Supporting Information

Euphorstranoids A and B, Two Highly Rearranged Ingenane Diterpenoids from *Euphorbia stracheyi*: Structural Elucidation, Chemical Transformation, and Lipid-Lowering Activity

Fang-Yu Yuan^a, Yue-Hua Pan^a, Ai-Ping Yin^b, Wei Li^a, Dong Huang^a, Xue-Long Yan^a, Shu-Qi Wu^a, Gui-Hua Tang^a, Rong Pu^b, and Sheng Yin^{*a}

^a School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong510006, People's Republic of China.

^b Department of Clinical Laboratory, the Third People's Hospital of Dongguan, Dongguan 523326, People's Republic of China.

Corresponding Author

E-mail: (S. Yin) yinsh2@mail.sysu.edu.cn. Tel/Fax: +86-20-39943090.

Contents

Fig. S1. Key NOESY, ¹ H– ¹ H COSY, and HMBC correlations of 2	S4
Fig. S2. Evaluation the cytotoxicity of 1 and 2 in 3T3-L1 adipocytes	S4
Fig. S3. Images of Oil Red O staining in 3T3-L1 cells under the treatments	s of 1 and 2
(20 μ M) within indicated time spans	S5
Table S1. ¹ H NMR and ¹³ C NMR Spectroscopic Data of 1a and 1b (J in Hz	z, δ in ppm)
	S6
NMR, HRESIMS, and IR spectra of 1, 2, 1a, and 1b	S7
Fig. S4. ¹ H NMR spectrum of 1 in CDCl ₃ (500 MHz)	S7
Fig. S5. Enlarged ¹ H NMR spectrum of 1 in 0–4.5 ppm	S8
Fig. S6. Enlarged ¹ H NMR spectrum of 1 in 4.5–7.5 ppm	S9
Fig. S7. ¹³ C NMR and DEPT spectra of 1 in CDCl ₃ (125 MHz)	S10
Fig. S8. HSQC spectrum of 1 in CDCl ₃ (500 MHz)	S11
Fig. S9. HMBC spectrum of 1 in CDCl ₃ (500 MHz)	S12
Fig. S10. ¹ H– ¹ H COSY spectrum of 1 in CDCl ₃ (500 MHz)	S13
Fig. S11. NOESY spectrum of 1 in CDCl ₃ (500 MHz)	S14
Fig. S12. HRESIMS spectrum of 1	S15
Fig. S13. IR (KBr disc) spectrum of 1	S16
Fig. S14. ¹ H NMR spectrum of 2 in CDCl ₃ (400 MHz)	S17
Fig. S15. Enlarged ¹ H NMR spectrum of 2 in 0–4.5 ppm	S18
Fig. S16. Enlarged ¹ H NMR spectrum of 2 in 4.5–7.5 ppm	S19
Fig. S17. ¹³ C NMR and DEPT spectra of 2 in CDCl ₃ (100 MHz)	S20
Fig. S18. HSQC spectrum of 2 in CDCl ₃ (400 MHz)	S21
Fig. S19. HMBC spectrum of 2 in CDCl ₃ (400 MHz)	S22
Fig. S20 . 1 H $^{-1}$ H COSY spectrum of 2 in CDCl ₃ (400 MHz)	S23
Fig. S21. NOESY spectrum of 2 in CDCl ₃ (400 MHz)	S24

