1.42-1.37 (1H, m), 1.33 (3H, d, J = 6.0 Hz), 1.25-1.19 (2H, m), 1.15 (3H, d, J = 6.5 Hz), 1.03 (1H, s), 0.95 (3H, d, J = 6.5 Hz), 0.92 (3H, d, J = 6.5 Hz), 0.90-0.87 (4H, m), 0.84 (3H, t, J = 7.0 Hz), 0.72 (3H, d, J = 6.5 Hz), 0.67 (3H, d, J = 6.5 Hz); <sup>13</sup>C NMR (125 MHz, Acetone-d<sub>6</sub>)  $\delta$  173.96, 171.40, 170.40, 169.25, 165.10, 156.99, 133.93, 130.94, 130.10, 128.26, 116.04, 74.00, 62.02, 56.87, 56.12, 54.36, 42.67, 40.06, 39.49, 36.73, 32.63, 31.12, 25.72, 23.80, 21.31, 20.69, 20.31, 19.35, 19.10, 18.46, 16.72, 14.88, 14.56; HRMS (ESI) m/z: [M + H]+ found for 700.4282, calcd for C<sub>37</sub>H<sub>58</sub>N<sub>5</sub>O<sub>8</sub> 700.4285.

#### 4.6 Data of compound 40



(2*R*, 3*S*)-4-(allyloxy)-3-((2*S*, 4*S*)-2, 4-dimethylheptanamido)-4-oxobutan-2-yl (6*S*, 9*R*, 12*R*, *Z*)-12-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-15-ethylidene-6-isobutyl-9-isopropyl-2, 2-dimethyl-4, 7, 10, 13-tetraoxo -3-oxa-5, 8, 11, 14-tetraazahexadecan-16-oate (S23): White amorphous solid, 3.61 g, 93% yield over two steps;  $R_f = 0.5$  (petroleum/EtOAc = 2:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (1H, s), 7.84 (1H, d, J = 9.5 Hz), 7.16 (2H, d, J = 8.0 Hz), 7.04 (1H, d, J = 6.5 Hz), 6.75 (2H, d, J = 8.0 Hz), 6.70 (1H, q, J = 7.0 Hz), 6.34 (1H, s), 5.96-5.88 (1H, m), 5.53-5.50 (1H, m), 5.30 (1H, dd, J = 1.5, 17.0 Hz), 5.19 (1H, dd, J = 1.0, 10.5 Hz), 4.98 (1H, dd, J = 2.5, 9.5 Hz), 4.89 (1H, s), 4.84-4.80 (1H, m), 4.70 (2H, d, J = 5.5 Hz), 4.06-4.04 (1H, m), 3.88 (1H, s), 3.33 (1H, d, J = 12.0 Hz), 2.97 (1H, t, J = 11.0 Hz), 2.85-2.81 (1H, m), 2.26-2.23 (1H, m), 1.83 (1H, s), 1.81-1.77 (1H, m), 1.74 (3H, d, J = 7.5 Hz), 1.63-1.56 (2H, m), 1.45 (9H, s), 1.36-1.26 (3H, m), 1.24 (3H, d, J = 6.0 Hz), 1.21-1.18 (1H, m), 1.15 (3H, d, J = 7.0 Hz), 1.09-0.99 (2H, m), 0.97 (9H, s), 0.96-0.95 (3H, m), 0.91 (3H, d, J = 6.0 Hz), 0.87 (3H, d, J = 7.0 Hz), 0.84 (6H, t, J = 7.0 Hz), 0.63 (3H, d, J = 6.5 Hz), 0.15 (6H, d, J = 2.5 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 178.21, 174.66, 170.74, 170.59, 169.42, 163.42, 156.51, 154.58, 134.03, 132.32, 130.60, 130.17, 127.82, 120.34, 118.53, 81.25, 72.29, 66.52, 60.28, 55.09, 54.85, 54.28, 41.78, 40.05, 38.16, 35.37, 30.48, 28.96, 28.62, 25.79, 24.78, 22.71, 22.31, 20.13, 19.69, 19.59, 19.43, 18.31, 16.90, 16.78, 14.48, 13.71, -4.34; HRMS (ESI) m/z: [M + H]<sup>+</sup> found for 972.6090, calcd for C<sub>51</sub>H<sub>86</sub>N<sub>5</sub>O<sub>11</sub>Si 972.6093.



(2S, 4S)-N-((6R, 9R, 12S, 15S, 16R,Z)-3-ethylidene-6-(4-hydroxybenzyl)-12-isobutyl-9-isopropyl-16-methyl-2, 5, 8, 11, 14-pentaoxo-1-oxa-4, 7, 10, 13-tetraazacyclohexadecan-15-yl)-2, 4-dimethylheptanamide (40): White solid, 160.9 mg, 46% yield over four steps;  $R_f = 0.4$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 40:1);  $[\alpha]_{10}^{20}$  +29.18 (c 0.65, MeOH); <sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>)  $\delta$  8.14 (1H, br), 8.03-8.00 (2H, m), 7.94 (1H, s), 7.48 (1H, d, J = 9.0 Hz), 7.20 (2H, d, *J* = 8.5 Hz), 7.01 (1H, d, *J* = 9.0 Hz), 6.73 (2H, d, *J* = 8.5 Hz), 6.59 (1H, q, *J* = 7.0 Hz), 5.18-5.13 (1H, m), 4.94 (1H, dd, *J* = 3.0, 9.0 Hz), 4.48-4.43 (1H, m), 4.33-4.30 (1H, m), 3.86 (1H, t, *J* = 4.5 Hz), 3.31 (1H, dd, *J* = 3.5, 14.0 Hz), 3.01 (1H, t, J = 13.5 Hz), 2.67-2.63 (1H, m), 2.16-2.13 (1H, m), 1.78-1.71 (1H, m), 1.68 (3H, d, J = 7.0 Hz), 1.63-1.52 (3H, m), 1.42-1.37 (1H, m), 1.35 (3H, d, *J* = 6.5 Hz), 1.21-1.14 (3H, m), 1.06 (3H, d, *J* = 7.0 Hz), 1.04-1.02 (1H, m), 0.98 (3H, d, J = 6.5 Hz), 0.96-0.92 (1H, m), 0.89 (3H, d, J = 6.5 Hz), 0.86 (3H, d, J = 7.0 Hz), 0.79 (3H, t, J = 7.0 Hz), 0.76 (3H, d, J = 6.5 Hz), 0.60 (3H, d, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, Acetone-d<sub>6</sub>)  $\delta$ 177.27, 176.66, 171.43, 171.27, 169.47, 165.33, 156.89, 134.75, 130.98, 130.34, 128.46, 115.93, 75.21, 61.81, 56.74, 55.59, 54.51, 42.51, 40.82, 40.00, 39.24, 36.69, 31.06, 29.38, 25.25, 23.00, 22.59, 20.63, 20.28, 19.26, 19.17, 17.17, 16.32, 14.75, 14.62; <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) δ 7.19 (2H, d, *J* = 8.5 Hz), 6.80 (1H, q, *J* = 7.0 Hz), 6.70 (2H, d, *J* = 8.5 Hz), 5.18-5.13 (1H, m), 4.72 (1H, d, *J* = 3.0 Hz), 4.49 (1H, dd, *J* = 3.5, 13.0 Hz), 4.32 (1H, t, J = 7.5 Hz), 3.83 (1H, d, J = 4.0 Hz), 3.39-3.35 (1H, m), 3.09 (1H, t, J = 13.0 Hz), 2.64-2.58 (1H, m), 2.10-2.07 (1H, m), 1.74 (3H, d, J = 7.0 Hz), 1.69-1.64 (2H, m), 1.61-1.46 (2H, m), 1.43 (3H, d, J = 6.0 Hz), 1.32 (1H, s), 1.24-1.14 (2H, m), 1.10 (3H, d, J = 7.0 Hz), 1.07-1.03 (1H, m), 1.01 (3H, d, J = 6.5 Hz), 0.95 (3H, d, J = 6.5 Hz 6.5 Hz), 0.92-0.85 (2H, m), 0.83-0.79 (6H, m), 0.70 (3H, d, *J* = 6.5 Hz), 0.61 (3H, d, *J* = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) δ 180.25, 178.57, 173.80, 172.08, 171.50, 165.43, 157.38, 138.10, 131.45, 129.91, 127.63, 116.35, 75.55, 62.42, 57.29, 56.84, 54.55, 42.51, 41.02, 40.33, 39.56, 36.72, 31.51, 29.99, 25.81, 22.99, 22.81, 20.99, 20.36, 19.27, 19.21, 17.28, 16.33, 14.66, 14.55; HRMS (ESI) m/z: [M + H]+ found for 700.4282, calcd for C<sub>37</sub>H<sub>58</sub>N<sub>5</sub>O<sub>8</sub> 700.4285.

