## Supporting Information

Acid-catalyzed ring-expansion of 4-(1-hydroxycyclobutyl)-
1,2,3-triazoles
Mingchuan Xu, Lei Liu, Tao Wang, Han Luo, Meili Hou, Luan Du, Xiaolan Xin,
Qixing Lu and Baosheng Li*
School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China.

* E-mail: libs@cqu.edu.cn
Table of Contents

1. General information ..... S1
2. Preparation of substrates ..... S2
2.1. Procedure A: Synthesis of 4-(1-hydroxycyclobutyl)-1,2,3-triazoles 1q-1u ..... S3
2.2. Procedure B: Synthesis of 4-(1-hydroxycyclobutyl)-1,2,3-triazoles $\mathbf{1 a} \mathbf{- 1 j}$ and $\mathbf{1 m} \mathbf{- 1 o}$ ..... S4
2.3. Procedure C: Synthesis of 4-(1-hydroxycyclobutyl)-1,2,3-triazoles $\mathbf{1 k}$ and $\mathbf{1 1}$ ..... S4
2.4. Procedure D: Synthesis of 4-(1-hydroxycyclobutyl)-1,2,3-triazole 1p ..... S5
3. General procedure ..... S7
3.1. Procedure E: Synthesis of product 3 ..... S7
4. Application and Transformation ..... S8
4.1. Procedure F: Gram-scale synthesis of 3a ..... S8
4.2. Procedure G: Synthesis of product 4 ..... S8
4.3. Procedure H: Synthesis of product $\mathbf{5}$ ..... S8
4.4. Procedure I: Synthesis of product $\mathbf{6}$ ..... S9
4.5. Procedure J: Synthesis of product 7 ..... S9
5. Characterization data for compounds ..... S10
6. X-ray structure ..... S29
7. References ..... S30
8. Copies of NMR spectra ..... S31
9. HPLC analysis ..... S81

## 1. General information

All the reactions were carried out under the argon atmosphere with magnetic stirring unless otherwise noted. Reagents were purchased from commercial sources. $\mathrm{TsN}_{3}$ was $75 \% \mathrm{w} / \mathrm{w}$ in ethyl acetate solution. All solvents were dried or distilled prior to use according to the standard methods. DCM was distilled over $\mathrm{CaH}_{2}$, THF was distilled over Na /benzophenone and toluene was distilled over Na. Glassware was dried in an oven before use. All new compounds were characterized by NMR spectroscopy, IR spectroscopy, high-resolution mass spectroscopy (HRMS).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 500 spectrometer $\left({ }^{1} \mathrm{H}\right.$ at 500 MHz and ${ }^{13} \mathrm{C}$ at 126 MHz$)$ and Agilent 400 MR DD2 spectrometer $\left({ }^{1} \mathrm{H}\right.$ at 400 MHz and ${ }^{13} \mathrm{C}$ at 101 MHz$)$. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as $\delta$ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}$ ( $\delta 0.00$ ) and relative to the signal of $\mathrm{SiMe}_{4}\left(\delta 0.00\right.$ singlet). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as singlet $(\mathrm{s})$, doublet $(\mathrm{d})$, triplet $(\mathrm{t})$, quartet $(\mathrm{q})$, multiplets $(\mathrm{m})$, doublet of doublet (dd). Coupling constants are reported as a $J$ value in Hz . ${ }^{13} \mathrm{C}$ NMR spectra are reported as $\delta$ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.00), \mathrm{CDCl}_{3}(\delta$ $7.60), \mathrm{CD}_{3} \mathrm{OD}(\delta 3.31)$, $\mathrm{DMSO}_{-} d_{6}(\delta 2.50)$, and relative to the signal of chloroform- $d$ ( $\delta 77.00$ triplet), $\mathrm{CDCl}_{3}$ ( $\delta 49.00$ septet) and DMSO- $d_{6}\left(\delta 39.51\right.$ septet). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the same spectrometer with complete proton decoupling.

Infrared (IR) spectra were measured on Thermofisher Nicolet iN10 FM-IR spectrometer using KBr plates. High resolution mass spectral analysis (HRMS) was recorded on a FT-ICR (Fourier Transform-Ion Cyclotron Resonance) mass spectrometer by using electrospray ionization (ESI) techniques. Single crystal X-ray diffraction measurements were performed on an Agilent SuperNova-CCD X-Ray diffractometer.

Column chromatographic was performed on 200-300 mesh silica gel and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates. Visualization was realized by ultraviolet fluorescene ( $\lambda=254 \mathrm{~nm}$ ) and staining with phosphomolybdic acid.

## 2. Preparation of substrates

4-(1-Hydroxycyclobutyl)-1,2,3-triazoles were synthesized according to the procedure A $(\mathbf{1 q}-\mathbf{1} \mathbf{u})$, procedure $\mathrm{B}(\mathbf{1} \mathbf{-} \mathbf{1} \mathbf{j}$ and $\mathbf{1} \mathbf{m} \mathbf{- 1 0})$, procedure $\mathrm{C}(\mathbf{1} \mathbf{k}$ and $\mathbf{1})$, and procedure $\mathrm{D}(\mathbf{1} \mathbf{p})$, and acyl chlorides $\mathbf{2 a} \mathbf{- 2} \mathbf{e}$ are commercially available.

## C4-Cyclobutanol-1,2,3-triazoles 1




2a


2e

### 2.1. Procedure A: Synthesis of 4-(1-Hydroxycyclobutyl)-1,2,3-triazoles 1q-1u



In an oven-dried round bottom, ${ }^{n} \mathrm{BuLi}(11 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added dropwise to the$ solution of trimethylsilylacetylene ( $12 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in anhydrous THF ( 0.5 M ) at $-78{ }^{\circ} \mathrm{C}$. After 30 min , a solution of ketone ( $10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in anhydrous THF ( 1 M ) was added to the reaction mixture. After the addition, the reaction was warmed to room temperature. After completion of the reaction (monitored by TCL analysis), the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ ( 5 mL ), washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the crude residue was directly used in the next step without further purification ${ }^{1}$.

TBAF ( $15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added to the solution of the crude residue in THF ( 20 mL ). After completion of the reaction (monitored by TCL analysis), the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the crude residue was purified by column chromatography to afford the product 1-1.
$\mathrm{TsN}_{3}$ (10 mmol, 1.0 eq.) was added slowly to the solution of alkyne ( $10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in toluene $(2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. After the addition, the reaction was warmed to room temperature. After completion of the reaction (monitored by TCL analysis), The reaction mixture was filtered to remove inorganic compound, the solvent was dried over, concentrated and recrystallized by ethyl acetate and petroleum ether. The resulting solid was collected by filtration to afford the corresponding triazole ${ }^{2}$.

To the solution of triazole in $\mathrm{MeOH}(0.5 \mathrm{M}), \mathrm{K}_{2} \mathrm{CO}_{3}(5 \% \mathrm{mmol})$ was added at room temperature into the flask. After completion of the reaction (monitored by TCL analysis), the mixture was concentrated and purified by column chromatography to afford the product 1 .

### 2.2. Procedure B: Synthesis of 4-(1-Hydroxycyclobutyl)-1,2,3-triazoles $\mathbf{1 a} \mathbf{- 1 j}$ and $\mathbf{1 m - 1 0}$



Alkene ( $10 \mathrm{mmol}, 1.0$ eq.) and fresh prepared $\mathrm{Zn}-\mathrm{Cu}$ dust ( $30 \mathrm{mmol}, 3.0$ eq.) and $\mathrm{Et}_{2} \mathrm{O}$ (20 mL ) were added to an oven-dried two-neck round bottom flask with a condenser tube under argon atmosphere. A solution of $\mathrm{POCl}_{3}\left(20 \mathrm{mmol}, 2.0\right.$ eq.) and $\mathrm{Cl}_{3} \mathrm{CCOCl}(20 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in $E t_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the stirred suspension over a period of 1 h at room temperature. Then, the reaction was refluxed at $45^{\circ} \mathrm{C}$ overnight. After completion of the reaction (monitored by TCL analysis), the mixture was cooled and filtered through a pad of celite. The filter pad was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, and the filtrate washed with water ( $2 \times 30 \mathrm{~mL}$ ), sat. $\mathrm{NaHCO}_{3}$ $(2 \times 30 \mathrm{~mL})$ and brine $(1 \times 30 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was directly used in the next step without further purification.

