Oxidative thiocyanation of allylic alcohols: an easy access to

allylic thiocyanate within K₂S₂O₈ and NH₄SCN

Keyuan Zhang,^a Tianbing Liang,^a Yulong Wang,^a Chonglong He,^a Mingyou Hu,^a Xin-Hua Duan^a and Le Liu^{*a}

^{*a*} School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.

Supplementary information

Table of content

1.	General information	S 3
2.	Optimization of the reaction conditions	S4
3.	General procedures	S 7
4.	Characterization of products	S 8
5.	Control experiments	S16
6.	NMR study of the thermal isomerization of thiocyanate	S19
7.	Synthetic application of the product	S22
8.	References	S24
9.	NMR spectra	S25

1. General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance and JEOL III–400 spectrometer at 25 °C in solvents as indicated. Chemical shift values are reported in ppm with the solvent resonance refereed to the standard position (CDCl₃: ¹H NMR: $\delta = 7.26$; ¹³C NMR: $\delta = 77.00$). The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet and dd, doublet of doublets. The coupling constants *J* are reported in Hertz (Hz). HRMS were obtained on a QTOF micro spectrometer. Melting points were measured using open glass capillaries in SGW® X-4A apparatus.

All reactions were conducted in oven-dried Round bottom flask under an atmosphere of air. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. Conversion of the reactions was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254. Compounds were visualized by UV light at 254 nm and by dipping the plates in an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (230-400 mesh). All the allylic alcohols were prepared according to reported method.¹

2. Optimization of the reaction conditions

2.1 Optimization of reaction conditions for tertiary allylic alcohol

HO 1a	NH ₄ SCN (1.5 equiv.) K ₂ S ₂ O ₈ (2.0 equiv.) Solvent, r.t. 24 h	SCN 3a	+ NCS 3a'
Entry ^a	Solvent	Yield of $3a^{b}$ (%)	Yield of 3a' ^b (%)
1	DCE/H ₂ O (4:1, v/v)	51	8
2	Dioxane/H ₂ O (4:1)	74	17
3	Toluene/ $H_2O(4:1)$	36	trace
4	PhCF ₃ /H ₂ O (4:1)	45	13
5	EtOH/H ₂ O (4:1)	25	trace
6	MeCN/H ₂ O (4:1)	87	8
7	MeCN	41	13
8	HFIP/H ₂ O (4:1)	57	26

Table S1: Screening of the solvents

^{*a*} All the reactions were carried out with 1,1-diphenylprop-2-en-1-ol **1a** (0.2 mmol), NH₄SCN (0.3 mmol) and $K_2S_2O_8$ (0.4 mmol) in the indicated solvent (2.0 mL) under air at r.t. for 24 h. ^{*b*} Isolated yield.

Table S2: Screening of the oxidants

HO	$MH_4SCN (1.5 equiv.)$ Oxidant (2.0 equiv.) MeCN : H_2O = 4 : 1 r.t. 24 h	SCN 3a	+ - - - NCS 3a'
Entry ^a	Oxidant	Yield of $3a^{b}$ (%)	Yield of 3a' ^b (%)
1	$K_2S_2O_8$	87	8
2	PIDA	66	23
3	PIFA	62	14

^{*a*} All the reactions were carried out with 1,1-diphenylprop-2-en-1-ol **1a** (0.2 mmol), NH₄SCN (0.3 mmol) and the indicated oxidant (0.4 mmol) in MeCN/H₂O (4:1, v/v) (2.0 mL) under air at r.t. for 24 h. ^{*b*} Isolated yield.

Table S3: Optimization of loading of NH₄SCN and oxidant

^{*a*} All the reactions were carried out with 1,1-diphenylprop-2-en-1-ol **1a** (0.2 mmol), NH₄SCN (**X** equiv.) and K₂S₂O8 (**Y** equiv.) in MeCN/H₂O (4:1, v/v) (2.0 mL) under air at r.t. for 24 h. ^{*b*} Isolated yield.

SCN source (1.5 equiv.) K₂S₂O₈ (2.0 equiv.) NCS MeCN : H₂O = 4 : 1 SCN r.t. 24 h 3a 3a' 1a Yield of $3a^b$ (%) Yield of **3a'**^b (%) Entry^a **XSCN** 1 NaSCN 20 trace 2 **KSCN** 77 trace 3 NH₄SCN 87 8

Table S4: Optimization of SCN source

^{*a*} All the reactions were carried out with 1,1-diphenylprop-2-en-1-ol **1a** (0.2 mmol), SCN source (0.3 mmol) and $K_2S_2O_8$ (0.4 mmol) in MeCN/H₂O (4:1, v/v) (2.0 mL) under air at rt for 24 h. ^{*b*} Isolated yield.

Table S5: Evaluation of the reaction temperature

^{*a*} All the reactions were carried out with 1,1-diphenylprop-2-en-1-ol **1a** (0.2 mmol), NH₄SCN (0.3 mmol) and $K_2S_2O_8$ (0.4 mmol) in MeCN/H₂O (4:1, v/v) (2.0 mL) under air at r.t. for 24 h. ^{*b*} Isolated yield.

2.2 Optimization of reaction conditions for secondary allylic alcohol

C	$M = NH_4SCN (1.5 equiv.)$ $K_2S_2O_8 (2.0 equiv.)$ Solvent	SCN +	NCS
1	r.t. 24 h o	4a	4a'
Entry ^a	Solvent	Yield of $4a^{b}$ (%)	Yield of 4a' ^b (%)
1	DCE/H ₂ O (4:1, v/v)	43 (E/Z = 2 : 1)	11 (E/Z = 2:1)
2	Dioxane/H ₂ O (4:1)	26 (E/Z > 20 : 1)	17 (E/Z > 20:1)
3	Toluene/H ₂ O (4:1)	27 (E/Z > 20 : 1)	15 (E/Z > 20 : 1)
4	THF/H ₂ O (4:1)	trace	trace
5	EtOH/H ₂ O (4:1)	34 (E/Z > 20 : 1)	12 (E/Z > 20:1)
6	MeCN/H ₂ O (4:1)	17 (E/Z > 20 : 1)	trace
7	DMSO/H ₂ O (4:1)	trace	trace
8	HFIP/H ₂ O (4:1)	66 (E/Z > 20 : 1)	33 (E/Z > 20 : 1)
9	HFIP	54 (E/Z > 20 : 1)	12 (E/Z > 20:1)
10	HFIP/MeCN/H ₂ O (4:4:1)	39 (E/Z > 20 : 1)	22 (E/Z > 20 : 1)
11	TFE/H ₂ O (4:1)	54 (E/Z > 20 : 1)	31 (E/Z > 20 : 1)
12	CHCl ₃ /H ₂ O (4:1)	trace	trace
13	HFIP/H ₂ O (20:1)	70 (E/Z > 20 : 1)	25 (E/Z > 20 : 1)

Table S6: Screening of the solvents

^{*a*} All the reactions were carried out with 1-phenylprop-2-en-1-ol **1b** (0.2 mmol), NH₄SCN (0.3 mmol) and $K_2S_2O_8$ (0.4 mmol) in the indicated solvent (2.0 mL) under air at r.t. for 24 h. ^{*b*} Isolated yield and the E/Z selectivity was determined by crude ¹HNMR spectroscopy.