Fig. S	S22. HRESIMS spectrum of 2	S25
Fig. S	S23 . IR (KBr disc) spectrum of 2	S26
Fig. S	S24 . ¹ H NMR spectrum of 1a in DMSO- d_6 (500 MHz)	S27
Fig. S	S25 . Enlarged ¹ H NMR spectrum of 1a in 0–3 ppm	S28
Fig. S	S26 . Enlarged ¹ H NMR spectrum of 1a in 3–6 ppm	S29
Fig. S	S27 . ¹³ C NMR and DEPT spectra of 1a in DMSO- d_6 (125 MHz)	S30
Fig. S	S28 . HSQC spectrum of $1a$ in DMSO- d_6 (500 MHz)	S31
Fig. S	S29 . HMBC spectrum of 1a in DMSO- <i>d</i> ₆ (500 MHz)	S32
Fig. S	S30 . ¹ H– ¹ H COSY spectrum of 1a in DMSO- d_6 (500 MHz)	S33
Fig. S	S31 . NOESY spectrum of $1a$ in DMSO- d_6 (500 MHz)	S34
Fig. S	S32 . HRESIMS spectrum of 1a	S35
Fig. S	S33 . ¹ H NMR spectrum of 1b in CDCl ₃ (400 MHz)	S36
Fig. S	S34 . Enlarged ¹ H NMR spectrum of 1b in 0–4.5 ppm	S37
Fig. S	\$35 . Enlarged ¹ H NMR spectrum of 1b in 4.5–8.5 ppm	S38
Fig. S	S36 . ¹³ C NMR and DEPT spectra of 1b in CDCl ₃ (100 MHz)	S39
Fig. S	\$37 . HSQC spectrum of 1b in CDCl ₃ (400 MHz)	S40
Fig. S	S38 . HMBC spectrum of 1b in CDCl ₃ (400 MHz)	S41
Fig. S	S39. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 1b in CDCl ₃ (400 MHz)	S42
Fig. S	S40 . NOESY spectrum of 1b in CDCl ₃ (400 MHz)	S43
Fig. S	S41. HRESIMS spectrum of 1b	S44

Fig. S1. Key NOESY, ¹H–¹H COSY, and HMBC correlations of **2**.

Fig. S2. Evaluation the cytotoxicity of 1 and 2 in 3T3-L1 adipocytes. Cells were treated with 1 and 2 at 40 μ M for 48 h, the LDH releasing level was determined. N = 3 independent experiments.

Fig. S3. Images of Oil Red O staining (×200) in 3T3-L1 cells under the treatments of 1 and 2 (20 μ M) within indicated time spans. Blank, undifferentiated cells; Control, differentiated cells without compounds treatment.

$1a^a$			$1\mathbf{b}^{b}$			
No.	$\delta_{\rm H}({\rm mult}, J, {\rm Hz})$	$\delta_{ m C}$	No.	$\delta_{\rm H}({\rm mult}, J, {\rm Hz})$	$\delta_{\rm C}$	
1	5.21, s	127.9	1	5.60, s	131.2	
2		141.4	2		139.9	
3	3.58, d (7.0)	80.0	3	5.40, s	83.1	
4		82.0	4		83.2	
5	3.82, s	71.9	5	6.09, s	73.9	
6		140.8	6		132.9	
7	5.58, s	128.9	7	6.19, s	140.0	
8	3.25, dd (12.1, 1.1)	34.5	8	3.57, br d (11.3)	36.0	
9		214.8	9		216.1	
10		72.9	10		72.6	
11	3.26, m	38.3	11	3.16, m	41.3	
12a	1.56, ddd (14.4, 10.5, 6.5) 30.0		12a	1.88, ddd (14.6, 6.9, 2.3)	30.7	
12b	1.78, ddd (14.4, 7.8, 3.	0)	12b	1.80, ddd (14.6, 11.8, 9.2)		
13	0.53, td (8.9, 3.0)	20.3	13	0.71, td (9.2, 2.3)	20.8	
14	0.62, dd (12.2, 8.9)	29.2	14	0.78, m	30.0	
15		18.6	15		19.6	
16	1.01, s	28.5	16	1.09, s	28.8	
17	0.98, s	15.0	17	1.03, s	14.8	
18	0.89, d (6.2)	17.0	18	0.99, d (6.2)	16.4	
19	1.66, s	14.3	19	1.65, s	14.3	
20	3.91, m	62.8	20	5.10, s	66.3	
3-OH	5.46, d (7.0)		1′		165.7	
4-OH	3.99, s		2'		128.6	
5-OH	4.76, d (2.5)		3', 7'	7.93, d (8.5)	131.4	
20-ОН	4.80, t (5.4)		4', 6'	7.59, d (8.5)	131.8	
			5'		128.3	
			1″		165.7	
			2''		128.8	
			3", 7"	7.78, d (8.5)	130.8	
			4″, 6″	7.56, d (8.5)	131.7	
			5″		128.1	
			1‴		165.3	
			2'''		128.7	
			3''', 7'''	7.95, d (8.5)	131.3	
			4''', 6'''	7.52, d (8.5)	131.8	
			5'''		128.4	
			4-OH	2.76, s		

Table S1. <u>¹H NMR and ¹³C NMR Spectroscopic Data of 1a and 1b (J in Hz, δ in ppm)</u>

^{*a*}¹H and ¹³C NMR were measured in DMSO-*d*₆ at 500 and 125 MHz, respectively. ^{*b*}¹H and ¹³C NMR were measured in CDCl₃ at 400 and 100 MHz, respectively.