The crude residue was added to the suspension of Zn dust ( $40 \mathrm{mmol}, 4.0 \mathrm{eq}$.) and acetic $\operatorname{acid}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere. After the addition was complete, the mixture was heated to $70^{\circ} \mathrm{C}$ and stirred for 3 h . After completion of the reaction (monitored by TCL analysis), the mixture was cooled. The solid was filtered and washed with with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined filtrate was washed sequentially with water ( $2 \times 20 \mathrm{~mL}$ ) and brine ( $1 \times 20 \mathrm{~mL}$ ). Collect the organic phase and dried over $\mathrm{MgSO}_{4}$. The solvent was concentrated under reduced pressure. The crude material was purified by column chromatography to afford the product 1$\mathbf{2}^{3}$. The subsequent steps refer to the Procedure A mentioned in 2.1.

### 2.3. Procedure C: Synthesis of 4-(1-Hydroxycyclobutyl)-1,2,3-triazoles 1k and 11



In an oven-dried two-neck round bottom flask with a condenser tube, 1,3-dibromopropane
( $10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was added to the solution of \mathrm{P}(\mathrm{Ph})_{3}(11 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) in toluene ( 20 \mathrm{~mL}$ ) under argon atmosphere. Then, the reaction was heated to $120^{\circ} \mathrm{C}$ overnight. The mixture was cooled to room temperature and the solid was filtered and washed with petroleum ether ( $3 \times 30$ mL ) and dried over in vacuo to afford the product 1-3.

To the suspension of $\mathbf{1 - 3}(10 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) in anhydrous THF ( 20 \mathrm{~mL}$ ), ${ }^{t} \mathrm{BuOK}(30 \mathrm{mmol}$, 3.0 eq.) in THF ( 1.3 M ) was added dropwise and stirred at $70^{\circ} \mathrm{C}$ for 1 h . Aldehyde/ketone ( 10 mmol, 1.0 eq.) was added and the reaction was proceeded under reflux condition for 6 h . After completion of the reaction (monitored by TCL analysis), $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, then the crude was purified by column chromatography to afford the product 1-4.

In the solution of $\mathbf{1 - 4}(10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M}), m$-CPBA ( $\left.10 \mathrm{mmol}, 1.0 \mathrm{eq}.\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.38 \mathrm{M})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . After completion of the reaction (monitored by TCL analysis), the mixture was washed with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacum. Then the residue was purified by column chromatography to afford the product $\mathbf{1 - 5}$. The subsequent steps refer to the Procedure A mentioned in 2.1.

### 2.4. Procedure D: Synthesis of C4-cyclobutanol-1,2,3-triazole 1p




1-6



Cyclohexanecarboxylic acid chloride ( $10 \mathrm{mmol}, 1.0$ eq.) and anhydrous acetonitrile ( 0.5 M) were added to an oven-dried two-neck round bottom flask with a condenser tube under argon atmosphere. A solution of triethylamine (12 mmol, 1.2 eq.) and ethyl vinyl ether (18 mmol, 1.8 eq.) in anhydrous acetonitrile ( 5 mL ) was added at room temperature. Then, the reaction was refluxed at $90^{\circ} \mathrm{C}$ in oil bath for 3 h . After completion of the reaction (monitored by TCL analysis), the mixture was cooled and quenched with sat. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phase was
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, then the residue was purified by column chromatography to afford the product $\mathbf{1 - 6}$. The subsequent steps refer to Procedure A mentioned in 2.1.

## 3. General procedure

### 3.1. Procedure E: Synthesis of products 3



4-(1-Hydroxycyclobutyl)-1,2,3-triazoles $\mathbf{1}(0.10 \mathrm{mmol}, 1.0$ eq.) and $3 \AA \mathrm{MS}(25.0 \mathrm{mg})$ were added to an oven-dried 10 mL reaction sealed tube and evacuated under high vacuo and backfilled with argon three times. Then, $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$, acyl chloride $2(0.2 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.005 \mathrm{mmol})$ were added. The reaction was stirred at $90^{\circ} \mathrm{C}$ in oil bath for 5 h . After 4-(1-hydroxycyclobutyl)-1,2,3-triazoles have been completely reacted (monitored by TCL analysis), the mixture was cooled to room temperature and quenched with 5 mL saturated $\mathrm{NaHCO}_{3}$. Extracting the mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the collected organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=25: 1)$ to give the products 3 .

## 4. Application and Transformation

### 4.1. Procedure F: Gram-scale synthesis of 3a


$\mathbf{1 a}(1.076 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and 3 \AA \mathrm{MS}(1.250 \mathrm{~g})$ were added to an oven-dried 200 mL reaction sealed bottle and evacuated under high vacuo and backfilled with argon three times. Then, $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, acyl chloride ( $1.406 \mathrm{~g}, 10.0 \mathrm{mmol}$ ) and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(37.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ were added in turn. The reaction was stirred at $90^{\circ} \mathrm{C}$ in oil bath for 5 h . After $\mathbf{1 a}$ has been completely reacted (monitored by TCL analysis), the mixture was cooled to room temperature and quenched by saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. Extracting the mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the collected organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=25: 1)$ to give the product $\mathbf{3 a}(1.063 \mathrm{~g})$ in $73 \%$ yield.

### 4.2. Procedure G: Synthesis of product 4



3a ( $29.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.), ethyl acetoacetate ( $14.3 \mathrm{mg}, 0.11 \mathrm{mmol}$ ), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 36 $\mathrm{mg}, 0.11 \mathrm{mmol}$ ), and freshly distilled THF ( 1 mL ) were added to an oven-dried 10 mL reaction tube under argon atmosphere. The reaction was stirred at $60^{\circ} \mathrm{C}$ in oil bath for 8 h . After 3a has been completely reacted (monitored by TCL analysis), the reaction mixture was cooled to room temperature and the solvent was concentrated in vacuo. The residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=40: 1)$ to give the product $4(17.2 \mathrm{mg})$ in $61 \%$ yield.

### 4.3. Procedure H: Synthesis of product 5



3a (29.1 mg, $0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$. ), sulfamide ( $10.6 \mathrm{mg}, 0.11 \mathrm{mmol}$ ), $p$-toluenesulfonic acid
monohydrate $(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ were added to an oven-dried 10 mL reaction sealed tube under argon atmosphere. The reaction was stirred at $70{ }^{\circ} \mathrm{C}$ in oil bath for 12 h . After 3a has been completely reacted (monitored by TCL analysis), the reaction mixture was cooled to room temperature and the solvent was concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$ to give the product $5(17.9 \mathrm{mg})$ in $72 \%$ yield.

### 4.4. Procedure I: Synthesis of product 6


$\mathbf{3 a}$ ( $29.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.), hydroxylamine hydrochloride ( $31.9 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) and $\mathrm{MeOH}(1 \mathrm{~mL})$ were added to an oven-dried 10 mL reaction sealed tube under argon atmosphere. The reaction was stirred at $100^{\circ} \mathrm{C}$ in oil bath for 12 h . After 3a has been completely reacted (monitored by TCL analysis), the reaction mixture was cooled to room temperature. The solvent was concentrated in vacuo, and the residue was directly purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ to give product $6(14.9 \mathrm{mg}, 57 \%$ yield $)$.

### 4.5. Procedure J: Synthesis of product 7



3a ( $29.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathrm{Pd} / \mathrm{C}(3.5 \mathrm{mg}, 12 \mathrm{wt} \%)$ and ethyl acetate $(1 \mathrm{~mL})$ were added to an oven-dried 10 mL reaction tube. Evacuating the tube under high vacuo and backfilled with argon three times and followed with $\mathrm{H}_{2}$ two times. The reaction tube was connected to a hydrogen balloon and stirred at $40^{\circ} \mathrm{C}$ in oil bath for 24 h . After 3a has been completely reacted (monitored by TCL analysis), the reaction mixture was cooled to room temperature. The solvent was concentrated in vacuo, and the residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ to give product $7(22.0 \mathrm{mg}, 75 \%$ yield $)$.

## 5. Characterization data for compounds

The ${ }^{13} \mathrm{C}$ signals of substrates $\mathbf{1 a}-\mathbf{1 s}$ couldn't be got completely that the two carbon atoms on the triazole ring do not give signals as reported in literatures ${ }^{6}$ (ref. 6a SI page S 2 and ref. 6b SI page S25), even if the time is prolonged (3h) and different solvents $\left(\mathrm{CD}_{3} \mathrm{OD}, \mathrm{CDCl}_{3}\right.$ and DMSO- $d_{6}$ ) are used.

3-Phenyl-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1a)


Compound 1a was obtained by column chromatography (PE : EA $=4$ : 1) as a white solid in $40 \%$ yield ( 861.1 mg ) over 3 steps. m.p.: $121.4-$ $123.2{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 4 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{td}, J=8.4,2.8 \mathrm{~Hz}$, 2H), $2.53(\operatorname{td}, J=10.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\left(101 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 146.0,129.4,127.6\right.$, 127.1, 67.8, 46.1, 31.2. IR (cm ${ }^{-1}$ ): v 3423, 1647, 1496, 1250, 1226, 1019, 1095,757, 702. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}, 216.1131$, found 216.1132.

