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General Information

Melting point (m.p.) was performed on an X-5 digital melting point apparatus without
correcting. *H, **C and °F NMR spectra were collected on a Varian AS600 spectrometer in
CDClIj3 using tetramethylsilane (TMS) as an internal standard.

High-resolution mass spectra (HRMS) were obtained with a LCMS-IT-TOF mass
spectrometer. Single-crystal X-ray analysis was obtained using Bruker APEX2 Smart CCD.
TLC was performed by using commercially prepared 100-400 mesh silica gel plates (GF254)
and visualization was detected at 254 or 365 nm.

The fluorescence spectra were recorded with a Hitachi F-4600 spectrophotometer. The
dynamic light scattering (DLS) experiments were performed on a Malvern Zetasizer Nano
ZS90. Absolute PL quantum yields (®f) were measured by Edinburgh FLS 980 fluorescence
spectrometer with a calibrated integrating sphere.

All reagents and solvents were purchased from commercial sources and used without
further purification. According to the literature procedure,’ ? 2-substituted benzimidazoles 2
(except for 2a) were synthesized from o-phenylenediamines and various acids (see the

following for details).



Experimental Procedure for Compounds 2b-2p
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According to the reported procedure,' compounds 2b-2f were synthesized. The

appropriate aromatic diamine (2.0 mmol, 1.0 equiv.) and carboxylic acid (10 equiv.) were

heated in a sealed tube at 160 <C for 6 h. The reaction mixture was cooled to room

temperature and ammonia solution was added. The mixture was cooled in ice until the

precipitate was formed. The resulting solid was recrystallised from aqueous ethanol to give

the desired compounds 2b-2f.
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According to the reported procedure,? compounds 2g-2p were synthesized. A mixture of

appropriate aromatic diamine (2.0 mmol, 1.0 equiv) and carboxylic acid (1.5 equiv) in 4 M

HCI (20.0 mL) was refluxed for 6 h. After monitoring the end of the reaction on TLC, the

mixture was cooled to room temperature and neutralized by ammonia solution. And the

mixture was cooled in ice until the precipitate was formed. The resulting solid was

recrystallised from aqueous ethanol to give the desired compounds 2g-2p.



Experimental Procedure for Compounds 4a-40 and 5a-5s
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The mixture of mucobromic 1 (0.36 mmol), 2-substituted 1H-benzo[d]imidazole 2 (0.60
mmol) and K,CO3 (1.2 mmol) in DMF (2 mL) was stirred at room temperature 30 min, then
140 °C (or 120°C) for 24 h. After the completion of the reaction, the reaction mixture was
quenched with H,O (15 mL) and extracted with dichloromethane (3 > 15 mL). Then, the
organic layer was dried over anhydrous Na,SO,. After filtration and evaporation of the
solvents under reduced pressure, the crude product was purified by column chromatography
on silica gel to afford the desired product 4.
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The mixture of mucobromic 1 (0.36 mmol), 2-substituted 1H-benzo[d]imidazole 2 (0.30
mmol), heterocyclic compound 3 (0.36 mmol) and K,COs3 (1.2 mmol) in DMF (2 mL) was
stirred at room temperature 6 h, then 140 °C (or 120 °C) for 18 h. After the completion of the
reaction, the reaction mixture was quenched with H,O (15 mL) and extracted with
dichloromethane (3 > 15 mL). Then, the organic layer was dried over anhydrous Na,SO;.
After filtration and evaporation of the solvents under reduced pressure, the crude product was

purified by column chromatography on silica gel to afford the desired product 5.



Characterization Data for All Products 4a-40, 5a-5s and Intermediate 4aa

1-(2-Methyl-1H-benzo[d]imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (4a), white
solid (72 mg, 81%); m.p. 184-186 °C; *H NMR (600 MHz, CDCls), 6: 2.41 (s, 3H), 5.96 (d, J
= 8.4 Hz, 1H), 6.94-7.03 (m, 3H), 7.21-7.25 (m, 1H), 7.38-7.47 (m, 2H), 7.62-7.65 (m, 1H),
7.92 (d, J = 8.4 Hz, 1H), 7.94-7.97 (m, 2H); **C NMR (150 MHz, CDCls), J: 13.8, 109.8,
111.3, 112.6, 119.5, 120.0, 120.1, 122.8, 123.8, 124.1, 126.2, 127.4, 128.9, 131.0, 135.4,
142.7, 144.5, 149.3, 151.3; ESI-HRMS, m/z: Calcd for C19H15N4 [M+H]", 299.1291, found:
299.1294.

1-(2-Ethyl-1H-benzo[d]imidazol-1-yl)-4-methylbenzo[4,5]imidazo[1,2-a]pyridine  (4b),
white solid (60 mg, 61%); m.p. 190-192 °C; *H NMR (600 MHz, CDCls), 6, ppm: 1.30 (t, J =
7.8 Hz, 3H), 2.57-2.71 (m, 2H), 2.84 (s, 3H), 5.90 (d, J = 8.4 Hz, 1H), 6.87 (d, J = 7.2 Hz,
1H), 6.94-6.98 (m, 2H), 7.18-7.21 (m, 1H), 7.35-7.38 (m, 1H), 7.40-7.43 (m, 2H), 7.93 (d, J =
7.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H); *C NMR (150 MHz, CDCl3), §, ppm: 11.4, 17.8, 21.0,
109.8, 111.4, 112.6, 120.0, 120.1, 122.6, 123.6, 124.0, 125.9, 127.1, 128.0, 128.9, 129.5,
135.5, 142.7, 144.2, 149.7, 156.1; ESI-HRMS, m/z: Calcd for C,;HigNs [M+H]", 327.1604,
found: 327.1599.

