Electronic Supplementary Information for

Planar Blatter radicals through Bu₃SnH and TMS₃SiH–assisted cyclization of aryl iodides: Azaphilic radical addition

Paulina Bartos, [†] Małgorzata Celeda, [†] Anna Pietrzak, [¶] and Piotr Kaszyński, ^{†,‡,⊥}

[†] Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland

[¶] Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-024, Łódź, Poland

[‡] Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland

¹ Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA

Table of Content:

1. Additional synthetic details	S2
2. NMR spectra	S4
3. XRD data collection and refinement	S14
4. Electronic absorption spectroscopy	S19
5. Electrochemical results	S21
6. EPR spectroscopy	S22
7. Archive for UB3LYP/6-31G(2d,p) geometry optimization results	S24
8. References	

1. Additional synthetic details

Synthesis of 4-hydroxy-3-iodobenzoic acid.¹ 4-Hydroxy-3-iodobenzoic acid was obtained according to a general literature procedure.² Thus, a 15% solution of iodine in 20% KI (40 mL) was added dropwise to a stirred solution of 4-hydroxybenzoic acid (1.99 g, 14.4 mmol) in 30 mL 2N NaOH_(aq). The reaction mixture was stirred

for 3 h at room temperature and then acidified with acetic acid to pH 3. The resulting suspension was filtered and the precipitate was washed well with water and dried giving 2.13 g (56% yield) as grey crystals: mp 139–141 °C (lit.¹ 172–175 °C); ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, *J* = 2.0 Hz, 1H), 7.85 (dd, *J*₁ = 8.6 Hz, *J*₂ = 2.0 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.5, 162.4, 142.5, 132.6, 124.7, 115.0, 83.9; IR (KBr) *v* 1683, 1575, 1434, 1369, 1295, 1245, 1199, 769, 668 cm⁻¹; MS (ESI) *m/z* 263 (100, [M-H]⁻). Anal. Calcd for C₇H₅IO₃: C, 31.85; H, 1.91. Found: C, 31.67; H, 2.03.

 $\begin{array}{c} \text{Methyl} \quad \textbf{4-ydroxy-3-iodobenzoate} \quad (\textbf{5O-b}).^3 \quad \text{Esterification} \quad \text{of} \quad \textbf{4-hydroxy-3-iodobenzoic} \quad (\textbf{obenzoic} \quad \textbf{acid} \quad (vide \; supra) \; \text{with} \; \text{MeOH} \; \text{in} \; \text{the presence of} \; \text{H}_2\text{SO}_4 \; \text{gave} \; 1.25 \; \text{g} \\ \text{(66\% yield)} \; \text{of} \; \text{methyl} \; \textbf{4-hydroxy-3-iodobenzoate} \; (\textbf{5O-b}) \; \text{as} \; \text{grey crystals:} \; \text{mp} \; 147-148 \; ^{\circ}\text{C} \; (\text{lit.}^3 \; 159 \; ^{\circ}\text{C}); \; ^{1}\text{H} \; \text{NMR} \; (600 \; \text{MHz}, \; \text{CDCl}_3) \; \delta \; 8.83 \; (\textbf{s}, \; 1\text{H}), \; 7.93 \; (\textbf{dd}, J_I = 8.4 \; \text{Hz}, J_2 = 1.7 \; \text{Hz}, \; 1\text{H}), \\ 7.01 \; (\textbf{d}, J = 8.1 \; \text{Hz}, \; 1\text{H}), \; 3.89 \; (\textbf{s}, \; 1\text{H}); \; ^{13}\text{C}\{^{1}\text{H}\} \; \text{NMR} \; (151 \; \text{MHz}, \; \text{CDCl}_3) \; \delta \; 165.6, \; 158.9, \; 140.4, \; 132.1, \\ 124.5, \; 114.8, \; 85.3, \; 52.4; \; \text{IR} \; (\text{KBr}) \; v \; 1690, \; 1596, \; 1439, \; 1408, \; 1270, \; 967, \; 765, \; 670, \; 630 \; \text{cm}^{-1}; \; \text{MS} \; (\text{ESI}) \; m/z \\ 279 \; (100, \; [\text{M+H}]^+). \; \text{Anal. Calcd for} \; \text{C}_8\text{H}_7\text{IO}_3; \; \text{C}, \; 34.56; \; \text{H}, \; 2.54. \; \text{Found}: \; \text{C}, \; 34.58; \; \text{H}, \; 2.55. \end{array}$

1-Iodonaphth-2-ol (5O-d).⁴ 1-Iodonaphth-2-ol was obtained according to the same procedure as for 4-hydroxy-3-iodobenzoic acid giving 3.62 g (93 % yield) as grey crystals: mp 84–87 °C (lit.⁴ 87–88 °C); ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 8.5 Hz, 1H), 7.76–7.71 (m, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.25 (t, J = 9.0