NMR, HRESIMS, and IR spectra of 1, 2, 1a, and 1b.

Fig. S4. ¹H NMR spectrum of 1 in CDCl₃ (500 MHz).

Fig. S5. Enlarged ¹H NMR spectrum of 1 in 0–4.5 ppm.

Fig. S6. Enlarged ¹H NMR spectrum of **1** in 4.5–7.5 ppm.

Fig. S7. ¹³C NMR and DEPT spectra of 1 in CDCl₃ (125 MHz).

Fig. S8. HSQC spectrum of 1 in CDCl₃ (500 MHz).

Fig. S9. HMBC spectrum of 1 in CDCl₃ (500 MHz).

Fig. S10. $^{1}H-^{1}H$ COSY spectrum of 1 in CDCl₃ (500 MHz).

Fig. S11. NOESY spectrum of 1 in CDCl₃ (500 MHz).

C34 H44 O8 [M+Na]+ : Predicted region for 603.2928 m/z

Fig. S13. IR (KBr disc) spectrum of 1.

Fig. S14. ¹H NMR spectrum of 2 in CDCl₃ (400 MHz).

Fig. S15. Enlarged ¹H NMR spectrum of **2** in 0–4.5 ppm.

Fig. S16. Enlarged ¹H NMR spectrum of **2** in 4.5–7.5 ppm.

Fig. S17. ¹³C NMR and DEPT spectra of 2 in CDCl₃ (100 MHz).

Fig. S18. HSQC spectrum of 2 in CDCl₃ (400 MHz).

Fig. S19. HMBC spectrum of 2 in CDCl₃ (400 MHz).

Fig. S20. $^{1}H-^{1}H$ COSY spectrum of 2 in CDCl₃ (400 MHz).

Fig. S21. NOESY spectrum of 2 in CDCl₃ (400 MHz).

Fig. S22. HRESIMS spectrum of 2.

Fig. S23. IR (KBr disc) spectrum of 2.

Fig. S24. ¹H NMR spectrum of **1a** in DMSO- d_6 (500 MHz).

Fig. S25. Enlarged ¹H NMR spectrum of **1a** in 0–3 ppm.

Fig. S26. Enlarged ¹H NMR spectrum of **1a** in 3–6 ppm.

Fig. S27. ¹³C NMR and DEPT spectra of 1a in DMSO- d_6 (125 MHz).

Fig. S28. HSQC spectrum of 1a in DMSO- d_6 (500 MHz).

Fig. S29. HMBC spectrum of 1a in DMSO- d_6 (500 MHz).

Fig. S30. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of **1a** in DMSO- d_{6} (500 MHz).

Fig. S31. NOESY spectrum of 1a in DMSO- d_6 (500 MHz).

Fig. S33. ¹H NMR spectrum of 1b in CDCl₃ (400 MHz).

12

1877,

0

Ο

Bŕ

Fig. S34. Enlarged ¹H NMR spectrum of **1b** in 0–4.5 ppm.

Fig. S35. Enlarged ¹H NMR spectrum of **1b** in 4.5–8.5 ppm.

10-30	01010	6	6	0	0	1
66622	in in in incl		0	9	4	-
		.9	9	2.	2.	S.
1212		Ī	Ţ	T	T	T

Fig. S36. ¹³C NMR and DEPT spectra of 1b in CDCl₃ (100 MHz).

Fig. S37. HSQC spectrum of 1b in CDCl₃ (400 MHz).

Fig. S38. HMBC spectrum of 1b in CDCl₃ (400 MHz).

Fig. S39. $^{1}H^{-1}H$ COSY spectrum of 1b in CDCl₃ (400 MHz).

Fig. S40. NOESY spectrum of 1b in CDCl₃ (400 MHz).

Fig. S41. HRESIMS spectrum of 1b.