3-(4-(Tert-butyl)phenyl)-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1b)


Compound 1b was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4$ : 1) as a white solid in $42 \%$ yield ( 1.2 g ) over 3 steps. m.p.: 172.8 $175.3^{\circ} \mathrm{C} .\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\boldsymbol{d}_{\mathbf{6}}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{p}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{td}, J=8.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{td}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\mathbf{6}}$ ) $\delta 157.7,151.4,135.8,134.4,75.7,55.1,43.5,40.7,38.7$. IR ( $\mathbf{c m}^{-1}$ ): $v 3352,2961$, 1363, 1176, 1036, 1011, 832, 815. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}, 272.1757$, found 272.1768 .

3-(3-Chlorophenyl)-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1c)


Compound 1c was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=4: 1)$ as a white solid in $30 \%$ yield ( 749 mg ) over 3 steps. m.p.: $141.5-143.6^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{3} \mathrm{OD}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 4 \mathrm{H}), 3.31-$ $3.23(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{td}, J=8.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{td}, J=9.2,2.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$ ) $\delta$ 148.5, 135.3, 130.9, 127.8, 127.2, 126.1,
67.8, 46.0, 31.0. IR (cm ${ }^{-1}$ ): v 3218, 2935, 1597, 1419, 1252, 1094, 848, 785. HRMS: m/z: [M $+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}_{2}{ }^{+}, 250.0742$, found 250.0741.

3-(Naphthalen-1-yl)-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1d)


Compound 1d was obtained by column chromatography (PE : EA $=4: 1)$ as a white solid in $45 \%$ yield ( 1.2 g ) over 3 steps. m.p.: $130.5-132.7{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{3} \mathrm{OD}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 3 \mathrm{H}), 3.48-$ $3.39(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{td}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.57(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CD $\mathbf{3 O D}_{3}$ OD $\delta 143.4,135.0,133.7,129.1,128.6,128.6,127.0,126.4,126.3$, 125.7, 67.9, 46.0, 31.4. IR (cm ${ }^{-1}$ ): v 1634, 1507, 1243, 1222, 1092, 1017, 941, 828. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{+}, 266.1288$, found 266.1287.

3-Propyl-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1e)


Compound $\mathbf{1 e}$ was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white amorphous solid in $31 \%$ yield ( 562.1 mg ) over 3 steps. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 2.76-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.51$ $-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathbf{M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 44.6,40.6,26.5,21.6,14.4 . \mathbf{I R}^{\left(\mathbf{c m}^{-1}\right)}$ : $v 1465,1245,1215,1070,1001,933$, 861, 824. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}^{+}$, 204.1107, found 204.1107.

3-Cyclohexyl-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1f)


Compound 1f was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=4: 1)$ as a white solid in $34 \%$ yield ( 752.4 mg ) over 3 steps. m.p.: $142.1-$ $143.7{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{dt}, J=8.0$, $2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{dt}, J=9.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.35-$ $1.18(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 67.8,46.5,43.0,32.5$, 31.3, 27.6, 27.2. IR (cm ${ }^{-1}$ ): v 3425, 3157, 2924, 2852, 1638, 1446, 1252, 1127. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+}, 222.1601$, found 222.1601.

3-((Phenylthio)methyl)-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1g)


Compound 1 g was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=$ $4: 1$ ) as a white solid in $48 \%$ yield ( 1.3 g ) over 3 steps. m.p.: 137.9 $139.6^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{3} \mathbf{O D}\right) \delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 137.8,130.6,129.9,127.0,68.1,44.1,41.2,26.5$. IR ( $\mathbf{c m}^{-1}$ ): v 3137, 2924, 2853, 1581, 1480, 1260, 994, 741. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{+}$, 262.1009, found 262.1008 .

3-Methyl-3-phenyl-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1h)


Compound $\mathbf{1 h}$ was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white solid in $36 \%$ yield ( 825.4 mg ) over 3 steps. m.p.: $130.2-$ $132.6{ }^{\circ} \mathrm{C}$. Major isomer: ${ }^{1} \mathbf{H}$ NMR ( $\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.32$ $-7.23(\mathrm{~m}, 5 \mathrm{H}), 3.05(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~d}, J=13.2,2 \mathrm{H}), 1.62(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 152.2,129.2,126.3,126.0,67.8,49.8,37.0,33.6$. Minor isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 5 \mathrm{H}), 2.96(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 152.2,127.9$, $125.0,124.6,65.4,48.7,33.7,31.8$. IR (cm$\left.{ }^{-1}\right): v 1181,1118,1063,1009,983,861,816,701$. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}^{+}, 252.1107$, found 252.1107.

3-Methyl-3-(thiophen-2-yl)-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1i)


Compound $\mathbf{1 i}$ was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4$ : 1) as a white amorphous solid in $31 \%$ yield ( 729.4 mg ) over 3 steps. Major isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ C D} \mathbf{3} \mathbf{O D}$ ) $87.85-7.74(\mathrm{~m}, 1 \mathrm{H}), 6.98$ $-6.77(\mathrm{~m}, 3 \mathrm{H}), 2.99-2.81(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101
$\left.\mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 127.7,127.6,123.8,123.0,66.6,52.3,32.9,30.5$. Minor isomer: ${ }^{1} \mathbf{H} \mathbf{N M R}$ (400 MHz, CD $\mathbf{C O D}^{\mathbf{O D})} 87.63-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.05(\mathrm{~m}, 3 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.01$ $(\mathrm{m}, 2 \mathrm{H}), 2.73-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 157.8$,
127.6, 127.3, 123.4, 52.0, 32.5, 34.5, 31.0. IR (cm ${ }^{-1}$ ): v 3855, 3676, 3387, 2934, 1638, 1418, 1232, 1025. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaOS}^{+}, 258.0672$, found 258.0672.

3-(1H-1,2,3-triazol-4-yl)-3',4'-dihydro-2'H-spiro[cyclobutane-1,1'-naphthalen]-3-ol (1j)


Compound $\mathbf{1} \mathbf{j}$ was obtained by column chromatography (PE: EA $=4$ : 1) as a white solid in $27 \%$ yield ( 510.3 mg ) over 3 steps. m.p.: $168.7-$ $171.1^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{\mathbf{3}} \mathrm{OD}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.05$ $(\mathrm{m}, 4 \mathrm{H}), 2.95(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=12.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ $(\mathrm{dt}, J=14.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.9,139.1,128.9,127.9,126.7,126.3,53.4,50.2,33.9,31.5,29.3$, 23.7. IR (cm ${ }^{-1}$ ): v 3384, 2939, 2865, 1488, 1448, 1217, 1123, 1020. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}, 256.1444$, found 256.1446.

2-(Thiophen-3-yl)-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1k)


Compound $1 \mathbf{k}$ was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white amorphous solid in $18 \%$ yield ( 398.3 mg ) over 5 steps. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=4.8,2.8 \mathrm{~Hz} 1 \mathrm{H}), 7.15(\mathrm{dt}, J=3.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.45$ (m, 2H), 2.34 - $2.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 141.3,129.2,125.8,122.8,76.1$, 48.3, 35.2, 23.1. IR (cm ${ }^{-1}$ ): v 3191, 2951, 1413, 1242, 1126, 1003, 852, 782. HRMS: m/z: [M $+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaOS}^{+}, 244.0515$, found 244.0515 .

2-Methyl-2-(p-tolyl)-1-(1H-1,2,3-triazol-4-yl)cyclobutan-1-ol (1I)


Compound 11 was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white solid in $23 \%$ yield ( 558.9 mg ) over 5 steps. m.p.: $200.3-202.6{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d $\boldsymbol{d}_{6}$ ) 7.74 (s, 1H), $7.09(\mathrm{~s}, 4 \mathrm{H}), 2.89(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.69(\mathrm{q}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{t}, J=$ 27.8, 27.1, 20.1. IR (cm ${ }^{-1}$ ): v 3161, 3116, 3028, 2951, 1515, 1160, 1072, 1027. HRMS: m/z:
$[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}^{+}, 266.1264$, found 266.1263.

Cis-7-(1H-1,2,3-triazol-4-yl)bicyclo[4.2.0]octan-7-ol (1m)

relative configuration

Compound 1m was obtained by column chromatography (PE: EA $=4$ :

1) as a white solid in $18 \%$ yield ( 444.5 mg ) over 3 steps. m.p.: $152.5-$ $155.1^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $\left.\mathbf{4 0 0} \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79$ $-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D}_{3} \mathbf{O D}\right) \delta 70.1,44.9,38.8,26.9,25.2,23.7,22.8,22.6 . \mathbf{I R}\left(\mathbf{c m}^{-1}\right): v 3136,2939,1490$, 1215, 1115, 1068, 843, 751. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}^{+}$, 264.1107, found 264.1107.