Hz, 1H), 5.82 (bs, 2H); ${}^{13}C{}^{1}H$ NMR (151 MHz, CDCl₃) δ 153.9, 134.9, 130.7, 130.4, 129.8, 128.4, 128.3, 124.3, 116.6, 86.3; IR (KBr) *v* 1622, 1496, 1431, 1346, 1302, 1232, 974, 923, 807, 745 cm⁻¹; MS (ESI) *m/z* 269 (100, [M-H]⁻). Anal. Calcd for C₁₀H₇IO: C, 44.47; H, 2.61. Found: C, 44.31; H, 2.58.

Synthesis of 2-iodobenzenethiol (5S-

a).⁵ Following a literature procedure,⁵ a solution of NaNO₂ (0.704 g, 0.01 mol) in water (2 mL) was added during 30 min to an ice cooled solution of *o*-

iodoaniline (0.01 mol) in 35% aqueous HCl (1.67 mL, 0.02 mol) containing ice (2.0 g). After 45 min of

stirring 20% aqueous solution of sodium acetate was added until the pH of the solution was 4-5. Next potassium methyl xanthate⁶ (1.46 g, 0.01 mol) in water (2 mL) was added. The reaction mixture was slowly warmed up to room temperature and the resulting mixture was dissolved in CH₂Cl₂. The organic phase was separated, dried (MgSO₄) and evaporated to dryness. The residue was dissolved in MeOH (10 mL) containing KOH (3.0 g, 0.046 mol) and refluxed for 10 h. The reaction mixture was cooled and neutralized with 10% HCl (15 mL), and extracted with ether (3×10 mL). The combined organic phases were dried (MgSO₄) and evaporated to afford crude o-iodothiophenol, which was purified by column chromatography using silica gel (eluent, hexane/ethyl acetate = 5:1) giving 467 mg (20% yield) of **5S-a** as colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 7.78 (dd, J_1 = 7.8 Hz, J_2 = 1.5 Hz, 1H), 7.40 (dd, J_1 = 7.5 Hz, $J_2 = 1.5$ Hz, 1H), 7.21 (td, $J_1 = 7.5$ Hz, $J_2 = 1.1$ Hz, 1H), 6.81 (td, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 4.14 (s, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 1139.8, 138.4, 128.9, 128.6, 126.7, 98.3; MS (ESI) *m/z* 235 (100, [M-H]⁻). Anal. Calcd for C₆H₅IS: C, 30.53; H, 2.13; S, 13.58. Found: C, 30.43; H, 2.29; S, 13.42.

> Methyl 4-amino-2-iodobenzoate (7).⁷ Methyl 4-aminobenzoate (0.525 g, 3.47 COOMe mmol) and pyridinium iodine monochloride⁸ (0.841 g, 3.47 mmol) were dissolved

in methanol (30 mL) and stirred at ambient temperature. After 2h, when the substrate was no longer present in the reaction mixture (TLC control), saturated aqueous solution of $Na_2S_2O_3$ was added dropwise until the color change from red to yellow. Then, the reaction mixture was concentrated to 2/3 volume, extracted with CH₂Cl₂, dried over MgSO₄ and evaporated to dryness. A pale vellow residue was purified by column chromatography (~10% AcOEt/pet. ether) and crystalized from pet. ether/CH₂Cl₂ giving 816 mg (85% yield) of methyl 4-amino-2-iodobenzoate (7) as pale crystals: mp 90–92 °C (MeOH/H₂O, 9:1; lit.⁷ 90 °C); ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 1.6 Hz, 1H), 7.80 (dd, $J_1 = 8.7$ Hz, $J_2 = 1.6$ Hz, 1H), 6.69 (d, J = 8.7 Hz, 1H), 4.54 (s, 2H), 3.85 (s, 3H); ${}^{13}C{}^{1}H$ NMR (151 MHz, CDCl₃) δ 165.9, 150.8, 141.1, 131.3, 121.3, 113.2, 82.2, 52.0; HRMS (ESI-TOF) *m/z* 278 [M+H]⁺. Anal. Calcd for C₈H₈INO₂: C, 34.68; H, 2.91; N, 5.05. Found: C, 34.61; H, 2.95; N, 5.27.

Synthesis of 2-nitrobenzenethiol.⁹ 2-Nitrobenzenethiol was obtained in a nearly quantitative yield from commercial 1,2-bis(2-nitrophenyl)disulfane by reduction with NaBH4 in THF at reflux in the presence of MeOH according to the literature procedure,⁹ and used to the next step without further purification. Pale yellow oil; MS (ESI) m/z 154 [M-H]⁻.