Table S7: Screening of the oxidant

OH	NH ₄ SCN (1.5 equiv.) Oxidant (2.0 equiv.)	SCN +	NCS	
1b	HFIP : H ₂ O = 20 : 1 r.t. 24 h	4a	4a'	
Entry ^a	Oxidant	Yield of $4a^b$ (%)	Yield of 4a' ^b (%)	
1	$K_2S_2O_8$	70 (E/Z > 20:1)	25 (E/Z > 20 : 1)	
2	PIDA	40 (E/Z > 20:1)	8 (E/Z > 20 : 1)	
3	PIFA	trace	trace	

^{*a*} All the reactions were carried out with 1-phenylprop-2-en-1-ol **1b** (0.2 mmol), NH₄SCN (0.3 mmol) and the indicated oxidant (0.4 mmol) in HFIP/H₂O (20:1, v/v) (2.0 mL) under air at r.t. for 24 h. ^{*b*} Isolated yield and the E/Z selectivity was determined by crude ¹HNMR spectroscopy.

	$ \begin{array}{c} OH & NH_4SCI \\ & K_2S_2O_8 \\ & HFIP:I \end{array} $	N (X equiv.) $(\mathbf{Y} \text{ equiv.})$ $\mathbf{H}_2 O = 20 : 1$	SCN + NCS		
1	r.t. b	. 24 h	4a	4a'	
Entry ^a	Х	Y	Yield of 4a	$\mathbf{a}^{b}\left(\% ight)$	Yield of 4a' ^{<i>b</i>} (%)
1	1.5	2.0	70 (E/Z > 2	20:1)	25 (E/Z > 20 : 1)
2	1.5	1.5	49 (E/Z > 2	20:1)	45 (E/Z > 20 : 1)
3	2.0	2.0	58 (E/Z > 2	20:1)	31 (E/Z > 20 : 1)

Table S8: Optimization of loading of NH₄SCN and Oxidant

^{*a*} All the reactions were carried out with 1-phenylprop-2-en-1-ol **1b** (0.2 mmol), NH₄SCN (**X** equiv.) and K_2S_2O8 (**Y** equiv.) in HFIP/H₂O (20:1, v/v) (2.0 mL) under air at rt for 24 h. ^{*b*} Isolated yield and the *E/Z* selectivity was determined by crude ¹HNMR spectroscopy.

Table S9: Evaluation of reaction temperature

O	H NH ₄ SCN (1.5 equiv.) $K_2S_2O_8$ (2.0 equiv.) HFIP : H ₂ O = 20 : 1 24 h	SCN +	NCS
1b		4a	4a'
Entry ^a	temperature	Yield of $3a^{b}$ (%)	Yield of 3a' ^b (%)
1	25 °C	70 (E/Z > 20 : 1)	25 (E/Z > 20 : 1)
2	45 °C	45 (E/Z > 20 : 1)	41 (E/Z > 20 : 1)
3	55 °C	trace	trace

^{*a*} All reactions were carried out with 1-phenylprop-2-en-1-ol **1b** (0.2 mmol), NH₄SCN (0.3 mmol), $K_2S_2O_8$ (0.4 mmol) in HFIP/H₂O (20:1, v/v) (2.0 mL) under air at r.t. for 24 h. ^{*b*} Isolated yield and the *E/Z* selectivity was determined by crude ¹HNMR spectroscopy.

3. General Procedures

General procedure for preparation of allyl alcohols¹

Scheme to show the reaction for the preparation of allylic alcohols

To a solution of aldehyde/ketone (5 mmol) in dry THF was added vinylmagnesium bromide (1 M in THF, 1.2 equiv.) under nitrogen by a syringe over 5 min at 0 °C. Then, the reaction mixture was allowed to warm to room temperature and stirred for 3 hours. The reaction was monitored by TLC. After completion, the reaction mixture was quenched with a saturated NH₄Cl aqueous solution (20 mL) and

extracted with ethyl acetate (3×70 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄ and concentrated under reduce pressure to give the crude allylic alcohols which was purified by a flash chromatograph (PE/EA) on silica gel to afford the corresponding pure ones.

General procedure for K₂S₂O₈ promoted thiocyanation of α,α-diaryl allylic alcohols with NH₄SCN

To a solution of α, α -diaryl allylic alcohols (1, 0.2 mmol) and NH₄SCN (0.3 mmol) in MeCN/H₂O (4:1, v/v) (2 mL), K₂S₂O₈ (0.4 mmol) were added at 25 °C under air atmosphere. The reaction was then stirred for 24 hours and the progress was monitored by TLC. After the reactions were completed, the reaction mixture was diluted with water (10 mL) and extracted with EA (3×10 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄ and concentrated under reduce pressure to give crude product which was purified by a flash chromatograph (PE/EA) on silica gel to afford the corresponding pure allylic thiocyanate.

4. Characterization of products

(3-Thiocyanatoprop-1-ene-1,1-diyl) dibenzene (3a)

87% yield, 43.7 mg; white soild, mp. 66–68 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.39 (m, 3H), 7.32 – 7.26 (m, 5H), 7.23 – 7.20 (m, 2H), 6.22 (t, J = 8.0 Hz, 1H), 3.70 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 140.6, 137.8, 129.7, 128.7, 128.3 (two peaks overlapped), 128.1, 127.6, 119.9, 111.9, 33.6; HRMS (ESI) m/z calcd for C₁₅H₁₃⁺ [M -SCN] ⁺ m/z 193.1012, found m/z 193.1007.

(3-Isothiocyanatoprop-1-ene-1,1-diyl) dibenzene (3a')

73% yield, 36,7 mg; yellow oil;¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.38 (m, 3H), 7.32 - 7.29 (m, 3H), 7.26 - 7.22 (m, 2H), 7.17 - 7.15 (m, 2H), 6.14 (t, *J* = 7.1 Hz, 1H), 4.15 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 140.7, 137.9, 129.4, 128.6, 128.3, 128.2, 128.1, 127.6, 120.2 (two peaks overlapped), 44.4; HRMS (ESI) m/z calcd for C₁₆H₁₄NS⁺ [M + H] + m/z 252.0842, found m/z 252.0870.