Cis-1-(1H-1,2,3-triazol-4-yl)-1,2,2a,3,4,8b-hexahydrocyclobuta[a]naphthalen-1-ol (1n)


Compound 1n was obtained by column chromatography (PE : EA $=4$ : 1) as a white solid in $39 \%$ yield ( 940.4 mg ) over 3 steps. m.p.: $161,5-$ $163.6^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.33-6.95(\mathrm{~m}$, $4 \mathrm{H}), 3.40-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.43$ $(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101$ $\left.\mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 139.3,129.5,128.6,127.3,126.8,47.2,45.6,29.4,29.2,22.5$. IR ( $\mathbf{c m}^{-1}$ ): $v$ 3384 2939, 2865, 1189, 1448, 1217, 1020, 983. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}, 256.1444$, found 256.1446.

Cis-3-(1H-1,2,3-triazol-4-yl)tricyclo[4.2.1.02,5]nonan-3-ol (10)


Compound 10 was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4$ :

1) as a white solid in $24 \%$ yield $(492.5 \mathrm{mg})$ over 3 steps. m.p.: $187.5-$ $188.8{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{H}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 2.59-2.43(\mathrm{~m}$, $2 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 2.00$ (dd, $J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=10.0 \mathrm{~Hz}$,
34.7, 29.1, 29.1. IR (cm ${ }^{-1}$ ): v 3417, 2958, 2872, 1637, 1459, 1164, 1141, 1026. HRMS: m/z:
$[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{NaO}^{+}$, 276.0874, found 276.0873.

3-Ethoxy-1-(1H-1,2,3-triazol-4-yl)spiro[3.5]nonan-1-ol (1p)


Compound 1p was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=4: 1)$ as a white solid in $13 \%$ yield $(326.5 \mathrm{mg})$ over 5 steps. m.p.: $162.8-$
$164.7{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 2.68-2.55(\mathrm{~m}$, $2 \mathrm{H}), 2.02(\mathrm{td}, J=16.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 7 \mathrm{H}), 1.27-1.15(\mathrm{~m}$, $5 \mathrm{H}), 0.89-0.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 67.8,46.5,43.0,32.5,31.3,27.6$, 27.2. IR (cm ${ }^{-1}$ ): v 3385, 2924, 2850, 1447, 1251, 1192, 1127, 1048. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{K}]^{+}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{KO}^{+}, 260.1160$, found 260.1169.

1-(1H-1,2,3-triazol-4-yl)cyclopentan-1-ol (1q)


Compound $1 \mathbf{q}$ was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white solid in $32 \%$ yield ( 480.2 mg ) over 3 steps. m.p.: $122.8-124.7^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{D}_{3} \mathrm{OD}\right) \delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 2.15-1.91(\mathrm{~m}, 6 \mathrm{H}), 1.81(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 79.0,41.9,24.4$. IR ( $\left.\mathbf{c m}^{-1}\right): v 3423$, 2962, 1638, 1450, 1251, 1384, 1208, 1025. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}^{+}, 176.0794$, found 176.0789.

1-(1H-1,2,3-triazol-4-yl)cyclohexan-1-ol (1r)



Compound 1r was obtained by column chromatography (PE: EA $=4: 1$ ) as a white solid in $38 \%$ yield ( 635.4 mg ) over 3 steps. m.p.: $127.5-128.9^{\circ} \mathrm{C}$, reported m.p. $128-129^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 2.05$ $-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H})$, 1.46 - $1.33(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 70.0,39.0,26.5,23.0$. IR ( $\mathbf{c m}^{-1}$ ): v 1643, 1449, 1154, 1065, 1037, 1016, 978, 849. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}^{+}$, 190.0951, found 190.0951.

1-(1H-1,2,3-triazol-4-yl)cycloheptan-1-ol (1s)


Compound 1s was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white solid in $48 \%$ yield ( 869.4 mg ) over 3 steps. m.p.: $129.4-131.3^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{\mathbf{3}} \mathbf{O D}\right) \delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 2.21-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dt}, J=$ $13.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.45(\mathrm{~m}, 8 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 73.9$, 42.8, 30.5, 22.9. IR ( $\mathbf{c m}^{-1}$ ): v 3123, 2932, 2371, 2276, 1546, 1464, 1145, 1032.

HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}$, 182.1288, found 182.1283 .

1-(1H-1,2,3-triazol-4-yl)cyclooctan-1-ol (1t)


Compound 1t was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white solid in $51 \%$ yield ( 995.9 mg ) over 3 steps. m.p.: $136.1-138.5^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{D}_{\mathbf{3}} \mathbf{O D}\right) \delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=7.6,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.70$ $(\mathrm{tt}, J=12.8,6.2 \mathrm{~Hz}, 5 \mathrm{H}), 1.62-1.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right)$ $\delta 73.7,37.3,29.3,25.7,22.8$. IR ( $\mathbf{c m}^{-1}$ ) : v 3123, 2933, 2370, 2279, 1546, 1463, 1171, 1033. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}, 196.1444$, found 196.1438.

1-Phenyl-1-(1H-1,2,3-triazol-4-yl)ethan-1-ol (1u)


Compound 1u was obtained by column chromatography (PE: EA $=4: 1$ ) as a white solid in $41 \%$ yield ( 775.8 mg ) over 3 steps. m.p.: $131.1-133.8^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{H}_{3} \mathrm{OD}\right) \delta 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 148.0,129.0,128.0,126.2,72.5,30.8 . \operatorname{IR}\left(\mathbf{c m}^{-1}\right): v 3386,2935,1636,1448,1373$, 1214, 1128, 1028. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}^{+}, 212.0794$, found 212.0794.
(Z)-N-((2-oxo-4-phenylcyclopentylidene)methyl)benzamide (3a)


According to the procedure E, 3a was obtained by the reaction of $\mathbf{1 a}$ and
2a. Compound 3a was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=$ $25: 1$ ) as a white solid in $82 \%$ yield ( 23.9 mg ). m.p.: $102.6-104.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 11.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J$ $=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 3.47-$ $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=18.0,10.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 208.5,164.6,143.1,132.8,132.0,130.9,128.8$, 128.6, 127.7, 126.7, 126.6, 115.8, 46.8, 40.4, 35.6. IR ( $\mathbf{c m}^{-1}$ ): v 3380, 2978, 1683, 1594, 1353, 1270, 1173, 696. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NNaO}_{2}{ }^{+}, 314.1152$, found 314.1151 .
(Z)-4-methyl- $N$-((2-oxo-4-phenylcyclopentylidene)methyl)benzamide (3b)


According to the procedure $\mathrm{E}, \mathbf{3 b}$ was obtained by the reaction $\mathbf{1 a}$ and 2b. Compound 3b was obtained by column chromatography (PE : EA $=25: 1)$ as a white solid in $78 \%$ yield $(23.8 \mathrm{mg})$. m.p.: $105.8-107.4^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 11.93(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J$ $=10.8,11 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 7 \mathrm{H}), 3.60-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-$ $2.76(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=17.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $208.5,164.7,143.7,143.3,131.2,129.6,129.3,128.7,127.8,126.8,126.7,115.5,46.9,40.5$, 35.7, 21.6. IR (cm ${ }^{-1}$ ): v 3095, 1697, 1597, 1509, 1394, 1354, 1172, 696. HRMS: m/z: $[\mathrm{M}+$ $\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}, 328.1308$, found 328.1306.
(Z)- $N$-((2-oxo-4-phenylcyclopentylidene)methyl)-2-naphthamide (3c)


According to the procedure $\mathrm{E}, \mathbf{3} \mathbf{c}$ was obtained by the reaction $\mathbf{1 a}$ and 2c. Compound $\mathbf{3 c}$ was obtained by column chromatography (PE: $\mathrm{EA}=25: 1)$ as a white solid in $74 \%$ yield $(25.3 \mathrm{mg})$. m.p.: $108.2-$ $110.6{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 12.04(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.89$ $(\mathrm{m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.44(\mathrm{p}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ $(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, J=17.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ (126 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 208.6,164.7,143.2,135.3,132.5,131.0,129.3,129.2,129.0,128.8,128.7$, 128.4, 127.7, 127.0, 126.7, 126.7, 123.6, 115.8, 46.9, 40.5, 35.7. IR ( $\mathbf{c m}^{-1}$ ): v 3130, 2957, 2917,