Figure S1. ¹H and ¹³C{¹H} NMR spectra for 8-(2-iodophenoxy)-3-phenylbenzo[e][1,2,4]triazine (**20-a**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S2. ¹H and ¹³C{¹H} NMR spectra for 8-(2-iodo-3-methoxycarbonylphenoxy)-3-phenylbenzo[e][1,2,4]triazine (**20-b**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S3. ¹H and ¹³C{¹H} NMR spectra for 8-(4-acetyl-2-iodophenyloxy)-3-phenylbenzo[e][1,2,4]triazine (**20-c**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S4. ¹H and ¹³C{¹H} NMR spectra for 8-((1-Iodonaphthalen-2-yl)oxy)-3-phenylbenzo[e][1,2,4]triazine (**2O-d**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S5. ¹H and ¹³C{¹H} NMR spectra for 8-(2-iodophenylsulfanyl)-3-phenylbenzo[e][1,2,4]triazine (**2S-a**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S6. ¹H and ¹³C{¹H} NMR spectra for 8-(3-iodo-4-methoxycarbonylphylsulfanyl)-3-phenylbenzo[e][1,2,4]triazine (**2S-b**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S7. ¹H and ¹³C{¹H} NMR spectra for 8-(2-nitrophenylsulfanyl)-3-phenylbenzo[e][1,2,4]triazine (**3S**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S8. ¹H NMR spectrum for 4,4'-disulfanediylbis(3-iodobenzoic acid) (8) recorded in DMSO- d_6 at 600 MHz.

Figure S9. ¹H and ¹³C{¹H} NMR spectra for dimethyl ester of 4,4'-disulfanediylbis(3-iodobenzoic acid) (9) recorded in CDCl₃ at 600 and 151 MHz, respectively.

Figure S10. ¹H and ¹³C{¹H} NMR spectra for methyl 3-iodo-4-mercaptobenzoate (**5S-b**) recorded in CDCl₃ at 600 and 151 MHz, respectively.

3. XRD data collection and refinement

Single-crystal XRD measurement for **10-c** was performed with a Rigaku XtalAB Synergy, Pilatus 300K diffractometer. The measurements were conducted at 278(2) K using the CuK_{α} radiation (λ =1.54184 Å). The data was integrated using CrysAlisPro program.¹⁰ Intensities for absorption were corrected using multi-scan method as in SCALE3 ABSPACK scaling algorithm implemented in CrysAlisPro program.¹⁰ Additional crystal and refinement information are listed in Table S1.

CCDC: File 2107124 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

	CCDC: 2107124		
Formula	$C_{21}H_{14}N_3O_2$		
Formula Weight	340.35		
Crystal System	Triclinic		
Space Group	$P\overline{1}$		
a/Å	7.22150(10)		
b/Å	13.01330(10)		
c/Å	17.3541(2)		
$lpha/^{\circ}$	79.6460(10)		
$eta/^{\circ}$	85.7900(10)		
$\gamma/^{\circ}$	89.4150(10)		
Volume/Å ³	3022.76(5)		
Z	4		
2θ range for data collection/°	6.906 to 157.498		
Index ranges	$-9 \le h \le 8, -15 \le k \le$		
	$16, -21 \le 1 \le 21$		
No. of measured,	46239, 6489, 5717		
independent, and observed			
$[I > 2\sigma(I)]$ reflections			
Rint	0.0245		
Goodness-of-fit on F^2	1.060		
Final R indexes	$R_1 = 0.0371$,		
$[F^2 > 2\sigma(F^2)]$	wR2=0.1062		
Final <i>R</i> indexes	$R_1 = 0.0410,$		
[all data]	w <i>R</i> 2= 0.1093		
Data/restraints/parameters	6489/0/472		
Largest diff. peak/hole Å ⁻³	0.23/-0.16		

Table S1. Selected structural data for 1O-c

Structure solution and refinement

The structures were solved with the ShelXT¹¹ structure solution program using Intrinsic Phasing and refined in the ShelXL by the full-matrix least-squares minimization on F^2 with the ShelXL¹² refinement package. All non-hydrogen atoms were refined anisotropically and C–H hydrogens were generated geometrically using the HFIX command as in ShelXL. Hydrogen atoms were refined isotropically and constrained to ride on their parent atoms. The crystal data and structure refinement descriptors are presented in Table S1. Partial packing diagrams for **10-c**, is shown in Figures S11 and S12, while selected geometrical parameters are listed in Table S2 and compared to those of **10-a**.¹³

Figure S11. Unit cell packing diagram for 10-c.