4,4'-(3-Thiocyanatoprop-1-ene-1,1-diyl) bis(fluorobenzene) (3b)

86% yield, 49.4 mg; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.10 (m, 6H), 7.03 – 6.97 (m, 2H), 6.16 (t, *J* = 8.0 Hz, 1H), 3.67 (d, *J* = 8.0 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.8(9) – -112.9(5) (m, 1F), 112.9(7) – 113.0 (m, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 163.9 (d, *J*_{C-F} = 34.5 Hz), 161.5 (d, *J*_{C-F} = 34.0 Hz), 146.4, 136.7 (d, *J*_{C-F} = 3.3 Hz), 133.5 (d, *J*_{C-F} = 3.6 Hz), 131.4 (d, *J*_{C-F} = 8.1 Hz), 129.3 (d, *J*_{C-F} = 8.2 Hz), 120.3, 115.8 (d, *J*_{C-F} = 21.5 Hz), 115.3 (d, *J*_{C-F} = 21.6 Hz), 111.6, 33.4; HRMS (ESI) m/z calcd for C₁₅H₁₂F₂⁺ [M - SCN]⁺ m/z 229.0824, found m/z 229.0832.

4,4'(3-Thiocyanatoprop-1-ene-1,1-diyl) bis(chlorobenzene) (3c)

70% yield, 44.8 mg; White solid; mp. 60–62 °C;¹H NMR (400 MHz, CDCl₃) δ 7.43 - 7.40 (m, 2H), 7.30 – 7.26 (m, 2H), 7.19 – 7.12 (m, 4H), 6.21 (t, *J* = 8.0 Hz, 1H), 3.66 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 138.7, 135.7, 134.6, 134.4, 131.0, 129.1, 128.8, 128.6, 121.0, 111.5, 33.2; HRMS (ESI) m/z calcd for C₁₅H₁₁³⁵Cl₂ [M - SCN]⁺ m/z 261.0233, found m/z 261.0238.

4,4'-(3-Thiocyanatoprop-1-ene-1,1-diyl) bis(bromobenzene) (3d)

68% yield, 55.5 mg; white soild, mp. 93–95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 - 7.55 (m, 2H), 7.45 – 7.42 (m, 2H), 7.13 – 7.06 (m, 4H), 6.22 (t, J = 8.0 Hz, 1H), 3.65 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 139.0, 136.1, 132.1, 131.6, 131.3, 129.1, 122.8, 122.6, 121.0, 111.5, 33.2; HRMS (ESI) m/z calcd for C₁₅H₁₁⁷⁹Br₂ [M - SCN]⁺ m/z 348.9223, found m/z 348.9231. **3,3'-(3-Thiocyanatoprop-1-ene-1,1-diyl) bis ((trifluoromethyl)benzene) (3e)**

71% yield, 54.7 mg; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.51 – 7.44 (m, 4H), 7.39 (d, *J* = 7.9 Hz, 1H), 6.34 (t, *J* = 7.9 Hz, 1H), 3.65 (d, *J* = 8.0 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8(5) (S, 3F), -62.8(7) (S, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 140.7, 137.8, 133.1, 131.5 (q, *J*_{C-F} = 32.7 Hz), 131.4 (q, *J*_{C-F} = 33.0 Hz), 130.9, 129.6, 129.2, 126.3(q, *J*_{C-F} = 3.8 Hz), 125.4(q, *J*_{C-F} = 3.7 Hz), 124.0(q, *J*_{C-F} = 3.7 Hz), 123.8(q, *J*_{C-F} = 271.1 Hz), 123.7(q, *J*_{C-F} = 270.5 Hz), 123.0, 111.3, 32.9; HRMS (ESI) m/z calcd for C₁₈H₁₁F₆NSNa⁺ [M + Na]⁺ m/z 410.0409, found m/z 410.0418.

4,4'-(3-Thiocyanatoprop-1-ene-1,1-diyl) bis(methylbenzene) (3f)

34% yield, 19.0 mg; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 7.8 Hz, 2H), 7.17 – 7.07 (m, 6H), 6.15 (t, *J* = 8.0 Hz, 1H), 3.71 (d, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 138.3, 138.0, 137.8, 135.0, 129.6, 129.3, 129.0, 127.5, 118.7, 112.0, 33.9, 21.2, 21.1; HRMS (ESI) m/z calcd for C₁₇H₁₇ [M - SCN] ⁺ m/z 221.1325, found m/z 221.1331.

4,4'-(3-Isothiocyanatoprop-1-ene-1,1-diyl) bis(methylbenzene) (3f')

43% yield, 24.0 mg; white soild, mp. 90–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 7.8 Hz, 2H), 7.15 – 7.09 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.08 (t, *J* = 7.1 Hz, 1H), 4.14 (d, *J* = 7.2 Hz, 2H), 2.40 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 138.1 (two peaks overlapped), 137.8, 135.1, 129.4, 129.2, 129.0, 127.5, 119.0 (two peaks overlapped), 44.5, 21.2, 21.1.

4,4'-(3-Isothiocyanatoprop-1-ene-1,1-diyl) bis(methoxybenzene) (3g')

47% yield, 29.2 mg; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.19 - 7.16 (m, 2H), 7.08 - 7.06 (m, 2H), 6.94 - 6,92 (m, 2H), 6.84 - 6,82 (m, 2H), 6.00 (t, *J* = 7.2 Hz, 1H), 4.14 (d, *J* = 7.0 Hz, 2H), 3.85 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 159.3, 146.1, 133.7, 130.9, 130.7, 130.4, 128.9, 118.0, 113.9, 113.6, 55.3, 44.6, 29.7; HRMS (ESI) m/z calcd for $C_{18}H_{18}NO_2S^+$ [M + H] $^+$ m/z 312.1053, found m/z 312.1058.

9-(2-Isothiocyanatoethylidene)-9H-fluorene (3h')

58% yield, 28.9 mg; white soild, mp. 123–125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 - 7.71 (m, 2H), 7.67 – 7.65 (m, 2H), 7.44 – 7.28 (m, 4H), 6.68 (t, *J* = 8.4 Hz, 1H), 4.41 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 141.0, 139.4, 138.1, 135.7, 129.4, 129.2, 127.5, 127.4, 125.2, 120.6, 120.3, 119.7, 118.3, 111.6, 32.5; HRMS (ESI) m/z calcd for C₁₆H₁₁NSNa⁺ [M + Na]⁺ m/z 272.0505, found m/z 272.0516.