4-Ethyl-1-(2-propyl-1H-benzo[d]imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine  (4c),
colorless waxy (54 mg, 51%); *H NMR (600 MHz, CDCls), &, ppm: 0.90 (t, J = 7.2 Hz, 3H),
1.56 (t, J = 7.2 Hz, 3H), 1.74-1.85 (m, 2H), 2.56-2.65 (m, 2H), 3.27-3.36 (m, 2H), 5.91 (d, J =
8.4 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.95-6.99 (m, 2H), 7.19-7.22 (m, 1H), 7.36-7.39 (m,
1H), 7.41-7.44 (m, 2H), 7.93 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H); *C NMR (150
MHz, CDCls), o, ppm: 12.9, 13.9, 20.6, 24.4, 29.4, 109.8, 111.5, 112.7, 120.0, 120.1, 122.4,
123.6, 123.9, 125.0, 125.8, 127.9, 128.8, 135.1, 135.4, 142.7, 144.2, 149.3, 155.1; ESI-HRMS,
m/z: Calcd for CosHasN4 [M+H]", 355.1917, found: 355.1913.

4-Butyl-1-(2-pentyl-1H-benzo[d]imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine  (4d),
colorless waxy (57 mg, 46%); *H NMR (600 MHz, CDCls), d, ppm: 0.76 (t, J = 7.2 Hz, 3H),
1.06 (t, J = 7.2 Hz, 3H), 1.15-1.20 (m, 2H), 1.21-1.27 (m, 2H), 1.55-1.63 (m, 2H), 1.71-1.78
(m, 2H), 1.94-1.99 (m, 2H), 2.57-2.65 (m, 2H), 3.22-3.31 (m, 2H), 5.91 (d, J = 8.4 Hz, 1H),
6.88 (d, J = 6.6 Hz, 1H), 6.94-6.98 (m, 2H), 7.18-7.21 (m, 1H), 7.35-7.39 (m, 1H), 7.40-7.43
(m, 2H), 7.93 (d, J = 7.8 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H); *C NMR (150 MHz, CDCls), 4,
ppm: 13.7, 14.1, 22.1, 22.7, 26.8, 27.5, 30.5, 31.0, 31.3, 109.8, 111.4, 112.7, 120.0, 120.1,
122.4, 123.6, 123.9, 125.7, 125.8, 127.9, 128.8, 133.9, 135.4, 142.7, 144.2, 149.3, 156.1; ESI-
HRMS, m/z: Calcd for Co7H31N4 [M+H]", 411.2543, found: 411.2542.

1-(2-Benzyl-1H-benzo[d]imidazol-1-yl)-4-phenylbenzo[4,5]imidazo[1,2-a]pyridine (4e),
white solid (96 mg, 71%); m.p. 165-167 °C; *H NMR (600 MHz, CDCls), 6, ppm: 4.03-4.24