Figure S12. Slipped stacks of 1O-c. Angle between the adjacent stacks is 36.5°.

Close contacts within the stacks:

Stack A

$C(2)^{}C(7a)$	3.228 Å (-0.172 Å inside VDW separation)
C(2) C(8)	3.313 Å (-0.087 Å inside VDW separation)
C(3a) C(11)	3.372 Å (-0.028 Å inside VDW separation)
C(8)C(Ph)	3.365 Å (-0.035 Å inside VDW separation)
C(11a)C(Ph)) 3.319 Å (-0.081 Å inside VDW separation)

Stack B

C(7a)^{...}C(Ph) 3.381 Å (-0.019 Å inside VDW separation)

Close contacts between the stacks:

O8^{...}H-C(Me) 2.634 Å (-0.086 Å inside VDW separation)

<u>Slippage angles</u> - of 27.0° (for stack A) and 62.2° (for stack B) were calculated as an angles defined by O(7)^{...}O(7)^{...}N(12) minus 90°. The two oxygen atoms used for the measurements were for two molecules in the stack with the same orientation.

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	COMe N N N Ph 1c	
	10-a ^b	10-с
$d_{\rm N1-N12}$	1.35(1)	1.360(1)
		1.359(1)
$d_{ m N1-C2}$	1.32(1)	1.341(1)
		1.341(1)
$d_{\text{C2-N3}}$	1.364(9)	1.334(1)
		1.335(1)
$d_{ m N3-C3a}$	1.38(1)	1.374(2)
		1.372(2)
$d_{ m C3a-C3a'}$	1.38(1)	1.401(2)
		1.401(2)
$d_{ m C3a'-C6a}$	1.36(1)	1.395(2)
		1.396(2)
$d_{ m C6a-O7}$	1.39(1)	1.376(1)
		1.382(1)
$d_{ m O7-C7a}$	1.381(9)	1.376(1)
		1.373(1)
$d_{ m N12-C11a}$	1.42(1)	1.399(1)
	1.50(1)	1.400(1)
$d_{ m C2-Ph}$	1.50(1)	1.489(2)
		1.487(2)
$lpha_{ m N12-N1-C2}$	114.1(6)	114.93(8)
		114.92(9)
$lpha_{ m N1-C2-N3}$	130.2(7)	128.5(1)
	110 5(0)	128.1(1)
$lpha_{ m C7a-O7-C6a}$	118.5(6)	117.82(9)
	110 ((())	117.66(9)
$lpha_{ m C3a'-N12-C11a}$	118.6(6)	118.99(8)
0	1/1)	118.79(9)
$\theta_{\text{N12-N1-C2-N3}}$	1(1)	-0.2(2)
0	O(1)	1.0(2)
Ө _{С3а'-С6а-О7-С7а}	U(1)	-0.4(2)
0	2.0	4.0(<i>2)</i> 4.2
$p_{\text{triazine-(C2)Ph}}$	2.7	+.2 5 3

Table S2. Selected interatomic distances and angles for planar benzo[e][1,2,4]triazin-4-yl radicals.^a

 $\frac{5.3}{a \ d} - \text{ interatomic distance, } \alpha - \text{ interatomic angle, } \theta - \text{ dihedral angle, } \beta - \text{ inter-ring angle.} \ ^{b} \text{ Ref.}^{13}$

The intramolecular inter-ring angle was calculated as the angle between two planes: one was defined by all seventeen C and N atoms of the heterocyclic core and the second by six C atom of the Ph substituent. The mean plane of the heterocyclic core (defined by seventeen C and N atoms) was used to measure the intermolecular separation within the stack and also to measure the angle between the two neighboring stacks.

4. Electronic absorption spectroscopy

Electronic absorption spectra for radicals 1 were recorded in spectroscopic grade CH_2Cl_2 at concentrations in a range $1.5-10 \times 10^{-5}$ M and fitted to the Beer–Lambert law. Results are shown in Figures S13 and S14.

Figure S13. Clockwise: electronic absorption spectra for **10-c** in CH₂Cl₂ for four concentrations, determination of molar extinction coefficient ε at $\lambda = 280$ nm (best fit function: $\varepsilon = 38495 \times \text{conc}$, $r^2 = 0.9974$), molar extinction *log* (ε) plot, and onset of absorption (optical band-gap).

Figure S14. Clockwise: electronic absorption spectra for **1S-b** in CH₂Cl₂ for four concentrations, determination of molar extinction coefficient ε at $\lambda = 284$ nm (best fit function: $\varepsilon = 10275 \times \text{conc}$, $r^2 = 0.9973$), molar extinction *log* (ε) plot, and onset of absorption (optical band-gap).