2850, 1697, 1597, 1394, 1172. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}, 364.1308$, found 364.1307 .
(Z)-N-((4-(4-(tert-butyl)phenyl)-2-oxocyclopentylidene)methyl)benzamide (3d)
 According to the procedure E, $\mathbf{3 d}$ was obtained by the reaction $\mathbf{1 b}$ and 2a. Compound $\mathbf{3 d}$ was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=25: 1)$ as a white solid in $75 \%$ yield $(26.1 \mathrm{mg}) . \mathbf{m} . \mathbf{p}$. : 145.1 - $147.5^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 11.90(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.39(\mathrm{mz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 2 \mathrm{H})$, $2.57(\mathrm{dd}, J=17.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 208.8,164.7$, $149.7,140.1,132.8,132.2,130.9,128.9,127.8,126.4,125.6,116.0,47.0,40.1,35.7,34.4$, 31.3. IR (cm ${ }^{-1}$ ): v 3108, 1697, 1604, 1264, 1169, 879, 699, 562. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NNaO}_{2}{ }^{+}, 370.1778$, found 370.1778 .
(Z)- $N$-((4-(3-chlorophenyl)-2-oxocyclopentylidene)methyl)benzamide (3e)


According to the procedure E, $\mathbf{3 e}$ was obtained by the reaction $\mathbf{1 c}$ and 2a. Compound 3e was obtained by column chromatography (PE: EA = 25: 1) as a white solid in $66 \%$ yield ( 21.5 mg ). m.p.: $127.6-129.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 11.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-23.47(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.62$ $(\mathrm{dd}, J=18.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 207.9,164.8,145.3,134.5$, $132.9,132.1,131.3,130.0,128.9,127.8,127.0,127.0,124.9,115.3,46.6,40.2,35.5 . \mathbf{I R ~ ( c m}^{-}$ ${ }^{1}$ ): $v 3135,1695,1398,1172,1114,1082,698,687$. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNNaO}_{2}^{+}, 348.0759$, found 348.0762.
(Z)- $N$-((4-(naphthalen-2-yl)-2-oxocyclopentylidene)methyl)benzamide (3f)


According to the procedure $\mathrm{E}, \mathbf{3 f}$ was obtained by the reaction $\mathbf{1 d}$ and 2a. Compound $\mathbf{3 f}$ was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=25: 1)$ as a white solid in $92 \%$ yield $(31.4 \mathrm{mg}) . \mathbf{m} . \mathbf{p}$. : $111.5-113.6^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 11.91(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40$ $-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.87-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{dd}, J=18.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 208.5$, $164.7,140.5,133.4,132.8,132.3,132.1,131.0,128.9,128.5,127.8,127.6,127.6,126.2,125.7$, 125.2, 124.9, 115.8, 46.8, 40.6, 35.6. IR (cm ${ }^{-1}$ ) : v 3128, 2918, 1693, 1400, 1351, 1168, 1008, 701. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{2}^{+}, 364.1308$, found 364.1309.
(Z)- $N$-((2-oxo-4-propylcyclopentylidene)methyl)benzamide ( $\mathbf{3 g}$ )


According to the procedure $\mathrm{E}, \mathbf{3 g}$ was obtained by the reaction $\mathbf{1 e}$ and $\mathbf{2 a}$. Compound 3 g was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=25$ : 1) as a white amorphous solid in $72 \%$ yield ( 18.5 mg ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0}$
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 11.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.449(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{dd}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=18.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-$ $2.16(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dd}, J=18.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.87$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 209.9,164.7,132.7,132.2,130.4,128.8$, 127.7, 116.4, 46.3, 37.9, 35.2, 34.1, 20.8, 14.1. IR (cm ${ }^{-1}$ ): v 3125, 1696, 1611, 1394, 1168, 1103, 1066, 703. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}, 280.1308$, found 280.1309.
(Z)-N-((4-cyclohexyl-2-oxocyclopentylidene)methyl)benzamide (3h)


According to the procedure $\mathrm{E}, \mathbf{3 h}$ was obtained by the reaction $\mathbf{1 f}$ and 2a. Compound 3h was obtained by column chromatography (PE : EA $=25: 1)$ as a amorphous solid in $81 \%$ yield ( 24.1 mg ). m.p.: $128.1-$
$129.8^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 11.93(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=$ $17.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=18.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.31-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{q}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( 1 2 6 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 209.9,164.6,132.7,132.2,130.2,128.8,127.7,116.8,44.5,43.3,41.6,32.3,31.4$, 30.7, 26.4, 26.1, 26.0. IR ( $\mathbf{c m}^{-1}$ ): v 3133, 2925, 2850, 1602, 1505, 1348, 1166, 704. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{2}{ }^{+}, 320.1621$, found 320.1620 .
(Z)-N-((2-oxo-4-((phenylthio)methyl)cyclopentylidene)methyl)benzamide (3i)


According to the procedure $\mathrm{E}, \mathbf{3 i}$ was obtained by the reaction $\mathbf{1 g}$ and 2a. Compound 3i was obtained by column chromatography (PE : EA $=25: 1)$ as a white solid in $80 \%$ yield $(27.0 \mathrm{mg})$. m.p.: $125.7-$ $128.1^{\circ} \mathrm{C} . \mathbf{~}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 11.91(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{q}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 208.3,164.6,135.7,132.8,132.0,131.3,129.7,129.0,128.9$, $127.7,126.4,115.3,45.4,39.3,34.7,33.3$. IR ( $\mathbf{c m}^{-1}$ ): v 3103,1693, 1692, 1506, 1259, 1177 , 1160, 702. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 360.1029$, found 360.1024.
(Z)- $N$-((4-methyl-2-oxo-4-phenylcyclopentylidene)methyl)benzamide (3j)


According to the procedure $\mathrm{E}, \mathbf{3} \mathbf{j}$ was obtained by the reaction $\mathbf{1 h}$ and 2a. Compound 3j was obtained by column chromatography (PE: EA $=25: 1)$ as a white solid in $87 \%$ yield ( 26.7 mg ). m.p.: $109.8-$ $110.3^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 11.93(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{dd}, J=14.8,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.20$ $(\mathrm{m}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=14.8,1 \mathrm{H}), 2.98-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 208.3,164.7,148.2,132.8,132.1,131.5,128.9,128.6,127.8$, $126.3,125.4,115.6,53.0,42.9,41.3,30.2 . \operatorname{IR}\left(\mathbf{c m}^{-1}\right): v 3133,1693,1613,1510,1401,1348$, 1401, 1171, 698. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}, 328.1308$, found
(Z)-N-((4-methyl-2-oxo-4-(thiophen-2-yl)cyclopentylidene)methyl)benzamid (3k)


According to the procedure $\mathrm{E}, \mathbf{3 k}$ was obtained by the reaction $\mathbf{1 i}$ and $\mathbf{2 a}$. Compound $\mathbf{3 k}$ was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=25: 1)$ as a white solid in $86 \%$ yield ( 26.8 mg ). m.p.: $101.4-103.1^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 11.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 1 \mathrm{H})$, $3.12(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 207.7,164.7,153.0,132.9,132.1,131.6,128.9,127.8,126.7,123.4$, $122.5,115.4,55.1,43.7,41.4,29.7$. IR ( $\mathbf{c m}^{-1}$ ): v 3135, 1697, 1613, 1508, 1398, 1348, 1261, 701. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 334.0872$, found 334.0875 .
(Z)-N-((3-oxo-3',4'-dihydro-2'H-spiro[cyclopentane-1, 1'-naphthalen]-4ylidene)methyl)benzamide (31)


According to the procedure E, $\mathbf{3 1}$ was obtained by the reaction $\mathbf{1 j}$ and $\mathbf{2 a}$. Compound 31 was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=25$ : 1) as a white solid in $82 \%$ yield ( 27.2 mg ). m.p.: $139.4-141.8^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 12.00(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.50$ $(\mathrm{m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 3 \mathrm{H}), 3.08(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 3 \mathrm{H}), 2.58(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 209.0,164.7,142.1,136.9,132.7,132.1,131.2,129.4,128.9,127.8,126.3$, $\left.126.2,126.1,115.8,55.7,43.6,41.6,37.0,30.2,19.8 . \mathbf{I R ~ ( c m}^{-1}\right): v 3103,1693,1609,1506$, 1394, 1259, 1177, 702. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2}{ }^{+}, 354.1465$, found 354.1470 .
( $Z$ )- N -((2-oxo-5-(thiophen-3-yl)cyclopentylidene)methyl)benzamide (3m) and (Z)-N-((2-oxo-3-(thiophen-3-yl)cyclopentylidene)methyl)benzamide (3m')