2-(1-Phenyl-3-thiocyanatoprop-1-en-1-yl) thiophene (3i)

37% yield, 19.4 mg; yellow oil; E/Z = 3 : 1; ¹H NMR (400 MHz, CDCl₃, E/Z mixture) δ major isomer 7.48 - 7.40 (overlapped, 3H), 7.34 (overlapped, 1H), 7.26–7.25 (m, 2H), 6.93 (q, J = 3.6 Hz, 1H), 6.69 (dd, $J_1 = 3.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.24 (t, J = 8.1 Hz, 1H), 3.62 (d, J = 8.1 Hz, 2H); minor isomer 7.48 - 7.40 (overlapped, 3H), 7.34 (overlapped, 1H), 7.31–7.28 (m, 2H), 7.11 (q, J = 3.5 Hz, 1H), 7.04 (dd, $J_1 = 3.6$ Hz, $J_2 = 1.3$ Hz, 1H), 6.18 (t, J = 8.0 Hz, 1H), 3.90 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ major isomer 144.7, 142.1, 136.8, 129.4, 128.7, 128.4, 127.7, 127.4, 126.0, 117.9 (two peaks overlapped), 33.7; minor isomer 143.4, 138.8, 134.9, 128.9, 128.3, 127.5, 127.2, 127.1(8), 122.2, 111.8 (two peaks overlapped), 33.6; HRMS (ESI) m/z calcd for C₁₄H₁₂NS₂⁺ [M + H] ⁺ m/z 258.0406, found m/z 258.0423.

2-(3-isothiocyanato-1-phenylprop-1-en-1-yl) thiophene (3i')

21% yield, 10.8 mg; yellow oil; E/Z = 5 : 1; ¹H NMR (400 MHz, CDCl₃, E/Z mixture) δ major isomer 7.46 - 7.40 (overlapped, 3H), 7.26-7.23 (m, 3H), 6.93 (dd, $J_1 = 5.1$ Hz, $J_2 = 3.6$ Hz, 1H), 6.69 (dd, $J_1 = 3.7$ Hz, $J_2 = 1.2$ Hz, 1H), 6.17 (t, J = 7.2 Hz, 1H), 4.06 (d, J = 7.2 Hz, 2H); minor isomer 7.46 - 7.40 (overlapped, 3H), 7.34–7.33 (m, 3H), 7.09 (dd, $J_1 = 5.2$ Hz, $J_2 = 3.5$ Hz, 1H), 6.97 (dd, $J_1 = 3.5$ Hz, $J_2 = 1.2$ Hz, 1H), 6.07 (t, J = 7.0 Hz, 1H), 4.37 (d, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ major isomer 144.7, 140.6, 137.0, 129.1, 128.6, 128.4(5), 127.5, 127.2, 125.7, 118.2 (two peaks overlapped), 44.0 (overlapped); 142.5, 138.0, 128.7, 128.5(4), 128.3, 127.8, 127.1(3), 127.1(0) 122.4 (two peaks overlapped), 44.0 (overlapped); HRMS (ESI) m/z calcd for C₁₄H₁₂NS₂⁺ [M + H] ⁺ m/z 258.0406, found m/z 258.0423.

1-Chloro-4-(1-phenyl-3-thiocyanatoprop-1-en-1-yl) benzene (3j)

77% yield, 44.0 mg; yellow oil; E/Z = 1 : 1; ¹H NMR (400 MHz, CDCl₃, E/Z mixture) δ first isomer 7.46 - 7.40 (overlapped, 3H), 7.32 - 7.24 (overlapped, 3H), 7.29 - 6,24 (overlapped, 3H), 6.25 - 6.19 (overlapped, 1H), 3.69 - 3.66 (overlapped, 2H); second isomer 7.46 - 7.40 (overlapped, 2H), 7.32 - 7.24 (overlapped, 4H), 7.29 - 6,24 (overlapped, 3H), 6.25 - 6.19 (overlapped, 1H), 3.69 - 3.66 (overlapped, 2H); ¹³C NMR (100 MHz, CDCl₃) δ first isomer 147.2 (overlapped, 1C), 139.1, 136.2, 134.3, 131.1, 128.8(3), 128.7(5), 128.4(8), 127.5, 120.4, 111.7, 33.3(9); second isomer 147.2 (overlapped, 1C), 140.2, 137.3, 134.1, 129.6, 128.9, 128.5(3), 128.4, 128.3, 120.5, 111.6, 33.3(6); HRMS (ESI) m/z calcd for C₁₆H₁₂³⁵ClNSNa⁺ [M + Na] ⁺ m/z 308.0272, found m/z 308.0283.

1,2-Dichloro-4-(1-phenyl-3-thiocyanatoprop-1-en-1-yl) benzene (3k)

63% yield, 40.6 mg; yellow oil; E/Z = 1 : 1; ¹H NMR (400 MHz, CDCl₃, E/Z mixture) δ first isomer 7.47 - 7.41 (overlapped, 2H), 7.37 (d, J = 8.4 Hz, 1H), 7.34 – 7.31 (overlapped, 2H), 7.26 - 7.23 (overlapped, 1H), 7.19 - 7.17 (overlapped, 1H), 7.11 - 7.08 (overlapped, 1H), 6.27 - 6.20 (overlapped, 1H), 3.68 - 3.66 (overlapped, 2H); second isomer 7.52 (d, J = 8.1 Hz, 1H), 7.47 - 7.41 (overlapped, 2H), 7.34 – 7.31 (overlapped, 2H), 7.26 - 7.23 (overlapped, 1H), 7.19 - 7.17 (overlapped, 1H), 7.11 - 7.08 (overlapped, 1H), 6.27 - 6.20 (overlapped, 1H), 3.68 - 3.66 (overlapped, 2H); ¹³C NMR (100 MHz, CDCl₃) δ first isomer 146.2, 140.6, 136.7, 132.6, 132.4, 130.3, 129.6, 129.3, 128.9, 128.6(overlapped, 1C), 127.5, 121.6, 111.5(4), 33.2; second isomer 146,1, 139.6, 137.8, 133.0, 132.5, 131.5, 130.8, 129.2, 128.8, 128.6 (overlapped, 1C), 126.8, 121.2, 111.4(5), 33.1(5); HRMS (ESI) m/z calcd for C₁₆H₁₁NS³⁵Cl₂Na⁺ [M + Na] ⁺ m/z 341.9882, found m/z 341.9891.

(4-Thiocyanatobut-2-en-2-yl) benzene (3l)

64% yield, 24.4 mg; yellow oil; E/Z = 3 : 1; specture date of the major one; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.40 (m, 2H), 7.37 – 7.30 (m, 3H), 5.93 – 5.88 (m, 1H), 3.86 (d, J = 8.2 Hz, 2H), 2.18 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 142.0, 128.4, 128.0, 126.0, 119.0, 112.1, 32.6, 16.3; HRMS (ESI) m/z calcd for C₁₀H₁₁⁺ [M – SCN]⁺ m/z 131.0856, found m/z 131.0869.