# 5. NMR Comparision Tables of Tumescenamide A

Table S3. <sup>1</sup>H NMR comparison for Tumescenamide A

| Natural Tumescenamide A            | Synthetic Tumescenamide A (compound <b>40</b> ) |  |
|------------------------------------|-------------------------------------------------|--|
| (500 MHz, acetone-d <sub>6</sub> ) | $(500 \text{ MHz}, \text{ acetone-d}_6)$        |  |
| 8.20, br                           | 8.14, br                                        |  |
| 8.02, d (J = 3.9 Hz)               |                                                 |  |
| 7.98, s                            | – 8.02, m                                       |  |
| 7.92, d (J = 2.0 Hz)               | 7.94, s                                         |  |
| 7.48, d (J = 8.6 Hz)               | 7.48, d (J = 8.6 Hz)                            |  |
| 7.19, d (J = 8.4 Hz)               | 7.20, d (J = 8.4 Hz)                            |  |
| 7.04, d (J = 9.0 Hz)               | 7.01, d (J = 9.0 Hz)                            |  |
| 6.71, d (J = 8.4 Hz)               | 6.73, d (J = 8.4 Hz)                            |  |
| 6.57, q (J = 7.1 Hz)               | 6.58, q (J = 7.1 Hz)                            |  |
| 5.15, dq (J = 3.2, 6.1 Hz)         | 5.15, dq (J = 3.1, 6.1 Hz)                      |  |
| 4.92, dd (J = 3.2, 9.0 Hz)         | 4.93, dd (J = 3.0, 9.0 Hz)                      |  |
| 4.45, m                            | 4.45, m                                         |  |
| 4.29, dd (J = 7.6, 7.6 Hz)         | 4.30, dd (J = 7.6, 7.6 Hz)                      |  |
| 3.85, dd (J = 3.9, 3.9 Hz)         | 3.85, dd (J = 4.0, 5.1 Hz)                      |  |
| 3.29, dd (J = 3.4, 13.9 Hz)        | 3.30, dd (J = 3.4, 14.0 Hz)                     |  |
| 2.99, dd (J = 13.7, 13.7 Hz)       | 3.00, t (J = 13.6 Hz)                           |  |
| 2.65, m                            | 2.65, m                                         |  |
| 2.12, m                            | 2.13, m                                         |  |
| 1.72, m                            | 1.72, m                                         |  |
| 1.67, d (J = 7.1 Hz)               | 1.68, d (J = 7.0 Hz)                            |  |
| 1.67, m                            |                                                 |  |
| 1.58, m                            | 1.58, m                                         |  |
| 1.52, m                            |                                                 |  |
| 1.38, m                            | 1.38, m                                         |  |
| 1.34, d (J = 6.4 Hz)               | 1.35, d (J = 6.3 Hz)                            |  |
| 1.20, m                            |                                                 |  |
| 1.18, m                            | 1.18, m                                         |  |
| 1.14, m                            |                                                 |  |
| 1.04, d (J = 6.8 Hz)               | 1.06, d (J = 6.9 Hz)                            |  |
| 1.02, m                            | 1.02, m                                         |  |
| 0.98, d (J = 6.6 Hz)               | 0.98, d (J = 6.6 Hz)                            |  |
| 0.92, m                            | 0.92, m                                         |  |
| 0.88, d (J = 7.1 Hz)               | 0.89, d (J = 6.6 Hz)                            |  |
| 0.86, d (J = 7.1 Hz)               | 0.86, d (J = 7.1 Hz)                            |  |
| 0.78, t (J = 7.1 Hz)               | 0.79, t (J = 7.1 Hz)                            |  |
| 0.76, d (J = 6.6 Hz)               | 0.76, d (J = 6.6 Hz)                            |  |
| 0.58, d (J = 7.1 Hz)               | 0.60, d (J = 7.1 Hz)                            |  |

| Natural Tumescenamide A       | Synthetic Tumescenamide A (compound <b>40</b> ) |
|-------------------------------|-------------------------------------------------|
| (125 MHz, CD <sub>3</sub> OD) | (125 MHz, CD <sub>3</sub> OD)                   |
| 177.3                         | 177.3                                           |
| 176.6                         | 176.6                                           |
| 171.3                         | 171.3                                           |
| 171.2                         | 171.2                                           |
| 169.5                         | 169.5                                           |
| 165.3                         | 165.2                                           |
| 156.8                         | 156.8                                           |
| 134.8                         | 134.8                                           |
| 130.9                         | 130.9                                           |
| 130.0                         | 130.2                                           |
| 128.0                         | 128.4                                           |
| 115.8                         | 115.9                                           |
| 75.1                          | 75.1                                            |
| 61.7                          | 61.7                                            |
| 56.7                          | 56.7                                            |
| 55.5                          | 55.5                                            |
| 54.4                          | 54.4                                            |
| 42.7                          | 42.4                                            |
| 40.7                          | 40.7                                            |
| 39.9                          | 39.9                                            |
| 39.1                          | 39.2                                            |
| 36.6                          | 36.6                                            |
| 31.0                          | 31.0                                            |
| 29.2                          | 29.3                                            |
| 25.2                          | 25.2                                            |
| 22.9                          | 22.9                                            |
| 22.5                          | 22.5                                            |
| 20.6                          | 20.6                                            |
| 20.2                          | 20.2                                            |
| 19.2                          | 19.2                                            |
| 19.1                          | 19.1                                            |
| 17.0                          | 17.1                                            |
| 16.2                          | 16.2                                            |
| 14.7                          | 14.7                                            |
| 14.6                          | 14.5                                            |

Table S4. <sup>13</sup>C NMR comparison for Tumescenamide A

# 6. NMR Comparision Tables of Tumescenamide C

| Fable S5. <sup>1</sup> H NM | <b>R</b> comparison for | Tumescenamide C |
|-----------------------------|-------------------------|-----------------|
|-----------------------------|-------------------------|-----------------|