5. Electrochemical results

The electrochemical characterization of selected radicals was conducted using Autolab PGSTAT128N potentiostat/galvanostat instrument in dry and degassed CH₂Cl₂ (concentration 0.5 mM) in the presence of $[n-Bu_4N]^+[PF_6]^-$ as an electrolyte (concentration 50 mM) using glassy carbon as the working electrode and Ag/AgCl as the reference electrode with a scan rate of 50 mV s⁻¹ at *ca*. 20 °C. In the end of each measurement decamethylferrocene (FcMe₁₀) was added and the peak potentials were referenced to the FcMe₁₀/FcMe₁₀⁺ couple. The oxidation potential for the FcMe₁₀/FcMe₁₀⁺ couple was established at -0.56 V vs the Fc/Fc⁺ couple (-0.10 V vs SCE).¹⁴

Cyclic voltammetry (CV) plots are shown in Figures S15–S18 and numerical result are shown in Table 1 in the main text.

Figure S15. Cyclic voltammogram for ferrocene (Fc) and decamethylferrocene (FeMe₁₀). The small peak at about 0.05 V is related to some impurity in the commercial $FeMe_{10}$.

Figure S16. Cyclic voltammogram for **10-c**.

Figure S17. Cyclic voltammogram for 1S-a.

Figure S18. Cyclic voltammogram for 1S-b.

6. EPR spectrscopy

EPR spectra for radicals 1 were recorded on an X-band EMX-Nano EPR spectrometer at ambient temperature on dilute and degassed solutions in distilled benzene in a concentration range of $2-5 \times 10^{-4}$ M. The microwave power was set with the Power Sweep program below the saturation of the signal, modulation frequency of 100 kHz, modulation amplitude of 0.5 G_{pp} and spectral width of 100 G. Accurate *g*-values were obtained using TEMPO as EMX-Nano internal standard.

Simulations of the spectra were performed with the EasySpin (Matlab) using all EPR-active nuclei and DFT results as the starting point for simulations. The chemically equivalent nuclei (H in the Ph substituent) were treated as a group of 2 identical nuclei. The resulting *hfcc* values were perturbed several times until a global minimum for the fit was achieved. Experimental and simulated spectra are shown in Figures S19 and S20 and resulting *hfcc* are listed in Table S3. The *hfcc* values were assigned to the nitrogen nuclei in **1** on the basis of trends in DFT results.

Figure S19. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for **10-c** recorded in benzene at *ca* 20 °C.

Figure S20. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for **1S-b** recorded in benzene at *ca* 20 °C.

atom	1 O -a	1 O-b	10-c	10-d	1S-a	1 S-b
a _{N(12)}	7.51	7.29	7.24	7.60	7.54	7.08
a _{N(1)}	4.28	4.44	4.41	4.18	4.47	4.44
a _{N(3)}	4.42	4.52	4.52	4.18	4.49	4.52
a _H	1.94	0.87	2.02	0.30	1.18	1.78
a _H	1.11	1.84	1.61	0.30	0.76	1.47
a _H	0.72	1.98	0.78	0.30	0.74	1.36
a _H	0.60	1.13	0.44	0.30	0.72	0.74
a _H	0.39	0.62	0.40	0.30	0.71	0.86
a _H	0.29	0.23	0.30	0.30	0.69	0.28
a _H	0.11	0.27	0.20	0.30	0.53	0.35
a _H	0.10	0.33	0.14	0.30	0.40	0.06
a _H	0.09	0.37	0.05	-	0.31	0.11
a _H	0.03	-	-	-	0.26	-
g	2.0036	2.0037	2.0039	2.0034	2.0039	2.0043

Table S3. Experimental hyperfine coupling constants (G) for radicals in series 1 in benzene at *ca*. 20 °C.