(dd, J; = 13.2 Hz, J, = 13.2 Hz, 2H), 5.78 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 7.2 Hz, 1H), 6.75
(d, J=6.0 Hz, 2H), 6.80-6.85 (m, 3H), 6.87 (d, J = 8.4 Hz, 1H), 7.01 (d, J = 7.8 Hz, 1H), 7.22
(t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.49-7.52 (m, 2H),
7.58-7.61 (m, 2H), 7.91 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 8.10 (d, J = 8.4 Hz, 2H);
3C NMR (150 MHz, CDCls), 8, ppm: 35.2, 110.0, 111.8, 112.9, 120.3, 120.4, 122.3, 123.8,
124.4, 125.7, 126.7, 126.9, 127.5, 128.1, 128.5, 128.9, 129.1, 129.2, 129.6, 131.9, 134.3,
135.8, 136.0, 142.5, 144.5, 148.0, 153.5; ESI-HRMS, m/z: Calcd for Cs;HxNs [M+H],
451.1917, found: 451.1943.
1-(2-(4-Methylbenzyl)-1H-benzo[d]imidazol-1-yl)-4-(p-tolyl)benzo[4,5]imidazo[1,2-a]p
yridine (4f), white solid (104 mg, 73%); m.p. 172-173 °C; *H NMR (600 MHz, CDCls), 4,
ppm: 2.03 (s, 3H), 2.51 (s, 3H), 4.08-4.19 (dd, J; = 15.6 Hz, J, = 15.6 Hz, 2H), 5.75 (d, J =
8.4 Hz, 1H), 6.58 (d, J = 7.8 Hz, 2H), 6.63 (d, J = 7.8 Hz, 2H), 6.79 (d, J = 7.2 Hz, 1H), 6.83-
6.87 (m, 1H), 7.02 (d, J = 7.8 Hz, 1H), 7.22-7.25 (m, 1H), 7.34-7.37 (m, 1H), 7.39-7.42 (m,
1H), 7.44 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.99 (d, J =
8.4 Hz, 1H), 8.04 (d, J = 8.4 Hz, 2H); *C NMR (150 MHz, CDCls), 6, ppm: 20.8, 21.4, 34.7,
110.0, 111.8, 113.0, 120.1, 120.3, 122.0, 123.7, 124.3, 125.5, 126.1, 127.5, 128.4, 128.7,
129.1, 129.4, 129.6, 131.2, 132.0, 133.1, 135.9, 136.5, 139.0, 142.5, 144.5, 148.0, 154.0; ESI-
HRMS, m/z: Calcd for CazHz7N4 [M+H], 479.2230, found: 479.2215.
1-(2-(4-Methoxybenzyl)-1H-benzo[d]imidazol-1-yl)-4-(4-methoxyphenyl)benzo[4,5]imi
dazo[1,2-a]pyridine (4g), white solid (101 mg, 66%); m.p. 184-186 °C; *H NMR (600 MHz,
CDClg), 6, ppm: 3.54 (s, 3H), 3.92 (s, 3H), 4.02-4.14 (dd, J; = 15.6 Hz, J, = 15.6 Hz, 2H),
5.73 (d, J =8.4 Hz, 1H), 6.30 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 7.2 Hz,
1H), 6.82-6.85 (m, 1H), 7.00 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 7.19-7.22 (m, 1H),
7.32-7.35 (m, 1H), 7.37-7.40 (m, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.96
(d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 2H); *C NMR (150 MHz, CDCls), , ppm: 34.3, 55.1,
55.5, 110.0, 111.9, 113.0, 113.5, 114.3, 120.1, 120.3, 122.1, 123.7, 124.3, 125.5, 125.6, 126.3,
127.6, 128.4, 129.1, 129.5, 130.5, 131.6, 135.9, 142.5, 144.5, 148.1, 154.1, 158.3, 160.3; ESI-
HRMS, m/z: Calcd for CasH,7N4O, [M+H]", 511.2129, found: 511.2135.
1-(2-(4-Bromobenzyl)-1H-benzo[d]imidazol-1-yl)-4-(4-bromophenyl)benzo[4,5]imidazo
[1,2-a]pyridine (4h), white solid (96 mg, 53%):; m.p. 196-198 °C; 'H NMR (600 MHz,
CDCls), 5, ppm: 4.02-4.16 (dd, J; = 15.6 Hz, J, = 15.6 Hz, 2H), 5.75 (d, J = 8.4 Hz, 1H), 6.63
(d, J = 7.8 Hz, 2H), 6.80 (d, J = 7.2 Hz, 1H), 6.88-6.91 (m, 1H), 6.96 (d, J = 7.8 Hz, 2H), 7.05
(d, J =7.8 Hz, 1H), 7.25-7.29 (m, 1H), 7.40-7.45 (m, 2H), 7.57 (d, J = 6.6 Hz, 1H), 7.76 (d, J
= 8.4 Hz, 2H), 7.96 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 2H); **C
NMR (150 MHz, CDCls), 6, ppm: 34.5, 110.0, 111.7, 112.7, 120.5, 121.0, 122.6, 123.5, 124.0,
124.6, 126.0, 126.4, 127.4, 129.8, 130.1, 130.8, 130.9, 131.2, 132.1, 133.3, 134.6, 135.7,