According to the procedure $\mathrm{E}, \mathbf{3 m}$ was obtained by the reaction $\mathbf{1 k}$ and $\mathbf{2 a}$. Compound $\mathbf{3 m}$ and $\mathbf{3 m} \mathbf{m}^{\prime}$ were obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=25$ : 1) as a white amorphous solid in $71 \%$ yield ( 21.1 mg ), the mixture could not be isolated by column chromatography. For major product $\mathbf{3 m}:{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 12.11(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.44 \mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 209.5,164.8,144.0,133.0,132.9,133.7,128.9,127.9,126.7,126.6$, 121.4, 120.0, 41.4, 38.4, 30.8. IR (cm ${ }^{-1}$ ): v 3099, 1693, 1610, 1506, 1394, 1259, 1066, 703. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 320.0716$, found 320.0718.
(Z)-N-((2-methyl-5-oxo-2-(p-tolyl)cyclopentylidene)methyl)benzamide (3n)


According to the procedure E, $\mathbf{3 n}$ was obtained by the reaction $\mathbf{1 l}$ and $\mathbf{2 a}$. Compound $\mathbf{3 n}$ was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=25: 1)$ as a white solid in $74 \%$ yield $(23.6 \mathrm{mg})$. m.p.: $178.5-180.8^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left.\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right) \delta 12.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50$ $-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s},, 3 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 210.0,164.9,144.4,136.0,132.9,132.7,132.2,129.1,128.9,127.8,126.2,124.9,47.1,38.1$, 36.8, 29.0, 20.8. IR ( $\mathbf{c m}^{-1}$ ): v 3104, 1608, 1508, 1506, 1398, 1261, 1182, 819. HRMS: m/z: [M $+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NNaO}_{2}{ }^{+}, 342.1465$, found 342.1466 .

Cis- N -2-oxooctahydro-1H-inden-1-ylidene)methyl)benzamide (30) and Cis -( Z )- N -((2-oxooctahydro-1 $H$-inden-1-ylidene)methyl)benzamide (3o')


According to the procedure E, $\mathbf{3 0}$ was obtained by the reaction $\mathbf{1 m}$ and $\mathbf{2 a}$. Compound $\mathbf{3 o}$ and $\mathbf{3 o}^{\prime}$ were obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=25$ : 1) as a white amorphous solid in $82 \%$ yield ( 21.9 mg ),
the mixture could not be isolated by column chromatography and distinguished by ${ }^{1} \mathrm{H} N \mathrm{NR}$. For major product 3o: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 11.97(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 3 \mathrm{H}), 2.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=$ $17.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=17.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.16(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 210.9,164.7,132.7$, $132.3,130.3,128.8,127.7,119.1,45.0,39.3,34.8,28.4,26.7,23.6,21.1 . \mathbf{I R}\left(\mathbf{c m}^{-1}\right): v 3099$, 1693, 1610, 1506, 1394, 1259, 1066, 703. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}$, 292.1308, found 292.1306 .

Cis-(Z)-N-((2-oxo-1,2,3a,4,5,9b-hexahydro-3H-cyclopenta[a]naphthalen-3ylidene)methyl)benzamide (3p) and Cis-(Z)- N -((1-oxo-1,3,3a,4,5,9b-hexahydro-2Hcyclopenta $[a]$ naphthalen-2-ylidene)methyl)benzamide (3p')


According to the procedure E, $\mathbf{3 p}$ was obtained by the reaction $\mathbf{1 n}$ and $\mathbf{2 a}$. Compound $\mathbf{3 p}$ and $\mathbf{3 p}$ ' were obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=25: 1)$ as a white amorphous solid in $74 \%$ yield $(23.6 \mathrm{mg})$, the mixture could not be isolated by column chromatography and distinguished by ${ }^{1} \mathrm{H}$ NMR. For major product $\mathbf{3 p}:{ }^{1} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 12.03(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.04(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.53$ (m, 4H), 2.06-1.75 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 211.1,164.7,137.8,136.3,132.8$, $132.1,131.8,128.9,128.9,128.7,127.8,126.4,126.2,114.9,49.3,37.4,35.2,28.0,21.8$. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}, 340.1308$, found 340.1314.

Cis-(Z)- $N$-((2-oxooctahydro-1H-4,7-methanoinden-1-ylidene)methyl)benzamide (3q) and Cis-(Z)-$N$-((1-oxooctahydro-2H-4,7-methanoinden-2-ylidene)methyl)benzamide (3q')


According to the procedure E, $\mathbf{3 q}$ was obtained by the reaction $\mathbf{1 0}$ and $\mathbf{2 a}$. Compound $\mathbf{3 q}+\mathbf{3 q} \mathbf{q}^{\prime}$ were obtained by column chromatography (PE: $\mathrm{EA}=25: 1$ ) as a white amorphous solid in $72 \%$
yield ( 20.2 mg ), the mixture could not be isolated by column chromatography and distinguished by ${ }^{1} \mathrm{H}$ NMR. For major product $\mathbf{3 q}:{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 12.26-12.12(\mathrm{~m}, 1 \mathrm{H}), 8.12$ $-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.46(\mathrm{~m}, 4 \mathrm{H}), 3.09-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.49(\mathrm{~m}$, 2H), $1.36-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 211.9,164.8$, $132.8,132.4,132.2,130.9,127.8,120.1,48.5,45.3,44.7,43.3,40.4,32.5,28.8,28.2$. IR (cm $\left.{ }^{1}\right): v 3104,1691,1600,1398,1353,1256,1128,703$. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}, 304.1308$, found 304.1312.
(Z)-N-((4-ethoxy-2-oxospiro[4.5]decan-1-ylidene)methyl)benzamide (3r)


According to the procedure $\mathrm{E}, \mathbf{3 r}$ was obtained by the reaction $\mathbf{1 p}$ and $\mathbf{2 a}$. Compound $3 \mathbf{r}$ was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=25: 1)$ as a white amorphous solid in $74 \%$ yield ( 24.1 mg ). m.p.: $147.2-149.8^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 11.93(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64-7.44(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=18.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.62(\mathrm{~m}, 6 \mathrm{H})$, $1.35-1.11(\mathrm{~m}, 5 \mathrm{H}), 1.04-0.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 210.0,164.7,132.73$, $132.3,130.3,128.9,127.8,116.9,44.6,43.4,41.7,32.3,31.5,30.8,26.4,26.1$. IR ( $\mathbf{c m}^{-1}$ ): $v$ 3158, 1670, 1597, 1504, 1398, 1353, 1262, 703. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{3}{ }^{+}, 350.1727$, found 350.1727 .

Ethyl 6-hydroxy-2-phenyl-2,3-dihydro-1 $H$-indene-5-carboxylate (4)


According to the procedure G, 4 was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=40: 1)$ as colorless oil in $61 \%$ yield $(17.2 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 10.89(\mathrm{~s}, 1 \mathrm{H}), 7.69$ ( s , $1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.68(\mathrm{p}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.94(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) 170.5,161.2,152.1,144.9,134.7,128.5,126.9,126.4,124.7,113.0$, 110.6, 61.2, 45.5, 41.2, 39.7, 14.2. IR (cm ${ }^{-1}$ ): v 3209, 1670, 1398, 1267, 1059, 1179, 796, 699. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}, 283.1328$, found 283.1326.

6-Phenyl-3,5,6,7-tetrahydrocyclopenta $[c][1,2,6]$ thiadiazine 2,2-dioxide (5)


According to the procedure $\mathrm{H}, 5$ was obtained by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ as a white solid in $72 \%$ yield (17.9 mg). m.p.: $99.8-101.7^{\circ}{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{H}} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{\mathbf{O}} \mathbf{O D}\right) \delta 7.47$ $(\mathrm{s}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.14(\mathrm{dq}, J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{p}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.96-2.79(m, 2H), $2.62(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CD $\left.\mathbf{H}_{3} \mathbf{O D}\right) \delta 175.7,154.1,146.4,129.5,127.8,127.3,109.3,44.2,44.1,37.6 . \mathbf{I R}^{\left(\mathbf{c m}^{-}\right.}$ $\left.{ }^{1}\right): v 3148,2551,1646,1522,1398,1171,1116,700$. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}, 271.0512$, found 271.0515 .

1,5-Diphenyl-1,4,5,6-tetrahydrocyclopenta [c]pyrazole (6)


According to the procedure I, $\mathbf{6}$ was obtained by column chromatography
$(\mathrm{PE}: \mathrm{EA}=50: 1)$ as colorless oil in $57 \%$ yield $(14.8 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{p}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.2,145.2,140.9,129.4$, 128.6, 127.0, 126.4, 125.9, 125.6, 120.6, 118.6, 50.3, 33.3, 32.1. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2}{ }^{+}, 261.1386$, found 261.1386 .