1-Fluoro-4-(4-thiocyanatobut-2-en-2-yl) benzene (3m)

SCN

62% yield, 25.9 mg; yellow oil; E/Z = 2 : 1; specture date of the major one; ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.35 (m, 2H), 7.06 - 7.00 (m, 2H), 5.89 - 5.83 (m, 1H), 3.84 (d, J = 8.2 Hz, 2H), 2.15 (d, J = 1.4 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -114.2 - -114.3 (m, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, $J_{C-F} = 246.0$ Hz), 142.2, 138.0 (d, $J_{C-F} = 3.3$ Hz), 127.6 (d, $J_{C-F} = 8.1$ Hz), 119.0, 115.2 (d, $J_{C-F} = 21.3$ Hz), 112.0, 32.5, 16.4; HRMS (ESI) m/z calcd for C₁₀H₁₀F [M - SCN]⁺ m/z 149.0762, found m/z 149.0772.

1-Chloro-4-(4-thiocyanatobut-2-en-2-yl) benzene (3n)

64% yield, 28.6 mg; yellow oil; E/Z = 4 : 1; specture date of the major one; ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.28 (m, 4H), 5.92 - 5.87 (m, 1H), 3.83 (dd, $J_1 = 8.2$ Hz $J_2 = 0.5$ Hz, 2H), 2.15 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 140.3, 133.8, 128.5, 127.3, 119.5, 111.9, 32.4, 16.2; HRMS (ESI) m/z calcd for C₁₀H₁₀³⁵Cl [M - SCN]⁺ m/z 165.0466, found m/z 165.0477.

1-Bromo-4-(4-thiocyanatobut-2-en-2-yl) benzene (30)

57% yield, 30.9 mg; yellow oil; E/Z = 3 : 1; specture date of the major one; ¹H NMR (400 MHz, CDCl₃) δ 7.49 - 7.45 (m, 2H), 7.29 - 7.26 (m, 2H), 5.92 - 5.87 (m, 1H), 3.83 (d, J = 8.2 Hz, 2H), 2.14 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 140.8, 131.5, 127.6, 122.0, 119.6, 111.9, 32.4, 16.2; HRMS (ESI) m/z calcd for C₁₀H₁₀⁷⁹Br [M - SCN]⁺ m/z 208.9961, found m/z 208.9976.

1-(4-Thiocyanatobut-2-en-2-yl)-4-(trifluoromethyl) benzene (3p)

65% yield, 33.5 mg; yellow oil; E/Z = 4 : 1; specture date of the major one; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 5.99 – 5.94 (m, 1H), 3.84 (d, J = 8.2 Hz, 2H), 2.19 (d, J = 1.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.5 (S, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 142.0, 130.0 (q, $J_{C-F} = 32.2$ Hz), 126.4, 125.4 (q, $J_{C-F} = 3.8$ Hz), 122.7, 121.1, 111.7, 32.2, 16.3; HRMS (ESI) m/z calcd for C₁₁H₁₀F₃⁺ [M - SCN]⁺ m/z 199.0730, found m/z 199.0739.

(1-Thiocyanatopent-2-en-3-yl) benzene (3q)

60% yield, 24.5 mg; yellow oil; E/Z = 1 : 1; specture date of the major one; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 4H), 7.34 – 7.31 (m, 1H), 5.75 (t, J = 8.3 Hz, 1H), 3.85 (d, J = 8.2 Hz, 2H), 2.61 (q, J = 7.5 Hz, 2H), 1.03 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 140.9, 128.4, 127.9, 126.6, 118.6, 112.1, 32.3, 23.2, 13.7; HRMS (ESI) m/z calcd for C₁₁H₁₃⁺ [M – SCN]⁺ m/z 145.1012, found m/z 145.1024.

(1-Cyclopropyl-3-isothiocyanatoprop-1-en-1-yl) benzene (3r')

57% yield, 24.5 mg; yellow oil; E/Z = 5 : 1; ¹H NMR (400 MHz, CDCl₃, E/Z mixture)δ major isomer 7.42 - 7.26 (overlapped, 4H), 7.13 - 7.10 (overlapped, 1H), 6.60 - 6.54 (m, 1H), 5.69 (t, J = 7.4 Hz, 1H), 5.11 (d, J = 10.5 Hz, 1H), 4.76 (d, J = 17.3 Hz, 1H), 2.93 (t, J = 5.0 Hz, 2H), 2.46 (q, J = 7.2 Hz, 2H); minor isomer 7.42 - 7.26 (overlapped, 4H), 7.13 - 7.10 (overlapped, 1H), 6.86 - 6.80 (m, 1H), 5.51 (t, J = 7.6 Hz, 1H), 5.39 - 5.35 (m, 1H), 5.16 (dd, $J_1 = 17.7$ Hz, $J_2 = 1.6$ Hz, 1H), 3.08 (t, J = 7.2 Hz, 2H), 2.85 (q, J = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ major isomer 145.0, 139.8, 132.3, 129.2, 128.4, 127.4, 126.3 (overlapped, 1C), 116.8, 112.2, 33.7(1), 33.7(0), 29.2(4), 29.2(3); minor isomer 143.3, 140.6, 136.6, 128.7, 128.1, 127.5, 126.3 (overlapped, 1C), 119.8, 112.1, 33.7(4), 33.7(3), 28.4(3) 28.4(2); HRMS (ESI) m/z calcd for C₁₃H₁₄NS⁺ [M + H]⁺ m/z 216.0842, found m/z 216.0832.

(3-Isothiocyanatobut-1-ene-1,1-diyl) dibenzene (3s')

62% yield, 32.8 mg; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 3H), 7.32 – 7.28 (m, 3H), 7.24 – 7.22 (m, 2H), 7.19 – 7.17 (m, 2H), 6.04 (d, *J* = 9.6 Hz, 1H), 4.37–4.29 (m, 1H), 1.47 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 140.6, 138.3, 129.4, 128.6, 128.3, 128.2, 128.0, 127.5, 126.6(overlapped, 1C), 52.7, 23.1; HRMS (ESI) m/z calcd for C₁₆H₁₅⁺ [M - NCS]⁺ m/z 207.1169, found m/z 207.1155.

(E)-(3-Thiocyanatoprop-1-en-1-yl) benzene (4a)

70% yield, 24.5 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.40 (m, 2H), 7.37 – 7.29 (m, 3H), 6.70 (d, J = 15.7 Hz, 1H), 6.31 – 6.23 (m, 1H), 3.77 (dd, J = 7.7 Hz J = 1.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 135.4, 128.7, 128.6, 126.8, 121.2, 111.8, 37.0; HRMS (ESI) m/z calcd for C₁₀H₁₀NS⁺ [M + H]⁺ m/z 176.0529, found m/z 176.0533.