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142.4, 144.4, 147.5, 152.8; ESI-HRMS, m/z: Calcd for CaH,; BroNs [M+H]Y, 607.0127,
found: 607.0093.
1-(2-(4-Chlorobenzyl)-1H-benzo[d]imidazol-1-yl)-4-(4-chlorophenyl)benzo[4,5]imidazo
[1,2-a]pyridine (4i), white solid (75 mg, 48%); m.p. 215-217 °C; *H NMR (600 MHz, CDCls),
o, ppm: 4.03-4.17 (dd, J; = 15.6 Hz, J, = 15.6 Hz, 2H), 5.75 (d, J = 8.4 Hz, 1H), 6.69 (d, J =
8.4 Hz, 2H), 6.79-6.82 (m, 3H), 6.87-6.91 (m, 1H), 7.05 (d, J = 7.8 Hz, 1H), 7.26-7.29 (m,
1H), 7.39-7.44 (m, 2H), 7.57 (d, J = 7.2 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.95 (d, J = 8.4 Hz,
1H), 7.99 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 8.4 Hz, 2H); *C NMR (150 MHz, CDCls), J, ppm:
34.4,110.0, 111.7, 112.7, 120.4, 120.5, 122.6, 124.0, 124.6, 126.0, 126.4, 127.4, 128.3, 129.1,
129.7, 129.8, 130.5, 130.8, 132.8, 132.9, 134.2, 135.2, 135.7, 142.4, 144.4, 147.6, 152.9; ESI-
HRMS, m/z: Calcd for C3;H21CIoN, [M+H]*, 519.1138, found: 519.1158.
1-(2-(3-Methoxybenzyl)-1H-benzo[d]imidazol-1-yl)-4-(3-methoxyphenyl)benzo[4,5]imi
dazo[1,2-a]pyridine (4j), white solid (103 mg, 67%); m.p. 183-185 °C; *H NMR (600 MHz,
CDClg), 6, ppm: 3.49 (s, 3H), 3.97 (s, 3H), 4.08-4.24 (dd, J; = 15.6 Hz, J, = 15.6 Hz, 2H),
5.80 (d, J = 8.4 Hz, 1H), 6.30 (d, J = 7.8 Hz, 1H), 6.33 (s, 1H), 6.36 (d, J = 8.4 Hz, 1H), 6.70-
6.73 (m, 1H), 6.78 (d, J = 8.4 Hz, 1H), 6.88-6.91 (m, 1H), 7.04 (d, J = 7.8 Hz, 1H), 7.07-7.10
(m, 1H), 7.24-7.27 (m, 1H), 7.36-7.39 (m, 1H), 7.41-7.44 (m, 1H), 7.53 (d, J = 7.8 Hz, 1H),
7.55(d,J=7.2 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.71 (s, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.92
(d, J = 7.8 Hz, 1H); *C NMR (150 MHz, CDCls), §, ppm: 35.3, 54.9, 55.4, 110.0, 111.7,
112.3, 112.9, 114.2, 114.5, 115.1, 120.2, 120.4, 120.8, 121.6, 122.2, 123.8, 124.4, 125.6,
126.7, 127.4, 129.1, 129.7, 129.8, 131.8, 135.6, 135.9, 137.3, 142.4, 1445, 147.9, 153.5,
159.3, 159.8; ESI-HRMS, m/z: Calcd for Cs3H27N4O, [M+H]", 511.2129, found: 511.2135.
1-(2-(2-Fluorobenzyl)-1H-benzo[d]imidazol-1-yl)-4-(2-fluorophenyl)benzo[4,5]imidazo
[1,2-a]pyridine (4k), white solid (76 mg, 52%); m.p. 185-187 °C; *H NMR (600 MHz,
CDClg), o, ppm: 4.20-4.29 (dd, J; = 15.6 Hz, J, = 15.6 Hz, 2H), 5.82 (d, J = 8.4 Hz, 1H),
6.53-6.57 (m, 1H), 6.60-6.63 (m, 1H), 6.80-6.84 (m, 1H), 6.85-6.92 (m, 3H), 7.06 (d, J = 7.8
Hz, 1H), 7.25- 7.27 (m, 1H), 7.31-7.34 (m, 1H), 7.35-7.38 (m, 1H), 7.40 (d, J = 7.2 Hz, 1H),
7.43 (d, J = 8.4 Hz, 1H), 7.50-7.54 (m, 1H), 7.61 (d, J = 6.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H),
7.99-8.02 (m, 2H); *C NMR (150 MHz, CDCls), J, ppm: 28.08 (d, J = 3.0 Hz), 110.03,
111.35, 112.79, 114.90 (d, J = 21.0 Hz), 116.37 (d, J = 22.5 Hz), 120.24, 120.45, 121.28 (d, J
= 13.5 Hz), 122.28, 123.58 (d, J = 13.5 Hz), 123.77 (d, J = 4.5 Hz), 123.89, 124.42 (d, J = 3.0
Hz), 124.46, 125.74, 126.39, 127.56, 128.94 (d, J = 9.0 Hz), 129.10 (d, J = 4.5 Hz), 130.08,
130.68 (d, J = 3.0 Hz), 130.72, 131.96 (d, J = 3.0 Hz), 135.74, 142.45, 144.42, 147.95, 152.53,
160.11 (d, J = 247.5 Hz), 160.28 (d, J = 246.0 Hz); °F NMR (564 MHz, CDCls), J, ppm:
-117.2, -115.0; ESI-HRMS, m/z: Calcd for C31Hx1F2N4 [M+H]", 487.1729, found: 487.1779.
1-(2-(2-Bromobenzyl)-1H-benzo[d]imidazol-1-yl)-4-(2-bromophenyl)benzo[4,5]imidazo
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[1,2-a]pyridine (41), white solid (76 mg, 52%); m.p. 186-188 °C; 'H NMR (600 MHz, CDCls),
o, ppm: 4.35-4.44 (dd, J; = 16.2 Hz, J, = 16.2 Hz, 2H), 5.90 (d, J = 8.4 Hz, 1H), 6.74-6.78 (m,
1H), 6.81 (d, J = 7.2 Hz, 1H), 6.87-6.90 (m, 1H), 6.91-6.94 (m, 1H), 7.03 (d, J = 7.8 Hz, 1H),
7.07 (d, J = 7.8 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.26-7.29 (m, 1H), 7.36-7.41 (m, 2H), 7.42-
7.46 (m, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.53-7.56 (m, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.83 (d, J
= 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H); **C NMR (150 MHz,
CDCly), o, ppm: 34.9, 110.0, 111.2, 112.9, 120.3, 120.5, 122.3, 123.4, 123.9, 124.3, 124.5,
125.8, 127.3, 127.5, 127.6, 128.7, 129.5, 130.2, 130.3, 130.9, 131.4, 131.9, 132.5, 133.6,
134.1, 135.8, 136.7, 1425, 144.5, 148.1, 152.5; ESI-HRMS, m/z: Calcd for C3;HxBrN4
[M+H]", 607.0127, found: 607.0126.
7,8-Dimethyl-1-(2,5,6-trimethyl-1H-benzo[d]imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyr
idine (4m), white solid (61 mg, 58%); m.p. 261-263 °C; *H NMR (600 MHz, CDCls), J: 2.07
(s, 3H), 2.23 (s, 3H), 2.33 (s, 3H), 2.35 (s, 3H), 2.40 (s, 3H), 5.73 (s, 1H), 6.73 (s, 1H), 6.86 (d,
J = 6.6 Hz, 1H), 7.52-7.55 (m, 1H), 7.64 (s, 1H), 7.69 (s, 1H), 7.87 (d, J = 9.0 Hz, 1H); °C
NMR (150 MHz, CDCls), ¢: 13.7, 20.3, 20.4, 20.6, 20.8, 109.9, 110.8, 112.4, 119.0, 119.7,
119.9, 126.0, 128.0, 131.1, 132.2, 132.5, 133.2, 134.0, 135.8, 141.3, 149.0, 150.4; ESI-HRMS,
m/z: Calcd for CysHo3N4 [M+H]", 355.1917, found: 355.1911.
1-(2-Ethyl-5,6-dimethyl-1H-benzo[d]imidazol-1-yl)-4,7,8-trimethylbenzo[4,5]imidazo[ 1,
2-a]pyridine (4n), white solid (59 mg, 52%); m.p. 234-236 °C; *H NMR (600 MHz, CDCls),
1.27 (t, J = 7.2 Hz, 3H), 2.07 (s, 3H), 2.23 (s, 3H), 2.36 (s, 3H), 2.41 (s, 3H), 2.54-2.67 (m,
2H), 2.83 (s, 3H), 5.70 (s, 1H), 6.72 (s, 1H), 6.81 (d, J = 7.2 Hz, 1H), 7.35 (d, J = 7.2 Hz, 1H),
7.68 (s, 1H), 7.74 (s, 1H); *C NMR (150 MHz, CDCls), J: 11.5, 17.8, 20.3, 20.4, 20.6, 20.8,
20.9, 109.9, 110.9, 112.6, 119.7, 120.0, 126.3, 126.6, 128.9, 129.0, 131.9, 132.2, 133.0, 134.1,
135.4, 141.2, 143.0, 149.3, 155.2; ESI-HRMS, m/z: Calcd for CysH,7N4 [M+H]", 383.2230,
found: 383.2249.
7,8-Dichloro-1-(5,6-dichloro-2-methyl-1H-benzo[d]imidazol-1-yl)benzo[4,5]imidazo[1,
2-a]pyridine (40), white solid (59 mg, 46%); m.p. 276-278 °C; *H NMR (600 MHz, CDCls), 6:
2.40 (s, 3H), 6.03 (s, 1H), 7.01 (d, J = 6.6 Hz, 1H), 7.11 (s, 1H), 7.67-7.71 (m, 1H), 7.96 (d, J
= 9.0 Hz, 1H), 8.03 (s, 1H), 8.07 (s, 1H); *C NMR (150 MHz, CDCls), 6: 13.9, 111.0, 112.2,
113.3, 120.2, 121.4, 121.6, 126.1, 127.0, 128.5, 128.7, 129.7, 130.0, 131.1, 134.2, 142.1,
143.8, 150.5, 153.1; ESI-HRMS, m/z: Calcd for CigH1;CI4N, [M+H]", 434.9732, found:
434.97509.
1-(1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (5a), yellow solid (29 mg, 40%);
m.p. 225-227 °C; *H NMR (600 MHz, CDCls), 8, ppm: 6.17 (d, J = 9.0 Hz, 1H), 6.90 (d, J =