Cis- N -((2-oxo-4-phenylcyclopentyl)methyl)benzamide (7)


NHBz
7
relative configuration

According to the procedure J, 7 was obtained by column chromatography (PE : EA= $10: 1$ ) as colorless oil in 75\% yield (22.0 $\mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-$
$7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 4.06-$ $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.36 \mathrm{~m}, 2 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.31(\mathrm{~m}$, $1 \mathrm{H}), 1.79(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 167.4,142.2,134.2,131.5$, $128.7,128.6,126.9,126.9,126.7,50.5,45.8,39.9,39.1,35.4 . \mathbf{I R}\left(\mathbf{c m}^{-1}\right): v 3096,1697,1597$, 1509, 1394, 1354, 1270, 696. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}, 316.1308$, found 316.1306 .

1-(2-acetyl-2H-1,2,3-triazol-4-yl)-3-phenylcyclobutyl acetate (8a)


8a

According to the procedure E, 8a was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=40: 1)$ as colorless oil in $69 \%$ yield $(20.6$ $\mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}$, $3 \mathrm{H}), 2.72(\mathrm{td}, J=10.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 169.7,166.1,154.2,143.3,137.2,128.5,126.5,126.4,72.0$, 42.3, 31.7, 22.2, 21.2. IR (cm ${ }^{-1}$ ): v 3473, 2927, 1765, 1741, 1287, 1251, 1224, 935. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}, 300.1343$, found 300.1328.

1-(2-(cyclohexanecarbonyl)-2H-1,2,3-triazol-4-yl)-3-phenylcyclobutyl
cyclohexanecarboxylate ( $\mathbf{8 b}$ )


According to the procedure E, 8b was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=40: 1)$ as colorless oil in $42 \%$ yield $(18.2$ $\mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.66(\mathrm{tt}, \mathrm{J}=11.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.39(\mathrm{~m}$, $1 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{td}, \mathrm{J}=10.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{tt}, \mathrm{J}=$ $11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.95-\mathrm{m}, 4 \mathrm{H}), 1.81-1.71(\mathrm{~m}$, $3 \mathrm{H}), 1.65(\mathrm{dd}, \mathrm{J}=12.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 5 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 174.8,171.7,154.1,143.6,136.6,128.5,126.4,126.4,72.0,43.0,42.4,42.3$, $31.8,29.1,28.8,25.6,25.4,25.3,25.3 . \operatorname{IR}\left(\mathbf{c m}^{-1}\right): v 2933,2856,1751,1705,1449,1317,1254$, 937. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}, 436.2595$, found 436.2574.
(4-(Cyclopent-1-en-1-yl)-1H-1,2,3-triazol-1-yl)(phenyl)methanone (8c)


Compound 8a was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=40$ :

1) as colorless oil in $71 \%$ yield ( 17.0 mg ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.10-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.29-6.21(\mathrm{~m}$, $1 \mathrm{H}), 2.70-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 160.7,149.4,130.1,129.9,128.7,127.9,127.5,126.2,124.0,33.2,32.1,23.2$. IR (cm ${ }^{-1}$ ): $v 3440,2955,1683,1448,1481,1448,1128,712$. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}^{+}, 240.1131$, found 240.1131 .
(4-(Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)(phenyl)methanone (8d)


Compound 8d was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=40$ : 1) as colorless oil in $68 \%$ yield ( 17.2 mg ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.47-6.40(\mathrm{~m}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 160.3,152.5,130.0,128.7,127.7,126.1,124.9,122.0,25.2$, 24.6, 22.1, 22.1. IR (cm ${ }^{-1}$ ): v 1727, 1684, 1683, 1449, 1482, 1449, 1250, 1026. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}^{+}, 276.1107$, found 276.1104.
(4-(cyclohept-1-en-1-yl)-1H-1,2,3-triazol-1-yl)(phenyl)methanone (8e)


Compound 8d was obtained by column chromatography ( $\mathrm{PE}: \mathrm{EA}=40$ : 1) as colorless oil in $74 \%$ yield $(19.8 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.47-6.40$ $(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.66(\mathrm{~m}$, 2H). ${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $160.6,153.1,131.5,130.0,129.7,128.7,127.6,126.1,122.7,32.3,29.6,28.5,26.6,26.5$. IR (cm ${ }^{-1}$ ): v 2922, 1562, 1537, 1486, 1448, 1132, 1069, 710. HRMS: m/z: $[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{-}, 266.1294$, found 266.1300.
(4-(cyclooct-1-en-1-yl)-1H-1,2,3-triazol-1-yl)(phenyl)methanone (8f)


Compound $8 \mathbf{f}$ was obtained by column chromatography (PE: EA $=40$ :

1) as colorless oil in $72 \%$ yield ( 20.2 mg ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.04(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, \mathrm{J}=7.2,3.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{td}, \mathrm{J}=8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 160.4,152.4,132.3,130.0,128.7,127.9,127.6,126.1,122.6,30.0,29.0,26.6,26.5,26.0$, 25.9. IR (cm ${ }^{-1}$ ): v 2925, 1684, 1636, 1561, 1537, 1469, 1285, 774. HRMS: m/z: $[\mathrm{M}-\mathrm{H}]^{-}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{-}, 280.1450$, found 280.1462.

Phenyl(4-(1-phenylvinyl)-1H-1,2,3-triazol-1-yl)methanone (8g)


Compound $8 \mathbf{c}$ was obtained by column chromatography $(\mathrm{PE}: \mathrm{EA}=40: 1)$ as colorless oil in $51 \%$ yield ( 13.9 mg ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $8.13-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~s}$, $1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.5$, 151.1, 138.3, 136.7, 130.5, 128.8, 128.5, 128.2, 128.0, 127.3, 126.9, 126.4, 113.9. IR ( $\mathbf{c m}^{-1}$ ): v 3448, 2956, 1727, 1646, 1482, 1484, 1448, 1248. HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}^{+}, 298.0951$, found 298.0954.

## 6. X-ray structure.

The single crystal was obtained by slow evaporation of a saturated solution in ethyl acetate in a lossely capped vial. Structure information was deposited at the Cambridge Crystallographic Data Center (CCDC).

NOMOVE FORCED
$\begin{aligned} \text { Prob } & =50 \\ \text { Temp } & =293\end{aligned}$


Fig. 1. X-ray crystallographic structure of 3c (CCDC 2113582) showing thermal ellipsoid probability at $50 \%$.

The crystal was prepared by slow evaporation using petroleum ether and ethyl acetate solvent mixture (m.p: $108.2-110.6^{\circ} \mathrm{C}$ ). A single crystal of $\mathbf{3 c}$ was mounted and the diffraction data was collected at 293 K on a Rigaku SuperNova diffractometer using CrysAlisPro software, which coupled with a Mo source $(\lambda=0.71073 \AA)$. The structure of the crystal was solved by ShelXT ${ }^{7}$ and refined by ShelXL ${ }^{8}$ program based on the Olex $2^{9}$ software. The ORTEP image of compound $\mathbf{3 c}$ and crystallographic refinement parameters are given below.

Crystal Data for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}(M=341.39 \mathrm{~g} / \mathrm{mol})$ : monoclinic, space group $\mathrm{P} 2_{1 / \mathrm{c}}$ (no. 14), $a=$ $10.1851(6) \AA, b=9.5684(6) \AA, c=18.3153(10) \AA, \beta=96.013(5)^{\circ}, V=1775.10(18) \AA^{3}, Z=4, T=$ $293(2) \mathrm{K}, \mu(\mathrm{Mo} \mathrm{K} \alpha)=0.081 \mathrm{~mm}^{-1}$, Dcalc $=1.277 \mathrm{~g} / \mathrm{cm}^{3}, 7866$ reflections measured $\left(7.112^{\circ} \leqslant 2 \theta\right.$ $\left.\leqslant 57.99^{\circ}\right), 4059$ unique $\left(R_{\text {int }}=0.0423, \mathrm{R}_{\text {sigma }}=0.1153\right)$ which were used in all calculations. The final $R 1$ was $0.0652(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $\mathrm{wR}_{2}$ was 0.1955 .

## 7. References

1 A. L. Featherston, C. R. Shugrue, B. Mercado and S. J. Miller, ACS Catal., 2019, 9, 242.

2 Q.-S. Tian, B. Chen and G,-Z. Zhang, Green Chem., 2016,18, 6236.

3 J. Raushel and V. V. Fokin, Org. Lett., 2010, 12, 4952.

4 J. M. Medina, T. Kang, T. G. Erbay, H. Shao, G. M. Gallego, S. Yang, M. Tran-Dubé, P. F. Richardson, J. Derosa and R. T. Helsel, ACS Catal., 2019, 9, 11130.