(E)-1-Fluoro-4-(3-thiocyanatoprop-1-en-1-yl) benzene (4b)

60% yield, 23.0 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.06 – 7.01 (m, 2H), 6.66 (d, J = 15.6 Hz, 1H), 6.22 – 6.14 (m, 1H), 3.75 (dd, J = 7.6 Hz J = 1.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.9 – -113.0 (m, 1F)¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, $J_{C-F} = 247.2$ Hz), 135.3, 131.6 (d, $J_{C-F} = 3.4$ Hz), 128.5 (d, $J_{C-F} = 8.2$ Hz), 121.0 (d, $J_{C-F} = 2.3$ Hz), 115.7 (d, $J_{C-F} = 21.7$ Hz), 111.8, 36.8; HRMS (ESI) m/z calcd for C₉H₈F⁺ [M – SCN]⁺ m/z 135.0605, found m/z 135.0615.

(E)-1-Fluoro-3-(3-thiocyanatoprop-1-en-1-yl) benzene (4c)

42% yield, 16.4 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 1H), 7.17 (d, J = 7.9 Hz, 1H), 7.13 – 7.09 (m, 1H), 7.02 – 6.97 (m, 1H), 6.66 (d, J = 15.6 Hz, 1H), 6.31 – 6.23 (m, 1H), 3.75 (dd, J = 7.6 Hz, J = 1.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.6(6) – -113.7(2) (m, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 163.0 (d, $J_{C-F} = 244.6$ Hz), 137.7 (d, $J_{C-F} = 7.8$ Hz), 135.2 (d, $J_{C-F} = 2.7$ Hz), 130.2 (d, $J_{C-F} = 8.3$ Hz), 122.8 (d, $J_{C-F} = 2.8$ Hz), 122.7, 115.4 (d, $J_{C-F} = 21.3$ Hz), 113.2 (d, $J_{C-F} = 21.9$ Hz), 111.6, 36.6; HRMS (ESI) m/z calcd for C₉H₈F⁺ [M – SCN]⁺ m/z 135.0605, found m/z 135.0616.

(E)-1-Fluoro-2-(3-thiocyanatoprop-1-en-1-yl) benzene (4d)

35% yield, 13.8 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 1H), 7.30 – 7.22 (m, 1H), 7.14 – 7.10 (m, 1H), 7.08 – 7.03 (m, 1H), 6.83 (d, J = 15.8 Hz, 1H), 6.41 – 6.33 (m, 1H), 3.78 (dd, J = 7.6 Hz J = 1.1 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.3 – -112.4 (m, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 160.4 (d, $J_{C-F} = 249.5$ Hz), 129.9 (d, $J_{C-F} = 8.6$ Hz), 129.1 (d, $J_{C-F} = 3.1$ Hz), 127.9 (d, $J_{C-F} = 3.4$ Hz), 124.3 (d, $J_{C-F} = 3.5$ Hz), 123.9 (d, $J_{C-F} = 5.7$ Hz), 123.3 (d, $J_{C-F} = 11.9$ Hz), 115.9 (d, $J_{C-F} = 21.8$ Hz), 111.7, 37.1; HRMS (ESI) m/z calcd for C₁₀H₈FNSNa⁺ [M + Na] ⁺ m/z 216.0254, found m/z 216.0273.

(E)-1-Chloro-3-(3-thiocyanatoprop-1-en-1-yl) benzene (4e)

46% yield, 19.2 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.39 (m, 1H), 7.29 – 7.25 (m, 3H), 6.64 (d, J = 15.6 Hz, 1H), 6.32 – 6.24 (m, 1H), 3.75 (dd, J = 7.6 Hz, J = 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 135.0, 134.7, 129.9, 128.6, 126.7, 125.1, 122.8, 111.6, 36.6; HRMS (ESI) m/z calcd for C₁₀H₉ClNS⁺ [M + H] ⁺ m/z 210.0139, found m/z 210.0151.

(E)-1-Chloro-2-(3-thiocyanatoprop-1-en-1-yl) benzene (4f)

54% yield, 22.7 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.54 (m, 1H), 7.38 – 7.36 (m, 1H), 7.28 – 7.21 (m, 2H), 7.08 (d, J = 15.6 Hz, 1H), 6.39 – 6.22 (m, 1H), 3.79 (dd, J = 7.8 Hz, J = 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 133.7, 133.4, 132.6, 129.8, 129.6, 127.2, 127.0, 124.1, 111.6, 36.6; HRMS (ESI) m/z calcd for C₁₀H₈³⁵ClNSNa⁺ [M + Na] ⁺ m/z 231.9959, found m/z 231.9971. (*E*)-1-Bromo-3-(3-thiocyanatoprop-1-en-1-yl) benzene (4g)

44% yield, 22.5 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, J = 1.9 Hz, 1H),

7.43 – 7.40 (m, 1H), 7.33 – 7.31 (m, 1H), 7.21 (t, J = 7.8 Hz, 1H), 6.62 (d, J = 15.6 Hz, 1H), 6.31 – 6.23 (m, 1H), 3.75 (dd, J = 7.6 Hz, J = 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl3) δ 137.5, 134.9, 131.4 (two peaks overlapped), 130.2, 129.6, 125.5, 122.8, 111.7, 36.6; HRMS (ESI) m/z calcd for C₉H₈⁷⁹Br⁺ [M - SCN]⁺ m/z 194.9804, found m/z 194.9817.

(E)-1-Bromo-2-(3-thiocyanatoprop-1-en-1-yl) benzene (4h)

51% yield, 26 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 7.32 – 7.28 (m, 1H), 7.18 – 7.14 (m, 1H), 7.04 (d, J = 15.5 Hz, 1H), 6.25 – 6.18 (m, 1H), 3.79 (dd, J = 7.6 Hz, J = 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 135.1, 133.1, 129.8, 127.6, 127.4, 124.2, 123.8, 111.5, 36.5; HRMS (ESI) m/z calcd for C₉H₈⁷⁹Br⁺ [M - SCN]⁺ m/z 194.9804, found m/z 194.9816.

(E)-1-Bromo-4-fluoro-2-(3-thiocyanatoprop-1-en-1-yl) benzene (4i)

40% yield, 21.9 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, $J_1 = 8.8$ Hz $J_2 = 5.3$ Hz, 1H), 7.25 (dd, $J_1 = 9.5$ Hz $J_2 = 3.0$ Hz, 1H), 6.99 (dd, $J_1 = 15.6$ Hz $J_2 = 1.4$ Hz, 1H), 6.93 – 6.88(m, 1H), 6.26 – 6.18 (m, 1H), 3.79 (dd, J = 7.6 Hz, J = 1.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -114.9(8) – -115.0(4) (m, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, $J_{C-F} = 245.9$ Hz), 137.1 (d, $J_{C-F} = 7.8$ Hz), 134.3 (d, $J_{C-F} = 3.7$ Hz), 134.3(d, $J_{C-F} = 2.0$ Hz), 125.4, 117.9 (d, $J_{C-F} = 2.9$ Hz), 117.1 (d, $J_{C-F} = 22.6$ Hz), 114.1 (d, $J_{C-F} = 23.8$ Hz), 111.3, 36.2; HRMS (ESI) m/z calcd for C₉H₇BrF⁺ [M -SCN]⁺ m/z 212.9710, found m/z 212.9722.