7.2 Hz, 1H), 7.17-7.20 (m, 1H), 7.30 (s, 1H), 7.49-7.55 (m, 3H), 7.84-7.89 (m, 2H), 7.97 (d, J
= 8.4 Hz, 1H); *C NMR (150 MHz, CDCls), 6, ppm: 109.9, 113.0, 119.4, 120.2, 120.5, 122.5,
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126.2, 127.4, 128.4, 131.2, 132.3, 137.4, 144.5, 149.1; ESI-HRMS, m/z: Calcd for C14H11N,4
[M+H]", 235.0978, found: 235.0976.
1-(2-Methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (5b), yellow solid (34
mg, 45%); m.p. 232-234 °C; *H NMR (600 MHz, CDCls), 6, ppm: 2.20 (s, 3H), 6.07 (d, J =
8.4 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 1.2 Hz, 1H), 7.18-7.21 (m, 1H), 7.32 (d, J =
1.2 Hz, 1H), 7.51-7.57 (m, 2H), 7.87 (d, J = 9.0 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H); *C NMR
(150 MHz, CDCly), o, ppm: 12.8, 110.0, 112.7, 119.2, 120.1, 120.3, 122.7, 126.2, 127.4,
128.6, 129.7, 132.6, 144.5, 145.8, 149.0; ESI-HRMS, m/z: Calcd for CysHisNg [M+H],
249.1135, found: 249.1131.
4-Methyl-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (5c), yellow
solid (33 mg, 43%); m.p. 243-245 °C; *H NMR (600 MHz, CDCls), J, ppm: 2.18 (s, 3H), 2.80
(s, 3H), 6.03 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 7.2 Hz, 1H), 7.11 (d, J = 1.2 Hz, 1H), 7.15-7.19
(m, 1H), 7.30 (d, J = 1.2 Hz, 1H), 7.34 (d, J = 7.2 Hz, 1H), 7.48-7.52 (m, 1H), 8.00 (d, J = 7.8
Hz, 1H); *C NMR (150 MHz, CDCls), 6, ppm: 12.8, 17.7, 110.0, 112.7, 120.1, 120.5, 122.6,
125.9, 126.8, 128.0, 129.3, 129.5, 130.4, 144.2, 146.0, 149.4; ESI-HRMS, m/z: Calcd for
Ci6H1sN4 [M+H]", 263.1291, found: 263.1287.
6-Butyl-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (5d), yellow
solid (33 mg, 37%); m.p. 122-124 °C; *H NMR (600 MHz, CDCls), J, ppm: 1.03 (t, J = 7.8
Hz, 3H), 1.52-1.59 (m, 2H), 1.89-1.94 (m, 2H), 2.20 (s, 3H), 3.13-3.26 (m, 2H), 6.03 (d, J =
8.4 Hz, 1H), 6.82 (d, J = 7.2 Hz, 1H), 7.12 (d, J = 1.2 Hz, 1H), 7.15-7.18 (m, 1H), 7.30 (d, J =
1.2 Hz, 1H), 7.33 (d, J = 7.2 Hz, 1H), 7.48-7.52 (m, 1H), 8.01 (d, J = 7.8 Hz, 1H); *C NMR
(150 MHz, CDCly), ¢, ppm: 12.8, 14.0, 22.6, 30.6, 31.0, 110.0, 112.6, 120.1, 120.5, 122.5,
125.5, 125.9, 128.0, 129.5, 130.3, 133.7, 144.2, 146.0, 149.1; ESI-HRMS, m/z: Calcd for
C19H21N4 [M+H]", 305.1761, found: 305.1757.
7,8-Dimethyl-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (5e),
yellow solid (31 mg, 37%); m.p. 246-248 °C; *H NMR (600 MHz, CDCls), J, ppm: 2.20 (s,
3H), 2.27 (s, 3H), 2.43 (s, 3H), 5.81 (s, 1H), 6.82 (d, J = 6.6 Hz, 1H), 7.12 (d, J = 1.2 Hz, 1H),
7.32 (d, J = 1.2 Hz, 1H), 7.46-7.49 (m, 1H), 7.72 (s, 1H), 7.82 (d, J = 9.6 Hz, 1H); *C NMR
(150 MHz, CDCls), o, ppm: 12.8, 20.6, 20.8, 109.6, 112.4, 118.9, 119.7, 120.3, 125.9, 127.7,
129.5, 132.2, 135.9, 143.3, 145.8, 148.7; ESI-HRMS, m/z: Calcd for Cy7Hi7Ng [M+H],
277.1448, found: 277.1448.
7,8-Dichloro-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (51),
yellow solid (30 mg, 32%); m.p. 252-254 °C; *H NMR (600 MHz, CDCls), 6, ppm: 2.22 (s,
3H), 6.11 (s, 1H), 6.94 (d, J = 6.6 Hz, 1H), 7.13 (d, J = 1.2 Hz, 1H), 7.36 (d, J = 1.2 Hz, 1H),
7.59-7.62 (m, 1H), 7.85 (d, J = 9.6 Hz, 1H), 8.05 (s, 1H); *C NMR (150 MHz, CDCls), 4,
ppm: 12.8, 110.8, 114.0, 119.3, 119.9, 121.0, 126.3, 126.7, 129.8, 130.2, 130.8, 132.4, 143.7,