5 C. R. Shugrue and S. J. Miller, Angew. Chem., Int. Ed., 2015, 54, 11173.

6 (a) J. Barluenga, C. Valdés, G. Beltrán, M. Escribano and F. Aznar, Angew. Chem., Int. Ed., 2006, 45, 6893; (b) E. J. Yoo, M. Ahlquist, S. H. Kim, I. Bae, V. V. Fokin, K. B. Sharpless and S. Chang, Angew. Chem., Int. Ed., 2007, 46, 1730.

7 G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.

8 G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

9 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, Appl. Cryst. 2009, 42, 339.

## 8. Copies of NMR spectra

The ${ }^{13} \mathrm{C}$ signals of substrates $\mathbf{1 a}-\mathbf{1 s}$ couldn't be got completely that the two carbon atoms on the triazole ring do not give signals as reported in literatures ${ }^{6}$ (ref. 6a SI page S 2 and ref. 6b SI page S 25 ), even if the time was prolonged (3h) and different solvents $\left(\mathrm{CD}_{3} \mathrm{OD}, \mathrm{CDCl}_{3}\right.$ and DMSO- $d_{6}$ ) were used.

1a

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

${ }^{1} \mathrm{H}$ NMR spectrum ( 400 MHz , DMSO- $\mathrm{d}_{6}$ )


|  |  |
| :---: | :---: |
|  |  |
|  |  |

$\underbrace{\text { さん }}$

${ }^{13} \mathrm{C}$ NMR spectrum ( 101 MHz , DMSO- $d_{6}$ )


[^0]1c

## 


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

[^1]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


윽은 芯等

1 - ~~~~


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

[^2]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )




${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

[^3]1 g

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


1h

## 


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


|  |  |  <br>  |
| :---: | :---: | :---: |
| \ | 勺x | \/ |


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


[^4]
## 


major: minor $=1: 0.6$
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

$\underbrace{\text { 品 }}$
${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

1j


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ )


${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d )

relative configuration
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )




relative configuration
${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


relative configuration
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


relative configuration
${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

[^5]
relative configuration
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


M
人

relative configuration
${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

[^6]
## 1p



H NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )




${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

[^7]$1 q$
$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$


NO
$1 q$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


19
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


[^8]1s

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )



${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


$1 t$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


[^9]3a


${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

-

${ }^{13} \mathrm{C}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## 3c



${ }^{1} \mathrm{H}$ NMR spectrum（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


|  | $\begin{aligned} & \stackrel{. ⿳ 亠 丷 厂 囗 十}{8} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$ |  <br>  |  |  |
| :---: | :---: | :---: | :---: | :---: |


${ }^{13} \mathrm{C}$ NMR spectrum（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

(

${ }^{13} \mathrm{C}$ NMR spectrum ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$3 e$




${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## 3 g



3 g
${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


|  | $\begin{aligned} & \text { E } \\ & \text { + } \\ & \stackrel{1}{i} \end{aligned}$ |  |  | \% |  | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


${ }^{13} \mathrm{C}$ NMR spectrum ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^10]3h

${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR spectrum ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


| $\begin{aligned} & \stackrel{(0}{0} \\ & \stackrel{\omega}{\tilde{\circ}} \end{aligned}$ | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: |


${ }^{13} \mathrm{C}$ NMR spectrum ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


3j

${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## $3 m$ and $3 \mathrm{~m}^{\prime}$



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 3 \mathrm{~m}: 3 \mathrm{~m}=1: 0.34$
Compounds 3 m and $3 \mathrm{~m}^{\prime}$ could not be isolates through silicagel column or plate with various eluent, such as $\mathrm{EA} / \mathrm{PE}, \mathrm{CHCl}_{3} / \mathrm{PE}, \mathrm{DCE} / \mathrm{PE}, \mathrm{MeOH} / \mathrm{PE}$ and EA/toluene, even so three-compnent solvent system (EA/DCM/PE, EA/DCM/toluene).



${ }^{3} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 3 \mathrm{~m}: 3 \mathrm{~m}=1: 0.34$


## 3n



## 


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13}$ CNMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## 30 and $30^{\prime}$


${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 30: 30$ ' $=1: 0.15$
Compounds 30 and $30^{\prime}$ could not be isolated through silicagel column or plate with various eluent, such as $\mathrm{EA} / \mathrm{PE}, \mathrm{CHCl}_{3} / \mathrm{PE}, \mathrm{DCE} / \mathrm{PE}, \mathrm{MeOH} / \mathrm{PE}$ and EA/toluene, even so three-compnent solvent



${ }^{13} \mathrm{C}$ NMR spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 30: 30^{\prime}=1: 0.15$


## $3 p$ and $3 p^{\prime}$

## 


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 3 \mathrm{p}: 3 \mathrm{p}$ ' $=1: 0.70$
Compounds $3 q$ and $3 q$ ' could be not isolates through silicagel column or plate with various eluent, such as EA/PE, $\mathrm{CHCl}_{3} / \mathrm{PE}, \mathrm{DCE} / \mathrm{PE}$,
$\mathrm{MeOH} / \mathrm{PE}$ and EA/toluene, even so three-compnent solvent



${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\quad 3 \mathrm{p}: 3 \mathrm{p}$ ' $=1: 0.70$


## $3 q$ and $3 q$

##  


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\quad 3 \mathrm{q}: 3 \mathrm{q} \mathbf{'}^{2}=1: 0.27$
Compounds $3 r$ and $3 r^{\prime}$ could not be isolated through silicagel column
or plate with various eluent, such as $\mathrm{EA} / \mathrm{PE}, \mathrm{CHCl}_{3} / \mathrm{PE}, \mathrm{DCE} / \mathrm{PE}$,
$\mathrm{MeOH} / \mathrm{PE}$ and EA/toluene, even so three-compnent solvent system

$\stackrel{\text { ® }}{\stackrel{\circ}{\sim}}$

| R |  |
| :---: | :---: |
| ¢ | ल్ల్ల |
|  | rr |



${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\quad 3 \mathrm{q}: 3 \mathbf{q}^{\mathbf{}}=1: 0.27$


[^11]
## $3 r$



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

N

${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



5
${ }^{1} \mathrm{H}$ spectrum ( $400 \mathrm{MHZ}, \mathrm{CD}_{3} \mathrm{OD}$ )





5
${ }^{13} \mathrm{C}$ spectrum ( $101 \mathrm{MHZ}, \mathrm{CD}_{3} \mathrm{OD}$ )



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





6
${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^12]
relative configuration
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

芯


7
relative configuration
${ }^{13} \mathrm{C}$ NMR spectrum ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


8a


8a
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





8a
${ }^{13} \mathrm{C}$ NMR spectrum ( 101 MHz ,
$\mathrm{CDCl}_{3}$ )


## 8b

## 


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



8c
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(


8c
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

8d



8d
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






8d
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3)


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


8g




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

## 9. HPLC analysis

HPLC conditions: Chiralpak IC, ${ }^{n}$ hexane/2-propanol $=96: 4(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$


| Peak\# | Ret. Time | Area | Area\% |
| :---: | :---: | :---: | :---: |
| 1 | 24.287 | 6989377 | 37.130 |
| 2 | 30.080 | 2398912 | 12.744 |
| 3 | 39.980 | 2341764 | 12.440 |
| 4 | 41.920 | 7094146 | 37.686 |

HPLC conditions: Chiralpak IC, "hexane/2-propanol = 97:3 (v/v), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$


| Peak\# | Ret. Time | Area | Area\% |
| :---: | :---: | :---: | :---: |
| 1 | 36.233 | 679329 | 6.614 |
| 2 | 39.580 | 4401971 | 42.861 |
| 3 | 68.287 | 673865 | 6.560 |
| 4 | 73.233 | 4515454 | 43.965 |

HPLC conditions: Chiralpak IC, ${ }^{n}$ hexane/2-propanol $=98: 2(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$


| Peak\# | Ret. Time | Area | Area\% |
| :---: | :---: | :---: | :---: |
| 1 | 41.413 | 3299932 | 29.073 |
| 2 | 44.167 | 2348976 | 20.695 |
| 3 | 55.547 | 2343344 | 20.645 |
| 4 | 57.513 | 3358213 | 29.587 |

HPLC conditions: Chiralpak IC, ${ }^{n}$ hexane/2-propanol $=97: 3(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$


| Peak\# | Ret. Time | Area | Area\% |
| :---: | :---: | :---: | :---: |
| 1 | 18.760 | 5557395 | 38.812 |
| 2 | 21.547 | 1375415 | 9.606 |
| 3 | 27.673 | 5749260 | 40.152 |
| 4 | 29.067 | 1636524 | 11.428 |


[^0]:    $\begin{array}{llllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

[^1]:    

[^2]:    

[^3]:    

[^4]:    

[^5]:    

[^6]:    

[^7]:    

[^8]:    

[^9]:    

[^10]:    

[^11]:    $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^12]:    