(E)-1-Methyl-4-(3-thiocyanatoprop-1-en-1-yl) benzene (4j)

26% yield, 9.7 mg; yellow oil; E/Z > 20 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 6.67 (d, J = 15.5 Hz, 1H), 6.25 – 6.17 (m, 1H), 3.76 (dd, J = 7.7 Hz, J = 1.1 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 136.4, 132.6, 129.4, 126.7, 120.1, 111.9, 37.2, 21.2; HRMS (ESI) m/z calcd for C₁₁H₁₁NSNa⁺ [M + Na] ⁺ m/z 212.0505, found m/z 212.0522.

5. Control experiments

5.1 TEMPO inhibition

To a solution of 1,1-diphenylprop-2-en-1-ol (**1a**, 0.2 mmol) and NH₄SCN (0.3 mmol, 1.5 equiv.) in MeCN/H₂O (4:1, v/v) (2 mL) was added K₂S₂O₈ (0.4 mmol) at 25 °C under efficient stirring, followed by the addition of TEMPO (0.6 mmol, 3.0 equiv.). The reaction mixture was stirred for 24 hours. Afterwards, the reaction mixture was diluted with water (10 mL) and extracted with EA (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduce pressure to

give crude residue, which was subjected to ¹HNMR analysis with trimethoxy benzene as internal standard. The results indicted that only trace amount of the target product **3a** and **3a'** was observed. And the original thiohydantoin process was completely inhibited

5.2 Ethene-1,1-diyldibenzene Inhibition

To a solution of 1,1-diphenylprop-2-en-1-ol (1a, 0.2 mmol) and NH₄SCN (0.3 mmol, 1.5 equiv.) in MeCN/H₂O (4:1, v/v) (2 mL) was added K₂S₂O₈ (0.4 mmol) at 25 °C, followed by the addition of ethene-1,1-diyldibenzene (0.4 mmol, 2.0 equiv.). The reaction mixture was then stirred for 24 hours. Afterwards, the reaction mixture was diluted with water (10 mL and extracted with EA (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduce pressure to give crude residue, which was subjected to GC-MS and H-NMR analysis. The DPE-adduct **9** could be detected by GC-MS.

Note: these results indicated that a radical mechanistic pathway was involved in this oxidative thiocyanation reaction.

5.3 By-products A and B detection

To a solution of 1-phenylprop-2-en-1-ol (**1a**, 0.2 mmol) and NH₄SCN (0.3 mmol, 1.5 equiv.) in HFIP/H₂O (20:1, v/v) (2 mL) was added $K_2S_2O_8$ (0.4 mmol) at 25 °C under efficient stirring. The reaction mixture was stirred for 24 hours. Then, the reaction mixture was filtered and subjected to GC-MS analysis. The by-products **A** could be detected by GC-MS.

To a solution of 1,1-diphenylprop-2-en-1-ol (1a, 0.2 mmol) and NH₄SCN (0.3 mmol, 1.5 equiv.) in MeCN/H₂O (4:1, v/v) (2 mL) was added $K_2S_2O_8$ (0.4 mmol) at 25 °C under efficient stirring. The reaction mixture was stirred for 24 hours. The reaction mixture was stirred for 24 hours. The reaction mixture was filtered and subjected to GC-MS analysis. The by-products **B** could be detected by GC-MS.

Base on these results, we proposed the following possible mechanistic pathway for this reaction.

Scheme S1 Proposed echanistic pathway

6. NMR study of the thermal isomerization process of thiocyanate

Temperature dependent NMR study of the isomerization of 3a

A solution of (3-thiocyanatoprop-1-ene-1,1-diyl) dibenzene (3a, 0.05 mmol) in MeCN (1 mL) was stirred at indicated temperature under nitrogen. After 21 hours, the mixture was concentrated under reduce pressure and subjected to NMR analysis. Temperature dependent NMR study of the thermal isomerization of thiocyanate 3a was observed in Figure S1. With the increase of temperature, the proportion of 3b gradually increases.

Figure S2 Plot of thermal isomerization of process 3a in MeCN at different temperature

Time dependent NMR study of the isomerization of 3a

A solution of (3-thiocyanatoprop-1-ene-1,1-diyl) dibenzene (3a, 0.05 mmol) in MeCN (1 mL) was stirred at 90 °C under nitrogen. After the indicated reaction time the mixture was concentrated under reduce pressure and subjected to NMR analysis. The relationship between the product formation and time can be proved. With the increase of time, the proportion of **3b** gradually increases.

Figure S4 Plot of thermal isomerization of process 3a within different reaction time at 90 °C

In order to know the isomerization process in the standard reaction conditions, the temperature dependent NMR study was also performed for the reaction running in MeCN/H₂O (4:1, v/v).

To a solution of (3-thiocyanatoprop-1-ene-1,1-diyl) dibenzene (3a, 0.1 mmol) in MeCN/H₂O (4:1, v/v) (1 mL) were stirred at different temperature. After 12 hours, concentrated under reduce pressure to give crude residue, which was subjected to NMR analysis. The relationship between the product formation and temperature can be proved. With the increase of temperature, the proportion of **3b** gradually increases and changes significantly at 50 °C.

Figure S6 Plot of thermal isomerization of process **3a** in MeCN/H₂O (4:1, v/v) at different temperature

7. Synthetic application of the product

7.1 Scale-up experiments

To a solution of 1,1-diphenylprop-2-en-1-ol (**1a**, 5.0 mmol, 1.05g) and NH₄SCN (7.5 mmol, 0.571 g, 1.5 equiv.) in MeCN/H₂O (4:1, v/v) (50 mL), $K_2S_2O_8$ (10.0 mmol, 2.70 g, 2.0 equiv.) were added at 25 °C. The reaction was under an air atmosphere and stirred for 24 hours. The reaction progress was monitored by TLC. After the reactions were completed, the reaction mixture was diluted with water (70 mL) and washed with EA (3×10 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The reaction was concentrated under reduce pressure, and the crude material was purified by a flash chromatograph (PE/EA) on silica gel to yield the product **3a** as a white solid (0.94 g, 75%).