9



145.5, 150.3; ESI-HRMS, m/z: Calcd for Cy5H1;:CINg [M+H]", 317.0355, found: 317.0382.
1-(1H-imidazol-1-yl)-4-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-a]pyridine (59),
yellow solid (54 mg, 53%); m.p. 151-153 °C; 'H NMR (600 MHz, CDCls), 4, ppm: 3.91 (s,
3H), 6.12 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 7.14-7.18 (m,
1H), 7.31 (d, J = 1.2 Hz, 1H), 7.47-7.51 (m, 2H), 7.53 (d, J = 7.2 Hz, 1H), 7.87 (s, 1H), 8.00
(d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 2H); *C NMR (150 MHz, CDCls), 6, ppm: 55.5,
110.2, 112.9, 114.3, 120.5, 120.7, 122.4, 125.6, 125.9, 127.8, 128.2, 130.3, 130.4, 131.0,
131.7, 137.6, 144.6, 148.1, 160.3; ESI-HRMS, m/z: Calcd for CH17N4O [M+H]", 341.1397,
found: 341.1397.
4-(4-Methoxyphenyl)-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine
(5h), yellow solid (63 mg, 60%); m.p. 73-75 °C; *H NMR (600 MHz, CDCls), 6, ppm: 2.24 (s,
3H), 3.91 (s, 3H), 6.05 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 7.11 (d, J = 9.0 Hz, 2H),
7.16 (d, J = 1.2 Hz, 1H), 7.17-7.20 (m, 1H), 7.32 (d, J = 1.2 Hz, 1H), 7.49-7.52 (m, 1H), 7.56
(d, J = 7.2 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 9.0 Hz, 2H); *C NMR (150 MHz,
CDCly), o, ppm: 12.9, 55.5, 110.3, 112.6, 114.3, 120.4, 120.5, 122.7, 125.8, 126.0, 127.8,
128.2, 129.6, 130.4, 130.7, 131.6, 144.6, 146.0, 148.1, 160.3; ESI-HRMS, m/z: Calcd for
C22H19N4O [M+H]", 355.1553, found: 335.1549.
1-(2-Ethyl-1H-imidazol-1-yl)-4-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-a]pyridine
(5i), yellow solid (46 mg, 42%); m.p. 82-84 °C; *H NMR (600 MHz, CDCls), §, ppm: 1.21 (t,
J=7.2 Hz, 3H), 2.42-2.57 (m, 2H), 3.89 (s, 3H), 6.02 (d, J = 9.0 Hz, 1H), 6.92 (d, J = 7.2 Hz,
1H), 7.09 (d, J = 9.0 Hz, 2H), 7.13 (d, J = 1.2 Hz, 1H), 7.15-7.18 (m, 1H), 7.34 (d, J = 1.2 Hz,
1H), 7.47-7.50 (m, 1H), 7.54 (d, J = 7.2 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 9.0 Hz,
2H); *C NMR (150 MHz, CDCls), 6, ppm: 11.8, 20.2, 55.4, 110.5, 112.8, 114.3, 120.3, 120.4,
122.6, 125.8, 125.9, 127.8, 128.2, 129.6, 130.4, 130.6, 131.4, 144.5, 148.1, 150.7, 160.3; ESI-
HRMS, m/z: Calcd for Cp3H21N4O [M+H], 369.1710, found: 369.1690.
1-(2-Methyl-1H-imidazol-1-yl)-4-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyridine (5j), yellow
solid (57 mg, 57%); m.p. 78-80 °C; *H NMR (600 MHz, CDCls), 6, ppm: 2.25 (s, 3H), 2.47 (s,
3H), 6.05 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 7.16 (d, J = 1.2 Hz, 1H), 7.17-7.20 (m,
1H), 7.32 (d, J = 1.2 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.48-7.52 (m, 1H), 7.58 (d, J = 7.2 Hz,
1H), 7.98 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 1H); *C NMR (150 MHz, CDCls), J, ppm:
12.9, 21.4, 110.2, 112.6, 120.4, 120.5, 122.7, 125.9, 126.3, 127.8, 129.0, 129.5, 129.6, 131.0,
132.0, 132.9, 139.0, 144.6, 146.0, 148.1; ESI-HRMS, m/z: Calcd for CyHigNs [M+H],
339.1604, found: 339.1598.
4-(4-Chlorophenyl)-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine
(5k), yellow solid (54 mg, 51%); m.p. 69-71 °C; *H NMR (600 MHz, CDCls), d, ppm: 2.26 (s,
3H), 6.05 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 7.17 (d, J = 1.2 Hz, 1H), 7.20-7.23 (m,
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1H), 7.34 (d, J = 1.2 Hz, 1H), 7.51-7.54 (m, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 7.2 Hz,
1H), 8.02 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 2H); *C NMR (150 MHz, CDCls), J, ppm:
12.9, 110.1, 112.7, 120.4, 120.5, 123.0, 126.2, 126.7, 127.8, 129.0, 129.7, 130.5, 130.7, 131.6,
134.2, 135.1, 144.6, 145.9, 147.7; ESI-HRMS, m/z: Calcd for CyHioN4 [M+H]", 359.1058,
found: 359.1048.
4-(3-Methoxyphenyl)-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine
(51), yellow solid (43 mg, 49%); m.p. 49-51 °C; *H NMR (600 MHz, CDCl5), 6, ppm: 2.26 (s,
3H), 3.93 (s, 3H), 6.06 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 7.2 Hz, 1H), 7.04-7.06 (m, 1H), 7.17
(d, J=1.2 Hz, 1H), 7.18-7.21 (m, 1H), 7.34 (d, J = 1.2 Hz, 1H), 7.48-7.53 (m, 2H), 7.62 (d, J
= 7.2 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.67-7.68 (m, 1H), 8.02 (d, J = 8.4 Hz, 1H); *C NMR
(150 MHz, CDCls), 6, ppm: 12.9, 55.4, 110.2, 112.6, 114.6, 115.0, 120.4, 120.6, 121.6, 122.8,
126.0, 126.9, 127.8, 129.7, 129.8, 131.3, 131.8, 137.1, 144.6, 146.0, 147.9, 159.8; ESI-HRMS,
m/z: Calcd for CyH1oN4O [M+H]", 355.1553, found: 335.1558.
4-(2-Bromophenyl)-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine
(5m), yellow solid (67 mg, 56%); m.p. 75-77 °C; *H NMR (600 MHz, CDCls), J, ppm: 2.28