7. Archive for UB3LYP/6-31G(2d,p) geometry optimization results.

1S-b

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C21H14N3O2S1(2)\PIOTR\24-Se p-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance, NoAngle) fcheck\\C(8)-S-Ph(N1) benzotrazinyl (phenaz inoBT), C1 with the COOMe\\0,2\N,0.5742767674,-0.2057798294,0.05937430 26\N,-1.4344632562,1.6680168647,-0.2228103953\C,-1.6511610441,0.367039 0034,-0.030723061\N,-0.7270565302,-0.5893335689,0.0996135099\C,2.52706 54557,2.9589956899,-0.0037487692\C,2.2495739889,1.6012493015,0.1238910 041\C,0.9294325205,1.1450484179,0.0062782761\C,-0.1312418687,2.0714327 932,-0.1797738349\C,0.1786390306,3.4394212776,-0.2961973254\C,1.488971 9978,3.8725038028,-0.2157443643\C,1.5086196098,-1.2618878893,-0.084364 8939\C,2.8898817798,-1.0511160966,0.0760465455\C,3.7775789148,-2.12014 01699,-0.0773200782\C,3.3132762504,-3.3922037184,-0.370645413\C,1.9417 962173,-3.6058483936,-0.537333408\C,1.0491256258,-2.5442323661,-0.4029 844809\C,-3.0614288842,-0.0962342133,0.0347415461\C,-3.3781941872,-1.4 249708623,0.3478730095\C,-4.7054024597,-1.8363651479,0.4056869894\C,-5 .7335894251,-0.929664814,0.1496845775\C,-5.4256171063,0.394021331,-0.1 60985969\C,-4.0995350403,0.8101775613,-0.2161024434\S,3.5803078309,0.5 $074831746, 0.5342423575 \ H, -0.6459804103, 4.1270402177, -0.4406649744 \ H, 4. \\ 8410402205, -1.9401839629, 0.040133941 \ H, -0.0092914765, -2.6979093677, -0. \\ 5406991565 \ H, -2.5776921311, -2.1247965575, 0.5526731077 \ H, -4.9379956633, \\ -2.867278004, 0.6528162067 \ H, -6.2207398951, 1.1054177665, -0.3600416337 \ H \\ , -3.8463847933, 1.8359154897, -0.453031353 \ H, 1.7204380139, 4.9279475538, - \\ 0.310237375 \ H, 3.5532406277, 3.301692822, 0.0713802184 \ H, 3.9928803646, -4. \\ 2278263398, -0.4839152634 \ H, -6.7687952849, -1.2528447873, 0.194365165 \ C, 1 \\ .4870862282, -4.9847171855, -0.8670140086 \ O, 2.2292169388, -5.931207276, -1 \\ .0004523291 \ O, 0.1486489753, -5.0676090824, -1.0015252468 \ C, -0.3505673152 \\ , -6.3725185083, -1.3217524964 \ H, 0.0675590439, -6.7214122426, -2.268856664 \\ 4 \ H, -0.0894404701, -7.0862158222, -0.53683641 \ H, -1.4321052707, -6.2635353 \\ 315, -1.3971120493 \ Version = ES64L-G09RevD.01 \ State = 2-A \ HF = -1521.5923273 \\ \ S2=0.766375 \ S2-1=0. \ S2A=0.750201 \ RMSD = 2.307e-09 \ RMSF = 1.021e-06 \ Dipole \\ = -0.0480508, 0.3278178, -0.0825013 \ Quadrupole = 3.9429498, 3.3525403, -7.295 \\ 49, 11.2721957, 1.6217214, -0.6176343 \ PG = C01 \ [X(C21H14N302S1)] \ \$

10-a

1\1\GINC-LOCALHOST\SP\UB3LYP\6-311++G(2d,p)\C19H12N3O1(2)\PIOTR\14-Sep -2021\0\\#P UB3LYP/6-311++G(2d,p) SCF=tight SCF=Direct #P Geom=(NoDist ance,NoAngle) SCRF(Solvent=benzene)\\Parent C(8)-O-Ph(N1) benzotraziny l (phenazinoBT), Cs opt\\0,2\N,0,-0.2279945082,0.,-0.7068912291\N,0,1. 6342308182,0.,1.3147774172\C,0,0.3141730381,0.,1.5107475896\N,0,-0.651 1944713,0.,0.5772813358\C,0,2.8747587314,0.,-2.6901553245\C,0,1.525294 733,0.,-2.3786764485\C,0,1.1192429656,0.,-1.0420625687\C,0,2.056303327 2,0.,0.0130670541\C,0,3.4227100243,0.,-0.320281521\C,0,3.8144680324,0. ,-1.6500459807\C,0,-1.1799195482,0.,-1.7366863092\C,0,-0.7265516782,0. ,-3.0685289936\C,0,-1.6343949522,0.,-4.1176431627\C,0,-3.0025964506,0. ,-3.8542738611\C,0,-3.4580568847,0.,-2.5364763795\C,0,-2.5535440658,0. ,-1.48031653\C,0,-0.1674933344,0.,2.9170571338\C,0,-1.5355202766,0.,3. 2213939115\C,0,-1.9627296157,0.,4.5448686804\C,0,-1.0320885266,0.,5.58 34203093\C,0,0.3304717827,0.,5.2886511585\C,0,0.7611634188,0.,3.966122 5371\0,0,0.607802556,0.,-3.3994557106\H,0,4.1444354867,0.,0.4875266765 \H,0,-1.2474203049,0.,-5.1300423865\H,0,-4.5217388028,0.,-2.3262246262 \H,0,-2.8822307131,0.,-0.4505760941\H,0,-2.2557347868,0.,2.4132296866\ H,0,-3.0252780726,0.,4.7664014926\H,0,1.0608349088,0.,6.0915258161\H,0 ,1.8160583604,0.,3.7224448829\H,0,4.8703351187,0.,-1.898622529\H,0,3.1 753691985,0.,-3.7308245809\H,0,-3.7063464888,0.,-4.6790512891\H,0,-1.3 674420192,0.,6.615759843\\Version=ES64L-G09RevD.01\State=2-A"\HF=-970. 9653337\S2=0.764573\S2-1=0.\S2A=0.750168\RMSD=3.879e-09\Dipole=-0.3799 885,0.,-0.9682011\Quadrupole=6.3262081,-11.9067033,5.5804952,0.,-0.727 6571,0.\PG=CS [SG(C19H12N3O1)]\\@