| Reported Tumescenamide C <sup>7</sup> | Synthetic Tumescenamide C (compound 40) |  |
|---------------------------------------|-----------------------------------------|--|
| (500 MHz, CD <sub>3</sub> OD)         | (500 MHz, CD <sub>3</sub> OD)           |  |
| 7.18, d (J = 8.5 Hz)                  | 7.19, d (J = 8.5 Hz)                    |  |
| 6.79, q (J = 7.0 Hz)                  | 6.80, q (J = 7.0 Hz)                    |  |
| 6.69, d (J = 8.5 Hz)                  | 6.70, d (J = 8.5 Hz)                    |  |
| 5.15, dq (J = 3.5, 6.5 Hz)            | 5.18-5.13, m                            |  |
| 4.72, dd (J = 3.0, 8.5 Hz)            | 4.72, d (J = 3.0 Hz)                    |  |
| 4.48, dd (J = 3.5, 12.5 Hz)           | 4.49, dd (J = 3.5, 13.0 Hz)             |  |
| 4.31, dd (J = 7.5, 8.0 Hz)            | 4.32, t (J = 7.5 Hz)                    |  |
| 3.82, d (J = 4.0 Hz)                  | 3.83, d (J = 4.0 Hz)                    |  |
| 3.37, m                               | 2 20 2 25                               |  |
| 3.20, m                               | - 3.39-3.35, m                          |  |
| 3.08, dd (J = 13.0, 13.5 Hz)          | 3.09, t (J = 13.0 Hz)                   |  |
| 2.61, m                               | 2.64-2.58, m                            |  |
| 2.08, m                               | 2.10-2.07, m                            |  |
| 1.73, d (J = 6.5 Hz)                  | 1.74, d (J = 7.0 Hz)                    |  |
| 1.65, m                               | 1.69-1.64, m                            |  |
| 1.60-1.47, overlapped                 | 1.61-1.46, m                            |  |
| 1.42, d (J = 9.0 Hz)                  | 1.43, d (J = 6.0 Hz)                    |  |
| 1.32, m                               | 1.32, s                                 |  |
| 1.24-1.10, overlapped                 | 1.24-1.14, m                            |  |
| 1.09, d (J = 7.0 Hz)                  | 1.10, d (J = 7.0 Hz)                    |  |
| 1.05, m                               | 1.07-1.03, m                            |  |
| 1.00, d (J = 6.0 Hz)                  | 1.01, d (J = 6.5 Hz)                    |  |
| 0.94, d (J = 6.5 Hz)                  | 0.95, d (J = 6.5 Hz)                    |  |
| 0.88, m                               | 0.92-0.85, m                            |  |
| 0.81, d (J = 7.0 Hz)                  | – 0.83-0.79, m                          |  |
| 0.79, t (J = 7.0 Hz)                  |                                         |  |
| 0.69, d (J = 7.0 Hz)                  | 0.70, d (J = 6.5 Hz)                    |  |
| 0.60, d (J = 7.0 Hz)                  | 0.61, d (J = 7.0 Hz)                    |  |
| Reported Tumescenamide C <sup>7</sup> | Synthetic Tumescenamide C (compound 40) |
|---------------------------------------|-----------------------------------------|
| (125 MHz, CD <sub>3</sub> OD)         | (125 MHz, CD <sub>3</sub> OD)           |
| 180.3                                 | 180.3                                   |
| 178.6                                 | 178.6                                   |
| 173.8                                 | 173.8                                   |
| 172.1                                 | 172.1                                   |
| 171.5                                 | 171.5                                   |
| 165.4                                 | 165.4                                   |
| 157.4                                 | 157.4                                   |
| 138.1                                 | 138.1                                   |
| 131.5                                 | 131.5                                   |
| 129.9                                 | 129.9                                   |
| 127.6                                 | 127.6                                   |
| 116.3                                 | 116.4                                   |
| 75.5                                  | 75.6                                    |
| 62.4                                  | 62.4                                    |
| 57.3                                  | 57.3                                    |
| 56.9                                  | 56.8                                    |
| 54.5                                  | 54.6                                    |
| 42.5                                  | 42.5                                    |
| 41.0                                  | 41.0                                    |
| 40.3                                  | 40.3                                    |
| 39.5                                  | 39.6                                    |
| 36.7                                  | 36.7                                    |
| 31.5                                  | 31.5                                    |
| 30.0                                  | 30.0                                    |
| 25.8                                  | 25.8                                    |
| 23.0                                  | 23.0                                    |
| 22.8                                  | 22.8                                    |
| 21.0                                  | 21.0                                    |
| 20.4                                  | 20.4                                    |
| 19.3                                  | 19.3                                    |
| 19.2                                  | 19.2                                    |
| 17.2                                  | 17.3                                    |
| 16.3                                  | 16.3                                    |
| 14.7                                  | 14.7                                    |
| 14.6                                  | 14.6                                    |

Table S6. <sup>13</sup>C NMR comparison for Tumescenamide C

## 7. NMR Spectra of Products

liushouxin-XH



| ХН        | 173.55 | 153.58                      | 135.48<br>129.54<br>129.06<br>127.45 |         | 77.41<br>77.16<br>76.91 | 66.27 | 55.27 | 38.07<br>35.37 | 26.49<br>22.38 | 13.96 | NAME                                                                                                                                                            | 2019.07.24                                                                                                                                                                                                              |
|-----------|--------|-----------------------------|--------------------------------------|---------|-------------------------|-------|-------|----------------|----------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |        |                             |                                      |         |                         |       |       |                |                |       | EXPNO<br>PROCNO<br>Date<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0 | 4<br>1<br>20190724<br>13.42<br>spect<br>5 mm PADUL 13C<br>zgpg30<br>32768<br>CDC13<br>4096<br>4<br>29761.904 Hz<br>0.505524 sec<br>2050<br>16.800 usec<br>6.50 usec<br>300.9 K<br>2.00000000 sec<br>0.03000000 sec<br>1 |
|           |        | Bn <sup>\''</sup> <b>12</b> |                                      |         | ł                       |       |       |                |                |       | =======<br>NUC1<br>P1<br>PL1<br>PL1W<br>SF01                                                                                                                    | CHANNEL f1 =======<br>13C<br>12.00 usec<br>4.50 dB<br>33.60015869 W<br>125.7703643 MHz                                                                                                                                  |
|           |        |                             |                                      |         |                         |       |       |                |                |       | CPDPRG2<br>NUC2<br>PCPD2<br>PL2<br>PL12<br>PL13<br>PL2W<br>PL12W<br>PL12W<br>PL12W<br>SF02<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB                                | CHANNEL f2 ======<br>waltz16<br>1H<br>80.00 usec<br>2.00 dB<br>17.46 dB<br>17.46 dB<br>16.79986763 W<br>0.47786582 W<br>0.47786582 W<br>500.1320005 MHz<br>32768<br>125.7577765 MHz<br>EM<br>0<br>1.00 Hz<br>0          |
| <br>190 1 | 80 170 | 160 150                     | 140 130 120                          | 110 100 | 90 80 7                 | 0 6   | 0 50  | 40 ;           | 30 20          | 10    | PC<br>0 ppm                                                                                                                                                     | 1.40                                                                                                                                                                                                                    |

S39



liushouxin-xh-Me

| liushouxin-x | h-Me    |                          |           |                         |       |      |                         |                         | -                                                                                                                                                                        |                                                                                                                                                                                                                                                       |
|--------------|---------|--------------------------|-----------|-------------------------|-------|------|-------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |         | $\overbrace{)}^{135.51}$ |           | 77.41<br>77.16<br>76.90 | 66.15 |      | 38.07<br>37.59<br>35.72 | 20.54<br>17.43<br>14.19 | BR                                                                                                                                                                       | UKER                                                                                                                                                                                                                                                  |
|              |         |                          |           |                         |       |      |                         |                         | NAME<br>EXPNO<br>PROCNO<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0 | 2019.08.02<br>5<br>1<br>20190802<br>12.33<br>spect<br>5 mm PADUL 13C<br>zgpg30<br>32768<br>CDC13<br>3072<br>4<br>31250.000 Hz<br>0.953674 Hz<br>0.5243380 sec<br>2050<br>16.000 usec<br>6.50 usec<br>300.5 K<br>2.00000000 sec<br>0.03000000 sec<br>1 |
|              | E<br>13 | Sn <sup>**</sup>         |           | 1                       |       |      |                         |                         | NUC1<br>P1<br>PL1<br>PL1W<br>SF01                                                                                                                                        | CHANNEL f1 ======<br>13C<br>12.00 usec<br>4.50 dB<br>33.60015869 W<br>125.7728799 MHz                                                                                                                                                                 |
|              |         |                          |           |                         |       |      |                         |                         | CPDPRG2<br>NUC2<br>PCPD2<br>PL2<br>PL13<br>PL13<br>PL2W<br>PL13W<br>SFO2<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB                                                           | CHANNEL f2 ======<br>waltz16<br>1H<br>80.00 usec<br>2.00 dB<br>17.46 dB<br>16.79986763 W<br>0.47786582 W<br>0.47786582 W<br>0.47786582 W<br>500.1320005 MHz<br>32768<br>125.7577741 MHz<br>EM<br>0<br>1.00 Hz<br>0                                    |
| 190 180 170  | 160 150 | 140 130 120              | ) 110 100 | 90 80 70                | 0 6   | 0 50 | 40 30                   | 20 10                   | РС<br>0 ррт                                                                                                                                                              | 1.40                                                                                                                                                                                                                                                  |