7.2 Application of the product 3a

Following the reported procedure,⁵ a 5 mL Shlenck tube containing a PTFE-coated stirring bar was charged with (3-thiocyanatoprop-1-ene-1,1-diyl) dibenzene (0.2 mmol, 1.0 equiv.). The vessel was then evacuated and filled with nitrogen three times. Then, dry THF (2 mL) was added under nitrogen flow. The solution was cooled down to -40 °C and stirred for 10 minutes. Then, methylmagnesium bromide

(1M in THF, 0.6 mmol, 3.0 equiv.) was added and the reaction was stirred at -40 °C for 2 hours. The reaction progress was monitored by TLC. After the reactions were completed, the reaction was warmed to r.t, and diluted with CH_2Cl_2 (30 mL). The organic phase was washed with H_2O (15 mL) and brine (15 mL). Then, it was dried over anhydrous Na_2SO_4 and concentrated under reduce pressure. The product was purified by silica gel column chromatography to yield the product **5** as a yellow oil (38.4 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.32 (m, 3H), 7.30 – 7.23 (m, 5H), 7.19 – 7.17 (m, 2H), 6.14 (t, *J* = 7.8 Hz, 1H), 3.21 (d, *J* = 7.8 Hz, 2H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 141.8, 139.1, 130.0, 128.3, 128.1, 127.4, 127.4, 127.3, 124.9, 32.8, 14.8. The spectra data are consistent with the reported reference.²

To a solution of (3-thiocyanatoprop-1-ene-1,1-diyl) dibenzene (0.2 mmol, 1.0 equiv.) in MeOH/H₂O (1 : 1, v/v) (2 mL), NaIO₄ (0.4 mmol, 2.0 equiv.) was added at 25 °C. The reaction was then exposed to 80 °C under an air atmosphere and stirred for 16 hours. After cooling down to 25 °C, the reaction mixture was diluted with water (10 mL) and extracted with EA (3×10 mL). The combined organic layers dried over anhydrous Na₂SO₄ and concentrated under reduce pressure. The product was purified by silica gel column chromatography to yield the product **6** as a yellow oil (19.7 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.34 (m, 3H), 7.29 - 7.26 (m, 5H), 7.19 - 7.17 (m, 2H), 6.22 (t, *J* = 6.7 Hz, 1H), 4.00 (d, *J* = 6.7 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 141.8, 139.2, 129.7, 128.3, 128.1, 127.6, 127.5, 125.4, 70.2, 58.1. The spectra data are consistent with the reported reference.³

To a solution of (3-thiocyanatoprop-1-ene-1,1-diyl) dibenzene (0.2 mmol, 1.0 equiv.), in acetone/H₂O (3 : 1, v/v) (2 mL), NaN₃ (0.4 mmol, 2.0 equiv.) was added at 25 °C. The reaction was then exposed to 80 °C under an air atmosphere and stirred for 30 min. After cooling down to 25 °C, the reaction mixture was diluted with CH₂Cl₂ (30 mL), and washed with H₂O (15 mL) and brine (15 mL). The combined organic layers dried over anhydrous Na₂SO₄ and concentrated under reduce pressure. The products were purified by silica gel column chromatography to yield the product 7 as a yellow oil (37.2 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 - 7.37 (m, 3H), 7.31 - 7.26 (m, 5H), 7.19 - 7.17 (m, 2H), 6.18 (t, *J* = 7.4 Hz, 1H), 3.86 (d, *J* = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 141.2, 138.4, 129.8, 128.4, 128.3, 128.0, 127.8, 127.6, 121.3, 49.7. The spectra data are consistent with the reported reference⁴

General procedure for preparation of 3a'

A 5 mL Shlenck tube containing a PTFE-coated stirring bar was charged with (3-thiocyanatoprop-1ene-1,1-diyl) dibenzene (0.2 mmol, 1.0 equiv.) and ZnCl₂ (0.2 mmol, 1.0 equiv.). The vessel was then evacuated and filled with nitrogen three times. Then, toluene (4 mL) was added under nitrogen flow. Finally the mixture was heated at 100 °C for 6 hours. After cooling down to 25 °C, he reaction mixture was quenched with H₂O (30 mL). The mixture was extracted with CH₂Cl₂ (3×10 mL). The combined organic layers was washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated under reduce pressure. The products were purified by silica gel column chromatography to yield the product **3a'** as a yellow oil (36.7 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.38 (m, 3H), 7.32 - 7.29 (m, 3H), 7.26 - 7.22 (m, 2H), 7.17 - 7.15 (m, 2H), 6.14 (t, *J* = 7.1 Hz, 1H), 4.15 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 140.7, 137.9, 129.4, 128.6, 128.3, 128.2, 128.1, 127.6, 120.2 (two peaks overlapped), 44.4; HRMS (ESI) m/z calcd for C₁₆H₁₄NS⁺ [M + H] ⁺ m/z 252.0842, found m/z 252.0870.

8. Reference

1 X. Liu, F. Xiong, X. Huang, L. Xu, P. Li and X. Wu, Copper-catalyzed trifluoromethylation-initiated radical 1,2-aryl migration in α,α-diaryl allylic alcohols, *Angew. Chem. Int. Ed.*, 2013, **52**, 6962-6966.

2 H. Cao, D. Liu, C. Liu, X. Hu and A. Lei, Copper-catalyzed oxidative alkenylation of thioethers via Csp³–H functionalization, *Org. Biomol. Chem.*, 2015, **13**, 2264–2266.

3 L. Hu, M. Hussain, Q. Deng, Q. Liu, Y. Feng, X. Zhang, Y. Xiong, I₂/Li₂CO₃-promoted cyanation of diarylalcohols through a dual activation process, *Tetrahedron*, 2019, **75**, 308-314.

4 M. Rueping, C. Vila, and U. Uria, Direct catalytic azidation of allylic alcohols, *Org. Lett.*, 2012, 14, 768-771.

5 Adams, R.; Bramlet, H. B.; Tendick, F. H, The action of the grigard reagent on thiocyanates, J. Am. Chem. Soc., 1920, **42**, 2369–2374.

9. NMR Spectra

NCS / 3a' 1.00-1 2.05 ⊣ 0.7 5.0 2.03 4.5 fl (ppm) 0 8.5 8.0 6.5 6.0 5.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 5.0 4.0

7.2462 7.2335 7.22531 7.22502 7.22502 7.22502 7.1997 7.1943 7.11943 7.11943 7.11444 7.114447 7.114447 7.114447 7.114447 7.114447 7.114447 7.114447 7.114447 7.114447 7.114447 7.114447 7.11447

100 80 60 40 20 0 -20 -40 -60 -80 -120 -140 -160 -180 -200 -220 -240 -260 -300 f1 (ppm)

7.3338 7.73191 7.72940 7.72940 7.71828 7.71828 7.71281 7.7183 7.7183 7.71285 7.71285 7.71285 7.71285 7.71180 7

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 -3: f1 (ppm)

3.7960 3.7931 3.7770 3.7741