100-a

1\1\GINC-LOCALHOST\SP\UB3LYP\6-311++G(2d,p)\C19H12N3O1(2)\PIOTR\28-Oct
-2021\0\\#P UB3LYP/6-311++G(2d,p) SCF=tight SCF=Direct #P Geom=(NoDist
ance,NoAngle) SCRF(Solvent=benzene)\\C(8)-O-Ph(N1) Formation of the fl
at Blatter, Ph radical before add opt at DFT\\0,2\N,0,-0.0753185307,0.
6644308986,0.1267804261\N,0,1.1731731663,-1.8110720007,0.2102417086\C,
0,-0.1365862117,-1.6412804423,0.2211192194\N,0,-0.7752395804,-0.421247
1685,0.195025128\C,0,3.4390079435,1.6662461791,0.042014589\C,0,2.06961
76326,1.7623161301,0.0164172928\C,0,1.2807923849,0.5765416327,0.087363

0818\C,0,1.9247365651,-0.6897222057,0.1505315515\C,0,3.339117296,-0.76 30018849,0.1637999211\C,0,4.068933131,0.3995663089,0.1179759226\C,0,0. 7817804274,2.7573403342,-2.2967000911\C,0,0.7480098485,3.386480542,-1. 0699615188\C,0,-0.0516522148,4.5270908497,-0.9543528743\C,0,-0.7759032 713,4.9751411832,-2.0568869\C,0,-0.7224900533,4.3036623618,-3.27825700 46\C,0,0.0758778061,3.1570541979,-3.4035847494\C,0,-1.0159355998,-2.82 84103657,0.2740653257\C,0,-2.4111217636,-2.6873522612,0.2968316298\C,0 ,-3.2277257638,-3.8122745297,0.347505444\C,0,-2.6659036529,-5.08779088 9,0.375185368\C,0,-1.2786102593,-5.2350691088,0.3519625057\C,0,-0.4580 174448, -4.1148279799, 0.3019782794 \0, 0, 1.4869485182, 3.0039641913, 0.0242 631806\H,0,3.8057572271,-1.7395123834,0.2171020746\H,0,-0.0946555105,5 .0396221455,0.001148369\H,0,-1.2931347791,4.6607916779,-4.1291616779\H ,0,0.1334108229,2.6156455286,-4.3426296396\H,0,-2.8379253918,-1.692847 2248,0.2747776909\H,0,-4.3060721012,-3.6920971327,0.365227559\H,0,-0.8 362628127, -6.22582748, 0.3732323538\H, 0, 0.6202185814, -4.2166570679, 0.28 45359814\H,0,5.1531241717,0.3583836822,0.1327389077\H,0,4.0268543147,2 .5757721994,0.0030788405\H,0,-1.3951847999,5.8601714558,-1.9556167\H,0 ,-3.305478896,-5.963842544,0.4144881444\\Version=ES64L-G09RevD.01\Stat e=2-A\HF=-970.8752639\S2=0.757399\S2-1=0.\S2A=0.750032\RMSD=8.319e-09\ Dipole=0.8157744,-0.2283447,-0.2889001\Quadrupole=4.8733313,2.9382992, -7.8116305,1.2856908,2.7283462,-2.4323524\PG=C01 [X(C19H12N3O1)]\\@