|                | C    |
|----------------|------|
| 11190011210-20 | -()H |
| TTUDHOUATH AN  | 011  |





| liushouxin-xh  |        |                                      |            |                         |      |       |    |       |         |                                                                                                                                                                          |                                                                                                                                                                                                                                                      |
|----------------|--------|--------------------------------------|------------|-------------------------|------|-------|----|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 174.21         | 153.63 | 135.46<br>129.53<br>129.07<br>127.45 |            | 77.41<br>77.16<br>76.90 |      |       |    | 29.30 | 8.42    | BR                                                                                                                                                                       | UKER                                                                                                                                                                                                                                                 |
|                |        |                                      |            |                         |      |       |    |       |         | NAME<br>EXPNO<br>PROCNO<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0 | 2019.07.27<br>3<br>2<br>20190727<br>8.50<br>spect<br>5 mm PADUL 13C<br>2gpg30<br>32768<br>CDC13<br>1851<br>4<br>31250.000 Hz<br>0.953674 Hz<br>0.5243380 sec<br>2050<br>16.000 usec<br>6.50 usec<br>299.6 K<br>2.00000000 sec<br>0.03000000 sec<br>1 |
|                | В      | n <b>15</b>                          |            |                         |      |       |    |       |         | ======= (<br>NUC1<br>P1<br>PL1<br>PL1W<br>SF01                                                                                                                           | CHANNEL f1 ======<br>13C<br>12.00 usec<br>4.50 dB<br>33.60015869 W<br>125.7728799 MHz                                                                                                                                                                |
|                |        |                                      |            |                         |      |       |    |       |         | CPDPRG2<br>NUC2<br>PCPD2<br>PL2<br>PL12<br>PL13<br>PL2W<br>PL12W<br>PL13W<br>SFO2<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB                                                  | CHANNEL f2                                                                                                                                                                                                                                           |
| 190 180 170 16 | 0 150  | 140 130 120                          | 110 100 90 | 80                      | 70 € | 50 50 | 40 | 30    | 20 10 0 | ppm                                                                                                                                                                      | 1.40                                                                                                                                                                                                                                                 |



| liushouxin-X | H-celian | r-5                         |                |       |       |                                                             |                                  | -                                                                                                                                                               |                                                                                                                                                                                                                                                                      |
|--------------|----------|-----------------------------|----------------|-------|-------|-------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 178,00       |          | 135.56 129.56 129.07 127.46 | 77.41<br>77.16 | 66.09 | 55.49 | 41.01<br>39.84<br>38.19<br>38.19<br>38.19<br>35.50<br>30.33 | 20.18<br>19.25<br>16.85<br>14.43 | BR                                                                                                                                                              |                                                                                                                                                                                                                                                                      |
|              |          |                             |                |       |       |                                                             |                                  | EXPNO<br>PROCNO<br>Date<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0 | 13<br>1<br>20190921<br>15.09<br>spect<br>5 mm PADUL 13C<br>2gpg30<br>32768<br>CDC13<br>2662<br>4<br>29761.904 Hz<br>0.908261 Hz<br>0.505524 sec<br>1820<br>16.800 usec<br>6.50 usec<br>299.4 K<br>2.00000000 sec<br>0.03000000 sec<br>1<br>CHANNEL f1 =======<br>13C |
|              |          | Bn'<br><b>16</b>            |                |       |       |                                                             |                                  | P1<br>PL1<br>PL1W<br>SFO1                                                                                                                                       | 12.00 usec<br>4.50 dB<br>33.60015869 W<br>125.7703643 MHz                                                                                                                                                                                                            |
|              |          |                             |                |       |       |                                                             |                                  | CPDPRG2<br>NUC2<br>PCPD2<br>PL2<br>PL13<br>PL13<br>PL2W<br>PL13W<br>SF02<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB                                                  | CHANNEL f2 ======<br>waltz16<br>1H<br>80.00 usec<br>2.00 dB<br>17.46 dB<br>17.46 dB<br>16.79986763 W<br>0.47786582 W<br>0.47786582 W<br>500.1320005 MHz<br>32768<br>125.7577739 MHz<br>EM<br>0<br>1.00 Hz<br>0                                                       |
| 190 180 170  | 160 150  | 140 130 120 110             | 100 90 80      | 70 €  | 50 50 | 40 30                                                       | 20 10                            | 0 ppm                                                                                                                                                           | 1.40                                                                                                                                                                                                                                                                 |



| liushouxin-xhSR-COC | DH                  |                |                                                       |                                                                                                                                                                                                                                                                                                                         |
|---------------------|---------------------|----------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 183.80              |                     | 77.41<br>77.16 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | BRUKER                                                                                                                                                                                                                                                                                                                  |
|                     | Ö                   |                |                                                       | NAME 2021.03.26   EXPNO 10   PROCNO 1   Date_ 20210326   Time 12.33   INSTRUM spect   PROBHD 5 mm   PULPROG zgpg30   TD 32768   SOLVENT CDC13   NS 5120   DS 0   SWH 29761.904   FIDRES 0.908261   AQ 0.550524   RG 2050   DW 16.800 usec   DE 6.50 usec   TE 298.6 K   D1 2.00000000 sec   D11 0.0300000 sec   TD0 1 1 |
| $\sim$              | 9а                  |                |                                                       | ====== CHANNEL f1   NUC1 13C   P1 12.00 usec   PL1 4.50 dB   PL1W 33.60015869 W   SF01 125.7703643 MHz                                                                                                                                                                                                                  |
|                     |                     |                |                                                       | =====   CHANNEL f2     CPDPRG2   waltz16     NUC2   1H     PCPD2   80.00     PL2   2.00     PL12   17.46     PL13   17.46     PL12W   16.79986763     W   PL12W     PL13W   0.47786582     W   SFO2     SF02   500.1320005     SF   125.7577722     WDW   EM     SSB   0     LB   1.00     HB   1.00                    |
| 190 180 170 160 150 | 140 130 120 110 100 | 90 80 70 60    | 50 40 30 20 10                                        | PC 1.40                                                                                                                                                                                                                                                                                                                 |



| 184.00  | 77.41<br>77.16<br>76.91 | 41.36<br>39.41<br>37.47<br>30.57<br>19.98<br>19.98<br>11.93<br>14.42 | BRUKER<br>NAME 2021.03.11<br>EXPNO 14                                                                                                                                                                                                                                                                                                                                             |
|---------|-------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| осности |                         |                                                                      | PROCNO 1   Date_ 20210319   Time 16.54   INSTRUM spect   PROBHD 5 mm PADUL 13C   PULPROG zgpg30   TD 32768   SOLVENT CDC13   NS 125   DS 0   SWH 29761.904 Hz   FIDRES 0.908261 Hz   AQ 0.5505524 sec   RG 1150   DW 16.800 usec   DE 6.50 usec   TE 295.4 K   D1 2.00000000 sec   D11 0.03000000 sec   D11 0.03000000 sec   D11 13C   P1 12.00 usec   P1 12.00 usec   P1 4.50 dB |
|         |                         |                                                                      | SF01 125.7703643 MHz   ====== CHANNEL f2 ======   CPDPRG2 waltz16   NUC2 1H   PCPD2 80.00 usec   PL2 2.00 dB   PL12 17.46 dB   PL13 17.46 dB   PL2W 16.79986763 W   PL12W 0.47786582 W   PL13W 0.47786582 W   SF02 500.1320005 MHz   SI 32768   SF 125.7577730 MHz   WDW EM   SSB 0   LB 1.00 Hz   GB 0   PC 1.40                                                                 |



S52



## liushouxin-f-2013-4-10b





## liushouxin-2018-3-14-ZY







## liushouxin-Thr-L-Pro 171.25 170.47 164.01 155.97 134.65 133.47 132.04 126.70 125.68 118.76 118.30 80.91 80.64 77.41 77.15 76.90 65.86 61.56 60.11 31.43 28.43 24.68 23.77 23.77 14.82 14.38 BRUK ER 23 . 47. $\mathbb{V}$ |V|V $\mathbf{1}$ $\mathbb{V}$ Current Data Parameters NAME xuehong EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date 20211102 Time 12.04 INSTRUM spect PROBHD 5 mm PABBO BB-PULPROG zgpg30 ТD 4096 SOLVENT CDC13 NS 396 DS 0 SWH 29761.904 Hz FIDRES 3.633045 Hz AQ 0.1376256 sec RG 2050 DW 16.800 usec DE 6.50 usec Boc ΤE 293.8 K AllylO 2.00000000 sec D1 Ĥ D11 0.03000000 sec TDO 1 ====== CHANNEL f1 ======= 23 NUC1 13C Ρ1 12.30 usec 4.50 dB PL1 33.60015869 W PL1W 125.7703643 MHz SF01 ====== CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 2.00 dB PL12 17.78 dB PL13 17.78 dB PL2W 16.79986763 W PT-12W 0.44392112 W PL13W 0.44392112 W SFO2 500.1320005 MHz F2 - Processing parameters SI 32768 HANN SF 125.7577799 MHz WDW ΕM SSB 0 4.00 Hz LB Т GB 0 180 160 140 120 100 80 60 40 20 0 ppm 1.40 РC