100-a to 10-a transition state

 $1\1\GINC-LOCALHOST\SP\UB3LYP\6-311++G(2d,p)\C19H12N3O1(2)\PIOTR\28-Oct$ -2021\0\\#P UB3LYP/6-311++G(2d,p) SCF=tight SCF=Direct #P Geom=(NoDist ance,NoAngle) SCRF(Solvent=benzene)\\BT-O-Ph TS for N1 cycl, opt at B3 LYP/6-31G(2d,p)\\0,2\N,0,-0.1231668471,-0.2665868394,-1.1284873918\N,0 ,-1.8400632338,1.3741383308,0.2834570853\C,0,-2.1918559228,0.215465291 6,-0.2405384669\N,0,-1.3562021418,-0.6108560611,-0.9596014687\C,0,2.11 374657,2.4982253051,-0.2798554945\C,0,1.6995644979,1.2791515146,-0.772 1851095\C,0,0.3362856166,0.8971149976,-0.5983445372\C,0,-0.5541701315, 1.7562629505,0.1079425641\C,0,-0.0959771044,2.9959838492,0.6074060707\ C,0,1.2166058945,3.3504093688,0.4010981208\C,0,1.963726636,-1.65758122 56,-0.6460371696\C,0,2.8131661306,-0.7992429676,-1.3032777737\C,0,3.99 24512061,-1.3243944902,-1.8385246146\C,0,4.2589594449,-2.6862930345,-1 .7087679254\C,0,3.3687977425,-3.5312385331,-1.0461245899\C,0,2.1846060 646,-3.0068197097,-0.5084647477\C,0,-3.5811235191,-0.2604532331,-0.072 7980399\C,0,-3.992634384,-1.4823215573,-0.6246500736\C,0,-5.3030822157 ,-1.9187282247,-0.4599133009\C,0,-6.2164675525,-1.1453755471,0.2548648 423\C,0,-5.8132861241,0.0710783436,0.8067955256\C,0,-4.5055778548,0.51 20776051,0.6451589361\0,0,2.6168695091,0.5590708505,-1.4783529303\H,0, -0.7956162981,3.633295926,1.1345948563\H,0,4.6794046687,-0.6572167548, -2.3493642626\H,0,3.5846822583,-4.5904781913,-0.9498958304\H,0,1.47031 20657,-3.648227132,-0.0014992111\H,0,-3.2765493583,-2.075525103,-1.178 7965098\H,0,-5.6117256697,-2.8654128725,-0.8912900599\H,0,-6.520620858 4,0.6767035727,1.3640900996\H,0,-4.1807373243,1.4546806371,1.068454320 1\H,0,1.5852851094,4.3003496595,0.7741572058\H,0,3.1472782072,2.787998 965,-0.4283417789\H,0,5.1731183125,-3.0885640045,-2.1324480531\H,0,-7. 2384000442,-1.4882616861,0.3818401331\\Version=ES64L-G09RevD.01\State= 2-A\HF=-970.8722517\S2=0.761042\S2-1=0.\S2A=0.750086\RMSD=6.890e-09\Di pole=0.1220641,0.6422344,0.5302761\Quadrupole=6.2582413,4.6985666,-10. 9568079,3.9496398,-3.0175888,3.2043671\PG=C01 [X(C19H12N3O1)]\\@

8. References

- 1. L. C. King, M. McWhirter and D. M. Barton, J. Am. Chem. Soc., 1945, 67, 2089-2092.
- J.-A. Garcia-Lopez, M. Çetin and M. F. Greaney, *Angew. Chem. Inter. Ed.*, 2015, 54, 2156-2159.
- 3. R. Sathiyapriya, Asian J. Chem., 2011, 23, 41-43.
- 4. J. Iskra, S. Stavber and M. Zupan, *Synthesis*, 2004, **2004**, 1869-1873.
- 5. F. Zeng and H. Alper, *Org. Lett.*, 2010, **12**, 5567-5569.
- L. Almanqur, I. Vitorica-yrezabal, G. Whitehead, D. J. Lewis and P. O'Brien, *RSC Advances*, 2018, 8, 29096-29103.
- J. Lalut, G. Santoni, D. Karila, C. Lecoutey, A. Davis, F. Nachon, I. Silman, J. Sussman, M. Weik, T. Maurice, P. Dallemagne and C. Rochais, *Eur. J. Med. Chem.*, 2019, 162, 234-248.
- S. V. Khansole, S. B. Junne, M. A. Sayyed and Y. B. Vibhute, *Synth. Commun.*, 2008, 38, 1792-1798.
- J. R. Cashman, L. D. Olsen, G. Young and H. Bern, *Chem. Res. Toxicol.*, 1989, 2, 392-399.
- 10. CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- 11. G. M. Sheldrick, Acta Cryst., Sect. A, 2015, A71, 3-8.
- 12. G. M. Sheldrick, Acta Cryst., Sect. C, 2015, C71, 3-8.
- P. Kaszynski, C. P. Constantinides and V. G. Young Jr., *Angew. Chem. Inter. Ed.*, 2016, 55, 11149-11152.
- 14. N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, **96**, 877–910.