S62




























S73











## liushouxin-2018.6.11-ZY











4.0

Ę

3.38

3.5

5.0

4.5

0.94

5.5

0.82

liushouxin-ZY-2019.1.22

7.5

7.0

0.88

5.80

6.5

6.0

0.56



2019.01.22

5

NAME EXPNO

| PROC                                                             | NO 1                                                                                                                 |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Date                                                             | 20190122                                                                                                             |
| Time                                                             | 17.29                                                                                                                |
| INST                                                             | RUM spect                                                                                                            |
| PROB                                                             | HD 5 mm PADUL 13C                                                                                                    |
| PULP                                                             | ROG zq30                                                                                                             |
| TD                                                               | 65536                                                                                                                |
| SOLV                                                             | ENT DMSO                                                                                                             |
| NS                                                               | 16                                                                                                                   |
| DS                                                               | 0                                                                                                                    |
| SWH                                                              | 10330.578                                                                                                            |
| FIDR                                                             | ES 0.157632                                                                                                          |
| AQ                                                               | 3.1719923                                                                                                            |
| RG                                                               | 80.6                                                                                                                 |
| DW                                                               | 48.400                                                                                                               |
| DE                                                               | 6.50                                                                                                                 |
| TE                                                               | 298.0                                                                                                                |
| Dl                                                               | 1.00000000                                                                                                           |
|                                                                  | -                                                                                                                    |
| TDO                                                              | 1                                                                                                                    |
| TD0                                                              | I<br>==== CHANNEL fl ====                                                                                            |
| TD0<br>====<br>NUC1                                              | I<br>CHANNEL fl ====<br>1H                                                                                           |
| TD0<br>====<br>NUC1<br>P1                                        | 1<br>CHANNEL fl<br>1H<br>13.50                                                                                       |
| TD0<br>====<br>NUC1<br>P1<br>PL1                                 | 1<br>CHANNEL f1<br>1H<br>13.50<br>2.00                                                                               |
| TD0<br>====<br>NUC1<br>P1<br>PL1<br>PL1W                         | 1<br>CHANNEL f1<br>IH<br>13.50<br>2.00<br>16.79986763                                                                |
| TD0<br>====<br>P1<br>PL1<br>PL1W<br>SF01                         | 1<br>CHANNEL f1<br>IH<br>13.50<br>2.00<br>16.79986763<br>500.1330885                                                 |
| TD0<br><br>NUC1<br>P1<br>PL1<br>PL1W<br>SF01<br>SI               | 1<br>CHANNEL f1<br>1H<br>13.50<br>2.00<br>16.79986763<br>500.1330885<br>32768                                        |
| TD0<br>NUC1<br>P1<br>PL1<br>PL1W<br>SF01<br>SI<br>SF             | 1<br>CHANNEL f1<br>IH<br>13.50<br>2.00<br>16.79986763<br>500.1330885<br>32768<br>500.1300092                         |
| TD0<br><br>NUC1<br>P1<br>PL1<br>PL1W<br>SF01<br>SI<br>SF<br>WDW  | 1<br>CHANNEL f1<br>IH<br>13.50<br>2.00<br>16.79986763<br>500.1330885<br>32768<br>500.130092<br>EM                    |
| TD0<br>PI<br>PL1<br>PL1W<br>SF01<br>SF<br>SF<br>WDW<br>SSB       | 1<br>CHANNEL f1<br>IH<br>13.50<br>2.00<br>16.79986763<br>500.1330885<br>32768<br>500.1300092<br>EM<br>0              |
| TD0<br>NUC1<br>P1<br>PL1<br>SF01<br>SF<br>WDW<br>SSB<br>LB       | 1<br>CHANNEL f1<br>IH<br>13.50<br>2.00<br>16.79986763<br>500.1330885<br>32768<br>500.1300092<br>EM<br>0<br>1.00      |
| TD0<br>NUC1<br>P1<br>PL1<br>SF01<br>SF<br>WDW<br>SSB<br>LB<br>GB | 1<br>CHANNEL f1<br>IH<br>13.50<br>2.00<br>16.79986763<br>500.1330885<br>32768<br>500.1300092<br>EM<br>0<br>1.00<br>0 |

3.0 |90|||1||

2.5

2.0

1.5 000 306 306 1.0

 $\frac{\overline{3.19}}{\overline{3.10}}$ 

0.5

0.0

ppm







| liushouxin-2018-10- | 11-zy                                          |               |                                                             | -                                                                         |                                                                                                      |
|---------------------|------------------------------------------------|---------------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                     | 135.40<br>134.21<br>134.21<br>130.03<br>126.72 | 98.50         | 56.09<br>55.99<br>39.65<br>39.65<br>39.15<br>39.12<br>39.12 | BR                                                                        | UKER                                                                                                 |
|                     |                                                |               |                                                             | NAME<br>EXPNO<br>PROCNO<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG  | 2018.10.19<br>1<br>20181020<br>6.54<br>spect<br>5 mm PADUL 13C<br>zamg30                             |
|                     |                                                |               |                                                             | TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ                          | 32768<br>DMSO<br>13312<br>0<br>29761.904 Hz<br>0.908261 Hz<br>0.5505524 sec                          |
|                     | _)<br>_0<br>Н                                  |               |                                                             | RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0                                  | 1150<br>16.800 usec<br>6.50 usec<br>298.2 K<br>2.00000000 sec<br>0.03000000 sec<br>1                 |
| 0<br>36             |                                                |               |                                                             | NUC1<br>P1<br>PL1<br>PL1W<br>SF01                                         | CHANNEL f1 =======<br>13C<br>12.00 usec<br>4.50 dB<br>33.60015869 W<br>125.7703643 MHz               |
|                     |                                                |               |                                                             | ======<br>CPDPRG2<br>NUC2<br>PCPD2<br>PL2<br>PL12<br>PL12<br>PL13<br>PL2W | CHANNEL f2 ======<br>waltz16<br>1H<br>80.00 usec<br>2.00 dB<br>17.46 dB<br>17.46 dB<br>16.79986763 W |
| ſ                   |                                                | Ĩ             |                                                             | PL12W<br>PL13W<br>SFO2<br>SI<br>SF<br>WDW<br>SSB                          | 0.47786582 W<br>0.47786582 W<br>500.1320005 MHz<br>32768<br>125.7578489 MHz<br>EM<br>0               |
| 200 190 180 170 160 | 150 140 130 120                                | 110 100 90 80 | 70 60 50 40 30 20                                           | LB<br>GB<br>PC<br>10 0 ppm                                                | 1.00 Hz<br>0<br>1.40                                                                                 |

ZY-2018-10-29



## liushouxin-ZY-2018-10-29 -168.16 -162.46 135.93 131.43 129.41 128.31 128.26 11. .51 .51 .34 .34 .83 .83 .66 .49 10.81 115. RUK ER EK 1 1 L NAME 2018.11.21 15 EXPNO PROCNO 1 20181121 Date\_ Time 22.04 INSTRUM spect PROBHD 5 mm PADUL 13C PULPROG zgpg30 TD 32768 SOLVENT MeOD NS 8192 DS 0 29761.904 Hz SWH FIDRES 0.908261 Hz AQ 0.5505524 sec RG 1030 DW 16.800 usec DE 6.50 usec TE 295.7 K 2.00000000 sec HN D1 D11 0.03000000 sec ŃΗ TDO 1 ====== CHANNEL f1 ======= NUC1 13C 12.00 usec P1 37 PL1 4.50 dB PL1W 33.60015869 W SF01 125.7703643 MHz ====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 2.00 dB PL12 17.46 dB PL13 17.46 dB 16.79986763 W PL2W PL12W 0.47786582 W 0.47786582 W PL13W SFO2 500.1320005 MHz SI 32768 SF 125.7576132 MHz WDW EM 0 SSB BB 1.00 Hz GB 0 PC 1.40 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 0



| liushouxin-xh-SR-T  |                                                                                                   |                        |        |                                      |       |    |                      |      | C                        |                                  |
|---------------------|---------------------------------------------------------------------------------------------------|------------------------|--------|--------------------------------------|-------|----|----------------------|------|--------------------------|----------------------------------|
| 7.53                | 31.60                                                                                             | 00.6                   |        | 7.42<br>7.16<br>5.91<br>8.12<br>8.12 | .01   |    | 0.40<br>0.02<br>0.70 | 1.42 |                          | $\times$                         |
|                     | 13                                                                                                | 1                      |        | 77<br>77<br>76<br>76                 | - 57  |    | 122 30               | 14   | BR                       | UNER                             |
|                     |                                                                                                   |                        |        | ¥ 11                                 |       | ١Y | I W                  | 1    | NAME                     | 2021.03.11                       |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | EXPNO<br>PROCNO          | 11<br>1                          |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | Date_<br>Time<br>INSTRUM | 20210317<br>17.18                |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | PROBHD                   | 5 mm PADUL 13C<br>zapa30         |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | TD<br>SOLVENT            | 32768<br>CDC13                   |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | NS<br>DS<br>SWH          | 10240<br>0<br>29761 904 Hz       |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | FIDRES<br>AQ             | 0.908261 Hz<br>0.5505524 sec     |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | RG<br>DW<br>DE           | 1150<br>16.800 usec              |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | TE<br>D1                 | 298.0 K<br>2.00000000 sec        |
| UAIIII H            | 人人                                                                                                |                        |        |                                      |       |    |                      |      | D11<br>TD0               | 0.03000000 sec<br>1              |
|                     | $\int \int $ |                        |        |                                      |       |    |                      |      | =======<br>NUC1          | CHANNEL f1 =======<br>13C        |
| HO                  | ,<br>. <b>.</b>                                                                                   |                        |        |                                      |       |    |                      |      | P1<br>PL1                | 12.00 usec<br>4.50 dB            |
|                     | 17a                                                                                               |                        |        |                                      |       |    |                      |      | PL1W<br>SFO1             | 33.60015869 W<br>125.7703643 MHz |
|                     |                                                                                                   |                        |        |                                      |       |    |                      |      | CPDPRG2                  | CHANNEL f2 =======<br>waltz16    |
|                     |                                                                                                   |                        |        |                                      |       |    | ñ                    |      | NUC2<br>PCPD2            | 1H<br>80.00 usec                 |
|                     |                                                                                                   |                        |        |                                      |       |    | 1                    |      | PL2<br>PL12<br>PL13      | 17.46 dB<br>17.46 dB             |
|                     |                                                                                                   |                        |        | 1                                    |       |    |                      |      | PL2W<br>PL12W            | 16.79986763 W<br>0.47786582 W    |
|                     |                                                                                                   |                        |        | 1                                    |       |    |                      |      | PL13W<br>SFO2            | 0.47786582 W<br>500.1320005 MHz  |
| 1                   | Ĩ                                                                                                 | L                      |        | Ť                                    | 1     |    |                      |      | SF<br>WDW                | 125.7577768 MHz<br>EM            |
|                     |                                                                                                   | une est d'anne en avec |        |                                      |       |    |                      |      | SSB<br>LB                | 0<br>1.00 Hz                     |
|                     |                                                                                                   |                        |        |                                      |       |    | dimontra             |      | B<br>PC                  | 0<br>1.40                        |
| 190 180 170 160 150 | 140 130                                                                                           | 120 110                | 100 90 | 80 70                                | 60 50 | 40 | 30 20                | 10 0 | ppm                      |                                  |



| liushouxin-xh-RS-Thr    |              |         |          |                         |       |       |                         |       |                                           |     | 6                            |                                           |
|-------------------------|--------------|---------|----------|-------------------------|-------|-------|-------------------------|-------|-------------------------------------------|-----|------------------------------|-------------------------------------------|
| 177.45                  | 131.59       | 119.05  |          | 77.41<br>77.16<br>76.90 | 58.13 | 57.08 | 11.84<br>39.63<br>39.43 | 30.59 | 20.10<br>20.05<br>19.64<br>18.81<br>14.40 |     | BR                           | UKER                                      |
|                         | Ī            |         |          | $\forall$               | ŇĬ    |       | ŇV                      |       | V//                                       |     | -                            | $\sim$                                    |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | NAME<br>EXPNO                | 2021.03.11 18                             |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | Date_<br>Time                | 20210324<br>17.18                         |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | INSTRUM<br>PROBHD<br>PULPROG | spect<br>5 mm PADUL 13C<br>zqpq30         |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | TD<br>SOLVENT<br>NS          | 32768<br>CDC13<br>10240                   |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | DS<br>SWH                    | 0<br>29761.904 Hz                         |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | AQ<br>RG                     | 0.5505524 sec<br>1820                     |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | DE<br>TE                     | 6.50 usec<br>6.50 usec<br>296.5 K         |
| OAIIyI                  | _            |         |          |                         |       |       |                         |       |                                           |     | D1<br>D11<br>TD0             | 2.00000000 sec<br>0.03000000 sec<br>1     |
|                         | $\checkmark$ | $\sim$  |          |                         |       |       |                         |       |                                           |     | =======<br>NUC1              | CHANNEL f1 =======<br>13C                 |
| но↓ ∥                   |              |         |          |                         |       |       |                         |       |                                           |     | P1<br>PL1<br>PL1W            | 12.00 usec<br>4.50 dB<br>33.60015869 W    |
| 17b                     |              |         |          |                         |       |       |                         |       |                                           |     | SFO1                         | 125.7703643 MHz                           |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | CPDPRG2<br>NUC2              | waltz16                                   |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | PCPD2<br>PL2<br>PL12         | 2.00 dB<br>17.46 dB                       |
|                         |              |         |          |                         |       |       |                         |       |                                           |     | PL13<br>PL2W<br>PL12W        | 17.46 dB<br>16.79986763 W<br>0.47786582 W |
|                         |              |         |          |                         | 7     |       |                         |       |                                           |     | PL13W<br>SFO2<br>SI          | 0.47786582 W<br>500.1320005 MHz<br>32768  |
| T T                     | Ĩ            |         |          |                         |       |       |                         |       |                                           |     | SF<br>WDW<br>SSB             | 125.7577748 MHz<br>EM<br>0                |
|                         |              |         |          | l                       |       |       |                         |       |                                           |     | LB<br>GB                     | 1.00 Hz                                   |
| 190 180 170 160 150 14C | ) 130        | 120 110 | ) 100 90 | 80                      | 70    | 60 5  | i0 40                   | 30    | 20 1                                      | 0 0 | ppm                          | 1.40                                      |



| OAllyl H                    |                   | $ \begin{array}{c} & 77.41 \\ & 77.16 \\ & 76.90 \\ & 66.17 \\ & 66.17 \\ & 66.17 \\ & 57.19 \\ & 39.34 \\ & 39.34 \\ & 39.34 \\ & 39.34 \\ & 20.12 \\ & 39.34 \\ & 14.43 \\ & 14.43 \end{array} $ | NAME         2021.03.11           EXPNO         19           PROCNO         1           Date_         20210325           Time         16.45           INSTRUM         spect           PROBHD         5 mm           PULPROG         29pg30           TD         32768           SOLVENT         CDC13           NS         401           DS         0           SWH         29761.904           FIDRES         0.908261           AQ         0.5505524           Sec         1820           DW         16.800         usec           DE         6.50         usec           DE         6.50         usec           DE         296.4         K           D1         2         000000 |
|-----------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | 7c                |                                                                                                                                                                                                    | D1       2.00000000 sec         D11       0.03000000 sec         TD0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 210 200 190 180 170 160 150 | 140 130 120 110 1 | 00 90 80 70 60 50 40 30 20 10                                                                                                                                                                      | PC 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



















| liushouxin-xh-RS-3                                                                     |                                                                     |                                                    |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 177.67<br>172.45<br>172.39<br>172.39<br>170.61<br>169.97<br>169.85<br>169.85<br>154.79 | $\overbrace{\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | 77.41<br>77.16<br>77.16<br>76.91<br>66.85<br>66.85 | 41.68<br>39.66<br>39.66<br>39.64<br>28.38<br>25.78<br>25.78<br>25.78<br>19.61<br>19.12<br>19.61<br>19.12<br>19.61<br>117.14<br>117.14<br>114.41<br>0.12 | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A<br>Boc.                                                                              |                                                                     |                                                    |                                                                                                                                                         | NAME         2021.03.11           EXPNO         10           PROCNO         1           Date_         20210317           Time         9.24           INSTRUM         spect           PROBHD         5 mm           PULPROG         zgpg30           TD         32768           SOLVENT         CDC13           NS         10240           DS         0           SWH         29761.904           FIDRES         0.908261           AQ         0.5505524           RG         1150           DW         16.800         usec           DE         6.50         usec           DE         2.00000000         sec           TE         295.2         K           D1         2.00000000         sec           TD0         1         1 |
| NH H <sub>O</sub><br>O<br>H <sub>3</sub> C                                             | огуу ∦ У У Х<br>Хон                                                 |                                                    |                                                                                                                                                         | =====         CHANNEL f1         ======           NUC1         13C           P1         12.00 usec           PL1         4.50 dB           PL1W         33.60015869 W           SF01         125.7703643 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| отвs                                                                                   | 19Ь                                                                 |                                                    |                                                                                                                                                         | CHANNEL f2         f2           CPDPRG2         waltz16           NUC2         1H           PCPD2         80.00         usec           PL2         2.00         dB           PL12         17.46         dB           PL13         17.46         dB           PL14         0.47786582         W           PL13W         0.47786582         W           SF02         500.1320005         MHz           SI         32768         SF           SSB         0         LB         1.00           GB         0         UA         0                                                                                                                                                                                                     |
| 190 180 170 160 150                                                                    | 140 130 120 110 100                                                 | D 90 80 70 60                                      | 50 40 30 20 10 0                                                                                                                                        | PC 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Ally<br>Boc | 131.45<br>131.45<br>129.30<br>129.50 | 80.40<br>77.42<br>77.16<br>77.42<br>71.67<br>76.91<br>66.83<br>66.83<br>55.38<br>71.67<br>66.83 | -4.34<br>-4.34<br>-4.34<br>-4.34<br>-4.34<br>-4.34<br>-4.34<br>-4.34<br>-4.34<br>-4.34<br>-4.34 | NAME2021.03.11EXPNO16PROCNO1Date_20210322Time13.01INSTRUMspectPROBHD5 mmPADUL13CPULPROGzgpg30TD32768SOLVENTCDC13NS10240DS0SWH29761.904FIDRES0.908261RG1820DW16.800DE6.50LE297.3KD12.00000000secTD01                                                                                              |
|-------------|--------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OTBS        | ЮН<br><b>19с</b>                     |                                                                                                 |                                                                                                 | =====         CHANNEL f1         ======           NUC1         13C           P1         12.00 usec           PL1         4.50 dB           PL1W         33.60015869 W           SF01         125.7703643 MHz                                                                                     |
|             | 40 130 120 110 10                    |                                                                                                 |                                                                                                 | CPDPRG2 waltz16<br>NUC2 1H<br>PCPD2 80.00 usec<br>PL2 2.00 dB<br>PL12 17.46 dB<br>PL13 17.46 dB<br>PL13 17.46 dB<br>PL2W 16.79986763 W<br>PL12W 0.47786582 W<br>PL13W 0.47786582 W<br>SF02 500.1320005 MHz<br>SI 32768<br>SF 125.7577758 MHz<br>WDW EM<br>SSB 0<br>LB 1.00 Hz<br>GB 0<br>PC 1.40 |


















| liushouxin-xh-RS-4 | 135.41<br>132.26<br>130.32<br>129.23<br>128.09<br>118.43 | 80.66<br>777.16<br>777.16<br>777.16<br>777.16<br>777.16<br>777.16<br>776.90<br>66.61<br>66.61<br>66.61<br>338.722<br>338.722<br>338.722<br>29.89<br>29.89<br>29.89<br>29.89<br>29.89<br>29.89<br>19.11<br>19.11<br>18.81<br>19.11<br>18.81<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.38<br>14.35<br>14.35<br>15.35<br>14.30<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35<br>15.35 | NAME 2021.03.11<br>EXPNO 8<br>PROCNO 1<br>Date_ 20210315<br>Time 17.03<br>INSTRUM spect<br>PROBHD 5 mm PADUL 13C<br>PULPROG 2gpg30<br>TD 32768                                                                                                                                                             |
|--------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HN HN              |                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOLVENT   CDC13     NS   10240     DS   0     SWH   29761.904 Hz     FIDRES   0.908261 Hz     AQ   0.5505524 sec     RG   2050     DW   16.800 usec     DE   6.50 usec     TE   295.5 K     D1   2.00000000 sec     D1   0.03000000 sec     TD0   1                                                        |
|                    | 21Ь                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PL1W 33.60015869 W   SF01 125.7703643 MHz   ===== CHANNEL f2   CPDPRG2 waltz16   NUC2 1H   PCPD2 80.00 usec   PL2 2.00 dB   PL12 17.46 dB   PL13 17.46 dB   PL12W 16.79986763 W   PL12W 0.47786582 W   SF02 500.1320005 MHz   SI 32768   SF 125.7577784 MHz   WDW EM   SSB 0   LB 1.00 Hz   GB 0   PC 1.40 |
| 180 170 160 150    | 140 130 120 110 100                                      | 90 80 70 60 50 40 30 20 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10 ppm                                                                                                                                                                                                                                                                                                    |































| liushouxin-xh-SR-DT     |             |           |                                             |                                |       |                         |                                           | -                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |
|-------------------------|-------------|-----------|---------------------------------------------|--------------------------------|-------|-------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |             | — 118.94  | 19.77~                                      | $\overbrace{}^{77.16}_{76.90}$ |       | 41.79<br>39.61<br>39.36 | 20.05<br>20.05<br>19.59<br>18.78<br>14.36 | BR                                                                                                                                                                                                              | UKER                                                                                                                                                                                                                                                                                  |
|                         |             |           |                                             |                                |       |                         |                                           | NAME<br>EXPNO<br>PROCNO<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0<br>=================================== | 2021.05.27<br>10<br>1<br>20210527<br>15.52<br>spect<br>5 mm PADUL 13C<br>2gpg30<br>32768<br>CDC13<br>182<br>0<br>29761.904 Hz<br>0.908261 Hz<br>0.505524 sec<br>2050<br>16.800 usec<br>6.50 usec<br>299.1 K<br>2.00000000 sec<br>13C<br>13C<br>13C<br>13C<br>13C<br>13C<br>13C<br>13C |
| S15                     |             |           |                                             |                                |       |                         |                                           | PI<br>PL1<br>PL1W<br>SF01                                                                                                                                                                                       | 4.50 dB<br>33.60015869 W<br>125.7703643 MHz                                                                                                                                                                                                                                           |
|                         |             |           | Ang are specific as a specific state of the |                                |       |                         |                                           | CPDPRG2<br>NUC2<br>PCPD2<br>PL2<br>PL12<br>PL13<br>PL2W<br>PL12W<br>PL12W<br>PL12W<br>PL13W<br>SFO2<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB                                                                       | CHANNEL f2 =====<br>waltz16<br>1H<br>80.00 usec<br>2.00 dB<br>17.46 dB<br>17.46 dB<br>16.79986763 W<br>0.47786582 W<br>0.47786582 W<br>500.1320005 MHz<br>32768<br>125.7577778 MHz<br>EM<br>0<br>1.00 Hz<br>0                                                                         |
| 210 200 190 180 170 160 | 150 140 130 | 120 110 1 | 00 90 84                                    | ) 70                           | 60 50 | 40                      | 30 20 10                                  | 0 ppm                                                                                                                                                                                                           | 1.40                                                                                                                                                                                                                                                                                  |






























## liushouxin-xh-SR-4D-5D .178.24 174.53 170.75 170.75 169.37 163.42 156.75 154.50 134.82 132.28 132.28 130.05 129.75 129.75 120.24 120.24 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 RUKER B 20000 11 1111111 Current Data Parameters Desktop NAME EXPNO 2 1 PROCNO F2 - Acquisition Parameters Date\_ 20210627 12.12 Time INSTRUM spect PROBHD 5 mm PADUL 13C PULPROG zgpg30 TD 32768 SOLVENT CDC13 NS 4864 DS 0 SWH 29761.904 Hz FIDRES 0.908261 Hz ΑQ 0.5505024 sec RG 2050 DW 16.800 usec Boc DE 6.50 usec TE 299.0 K OAllyl D1 2.00000000 sec D11 0.03000000 sec TDO 1 ====== CHANNEL f1 ======= NUC1 13C P1 12.00 usec PL1 4.50 dB PL1W 33.60015869 W ÓTBS SF01 125.7703643 MHz S22 ====== CHANNEL f2 ====== waltz16 CPDPRG[2 NUC2 1H PCPD2 80.00 usec PL2 2.00 dB 17.46 dB PL12 PL13 17.46 dB PL2W 16.79986763 W PL12W 0.47786582 W PL13W 0.47786582 W SFO2 500.1320005 MHz F2 - Processing parameters SI 32768 125.7577776 MHz SF WDW EM SSB 0 -LB 1.00 Hz GB 0 180 140 120 100 80 60 20 0 ppmPC 160 40 1.40 S148



| 8.16<br>8.16<br>8.11<br>8.11<br>8.11<br>8.11<br>7.1.20<br>8.11<br>7.1.20<br>6.64<br>7.1.20<br>7.1.20<br>7.1.20<br>7.1.20<br>7.1.20<br>7.1.20<br>7.2.33<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.3.32<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.332<br>7.3327<br>7.332<br>7.332<br>7.332<br>7.3327<br>7.3327<br>7.3327<br>7.3327<br>7.3327<br>7.3327<br>7.3327<br>7.3327<br>7.3327<br>7.3327<br>7.3 | 2.72<br>2.72<br>2.75<br>2.05<br>7.03<br>7.03<br>7.03<br>7.1<br>7.6<br>7.1<br>7.6<br>7.1<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.45<br>1.45<br>1.37<br>1.35<br>1.35<br>1.33<br>1.33<br>1.33<br>1.33<br>1.33<br>1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Current Data Parameters<br>NAME Desktop<br>EXPNO 3<br>PROCNO 1                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F2 - Acquisition Parameters         Date_       20210625         Time       17.40         INSTRUM       spect         PROBHD       5 mm PADUL 13C         PULPROG       zg30         TD       65536         SOLVENT       Acetone         NS       64         DS       0         SWH       8012.820 Hz         FIDRES       0.122266 Hz         AQ       4.0894465 sec         RG       256         DW       62.400 usec         DE       6.50 usec         TE       296.9 K |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D1 1.00000000 sec<br>TD0 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mulh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and have the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SI 32768<br>SF 500.1300125 MHz<br>WDW EM<br>SSB 0<br>LB 0.30 Hz<br>GB 0<br>PC 1.00                                                                                                                                                                                                                                                                                                                                                                                           |
| 6 7 6<br>1037 08 00 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 4<br>5 <u>100</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>110</u><br><u>1</u> | 3 2 1<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149<br>5149 | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |













| XH-SR-4D-1                            | ſBAF                                                               |               |                                       |                                                        |                                                    |                                                                               | -                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|--------------------------------------------------------------------|---------------|---------------------------------------|--------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | 150.25<br>178.57<br>173.80<br>173.80<br>171.50<br>165.43<br>165.43 |               |                                       | 75.55<br>62.42<br>757.29<br>756.84<br>754.55<br>749.51 | 49.17<br>49.00<br>48.83<br>48.49<br>48.49<br>42.51 | 41.02<br>40.33<br>39.56<br>36.72<br>31.51<br>21.51<br>22.99<br>22.99<br>22.81 | 120.99<br>120.99<br>119.27<br>117.28<br>14.55<br>14.55                                                                                                                   | TUKER                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                                                                    |               | <u> </u>                              |                                                        |                                                    |                                                                               | NAME<br>EXPNO<br>PROCNO<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0 | 2021.06.xuehong<br>2<br>1<br>20210604<br>8.13<br>5 mm PADUL 13C<br>5 mm PADUL 13C<br>5 mm PADUL 13C<br>5 mm PADUL 13C<br>5 mm PADUL 13C<br>0<br>20pg30<br>32768<br>MeOD<br>15360<br>0<br>29761.904 Hz<br>0.908261 Hz<br>0.908261 Hz<br>0.908261 Hz<br>0.908261 exc<br>2050<br>16.800 usec<br>6.50 usec<br>300.0 K<br>2.00000000 sec<br>0.03000000 sec<br>1 |
|                                       | OH O                                                               | پ<br>40       |                                       |                                                        |                                                    |                                                                               | =======<br>NUC1<br>P1<br>PL1<br>PL1W<br>SF01                                                                                                                             | = CHANNEL f1 =====<br>13C<br>12.00 usec<br>4.50 dB<br>33.60015869 W<br>125.7703643 MHz                                                                                                                                                                                                                                                                     |
| gettergage an electrony for an and an |                                                                    |               | 16 Martin Martin Martin Martin Martin |                                                        |                                                    |                                                                               | CPDPRG2<br>NUC2<br>PCPD2<br>PL2<br>PL12<br>PL13<br>PL2W<br>PL13W<br>PL13W<br>SFO2<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB                                                  | CHANNEL f2                                                                                                                                                                                                                                                                                                                                                 |
| 210 200 190                           | 180 170 160 150                                                    | 140 130 120 1 | 110 100 90                            | 0 80 70                                                | 60 50                                              | 40 30 20                                                                      | 10 0 ppm                                                                                                                                                                 | 1.40                                                                                                                                                                                                                                                                                                                                                       |

## 8. References

 P. M. T. Ferreira, L. S. Monteiro and G. Pereira, Synthesis and electrochemical behaviour of β-halodehydroamino acid derivatives. *Amino Acids*, 2010, **39**, 499-513.

[2] X. Tian, L. Li, J. Han, X. Zhen and S. Liu, Stereoselectively synthesis and structural confirmation of dehydrodipeptides with dehydrobutyrine. *SpringerPlus*, 2016, **5**, 400-408.

[3] H. Sai, T. Ogiku and H. Ohmizu, Stereoselective dyntheses of (E)-α, β-Dehydroamino acids and (E)-α,

 $\beta$ -Dehydropeptides by stereospecific dehydration with 1-Ethyl-3-(3-dimethylaminopropyl)

carbodiimide (EDC). Synthesis, 2003, 2, 201-204.

[4] Y. Q. Yang, M. C. Ji, Z. Lu, M. Jiang, W. W. Huang and X. Z. He, Facile access to  $\alpha$ ,  $\beta$ -Dehydroalanine and  $\alpha$ ,

β- Dehydroamino butyric acid derivatives from DL-Serines and Threonines. *Synth. Commun.*, 2016, 46, 977-982.
[5] J. Sikorska, A. M.Hau, C. Anklin, S. Parker-Nance, M. T. DaviesColeman, J. E. Ishmael and K. L. McPhail,

Mandelalides A-D, Cytotoxic macrolides from a new *Lissoclinum* species of South African Tunicate. *J. Org. Chem.*, **2012**, *77*, 6066- 6075. Correction: *J. Org. Chem.*, 2013, **78**, 2812.

[6] S. Kishimoto, Y. Tsunematsu, S. Nishimura, Y. Hayashi, A. Hattori and H. Kakeya, Tumescenamide C, an antimicrobial cyclic lipodepsipeptide from Streptomyces sp. *Tetrahedron.*, 2012, **68**, 5572-5578.

[7] N. Takahashi, K. Kaneko and H. Kakeya, Total synthesis and antimicrobial activity of Tumescenamide C and its derivatives, *J. Org. Chem.*, 2020, **85**, 4530-4535.