(s, 3H), 6.09 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 7.19-7.22 (m, 2H), 7.35 (d, J = 1.2
Hz, 1H), 7.36-7.40 (m, 1H), 7.48-7.51 (m, 2H), 7.53 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 7.2 Hz,
1H), 7.79 (d, J = 7.8 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H); *C NMR (150 MHz, CDCls), J, ppm:
12.9, 109.6, 112.7, 120.4, 120.6, 122.9, 123.4, 126.2, 127.6, 127.8, 129.4, 129.8, 130.3, 131.4,
131.8, 132.0, 133.5, 136.7, 144.6, 145.9, 147.9; ESI-HRMS, m/z: Calcd for C,1H16BrNy4
[M+H]", 403.0553, found: 403.0551.
4-(2-Fluorophenyl)-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine
(5n), yellow solid (63 mg, 61%); m.p. 60-62 °C; *H NMR (600 MHz, CDCls), 6, ppm: 2.26 (s,
3H), 6.06 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 7.2 Hz, 1H), 7.16 (d, J = 1.2 Hz, 1H), 7.18-7.20 (m,
1H), 7.27-7.29 (m, 1H), 7.32 (d, J = 1.2 Hz, 1H), 7.34-7.37 (m, 1H), 7.45-7.50 (m, 2H), 7.62
(d, J = 7.2 Hz, 1H), 7.94-7.99 (m, 2H); *C NMR (150 MHz, CDCls), §, ppm: 12.93, 109.86,
112.66, 116.33 (d, J = 22.5 Hz), 120.39, 120.52, 122.86, 123.40 (d, J = 13.5 Hz), 124.41 (d, J
= 4.5 Hz), 126.14, 126.24, 127.81, 129.21 (d, J = 3.0 Hz), 129.73, 130.72 (d, J = 7.5 Hz),
131.88, 131.94 (d, J = 3.0 Hz), 144.53, 145.93, 147.90, 160.0 (d, J = 247.5 Hz); °F NMR
(564 MHz, CDCly), 6, ppm: 115.1; ESI-HRMS, m/z: Calcd for CoHigFN4 [M+H]", 343.1354,
found: 343.1351.
4-(4-Chlorophenyl)-7,8-dimethyl-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[1,2-
a]pyridine (50), yellow solid (55 mg, 48%); m.p. 221-223 °C; *H NMR (600 MHz, CDCl3), 6,
ppm: 2.23 (s, 3H), 2.27 (s, 3H), 2.41 (s, 3H), 5.80 (s, 1H), 6.89 (d, J = 7.2 Hz, 1H), 7.15 (d, J
= 1.2 Hz, 1H), 7.33 (d, J = 1.2 Hz, 1H), 7.51-7.54 (m, 3H), 7.76 (s, 1H), 8.04 (d, J = 9.0 Hz,
2H); *C NMR (150 MHz, CDCl3), 8, ppm: 12.9, 20.7, 20.9, 109.7, 112.3, 120.1, 120.4, 125.9,
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126.2, 128.9, 129.5, 130.2, 130.4, 131.3, 132.5, 134.4, 134.9, 135.8, 143.4, 145.9, 147.2; ESI-
HRMS, m/z: Calcd for Cp3H20CINg [M+H]", 387.1371, found: 387.1370.
7,8-Dichloro-4-(4-chlorophenyl)-1-(2-methyl-1H-imidazol-1-yl)benzo[4,5]imidazo[ 1,2-
aJpyridine (5p), yellow solid (57 mg, 44%); m.p. 182-184 °C; *H NMR (600 MHz, CDCl5), 6,
ppm: 2.24 (s, 3H), 6.09 (s, 1H), 7.00 (d, J = 7.2 Hz, 1H), 7.14 (d, J = 1.8 Hz, 1H), 7.36 (d, J =
1.8 Hz, 1H), 7.54 (d, J = 9.0 Hz, 2H), 7.63 (d, J = 7.2 Hz, 1H), 8.00 (d, J = 9.0 Hz, 2H), 8.07
(s, 1H); *C NMR (150 MHz, CDCls), d, ppm: 12.9, 111.0, 114.0, 120.0, 121.4, 126.6, 126.9,
127.6, 129.1, 130.1, 130.4, 130.7, 130.9, 131.3, 133.5, 135.5, 143.6, 145.6, 149.0; ESI-HRMS,
m/z: Calcd for CyH14ClsN4 [M+H], 427.0279, found: 427.0279.
4-(4-Methoxyphenyl)-1-(1H-pyrazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine (59),
yellow solid (53 mg, 52%); m.p. 126-128 °C; *H NMR (600 MHz, CDCls), 6, ppm: 3.92 (s,
3H), 6.03 (d, J = 8.4 Hz, 1H), 6.73-6.75 (m, 1H), 6.99 (d, J = 7.2 Hz, 1H), 7.12 (d, J = 9.0 Hz,
2H), 7.12-7.16 (m, 1H), 7.45-7.49 (m, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 1.8 Hz, 1H),
8.00 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 1.8 Hz, 1H), 8.06 (d, J = 9.0 Hz, 2H); **C NMR (150
MHz, CDCls), J, ppm: 55.5, 108.3, 110.2, 113.4, 114.2, 120.3, 121.9, 125.6, 125.7, 127.8,
128.4, 130.5, 131.7, 132.2, 133.3, 142.5, 144.4, 148.1, 160.2; ESI-HRMS, m/z: Calcd for
C21H17N4O [M+H]", 341.1397, found: 341.1392.
4-(4-Methoxyphenyl)-1-(1H-1,2,4-triazol-1-yl)benzo[4,5]imidazo[1,2-a]pyridine  (5r),
yellow solid (56 mg, 55%); m.p. 195-197 °C; *H NMR (600 MHz, CDCls), &, ppm: 3.93 (s,
3H), 6.09 (d, J = 8.4 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 7.12 (d, J = 9.0 Hz, 2H), 7.17-7.20 (m,
1H), 7.49-7.53 (m, 1H), 7.56 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 9.0 Hz,
2H), 8.47 (s, 1H), 8.59 (s, 1H); *C NMR (150 MHz, CDCl3), 8, ppm: 55.5, 110.9, 112.7,
114.3, 120.7, 122.5, 125.1, 126.0, 127.7, 128.0, 129.5, 130.5, 133.0, 144.6, 145.5, 147.9,
153.8, 160.2; ESI-HRMS, m/z: Calcd for CooH1sNsO [M+H]", 342.1349, found: 342.1349.
1-(1H-benzo[d]imidazol-1-yl)-4-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-a]pyridine
(5), yellow solid (49 mg, 42%); m.p. 207-209 °C; *H NMR (600 MHz, CDCls), J, ppm: 3.93
(s, 3H), 6.02 (d, J = 8.4 Hz, 1H), 6.96-6.99 (m, 1H), 7.03 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.4
Hz, 2H), 7.17 (d, J = 8.4 Hz, 1H), 7.32-7.35 (m, 1H), 7.41-7.44 (m, 1H), 7.45-7.48 (m, 1H),
7.61(d, J=7.2 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz,
2H), 8.21 (s, 1H); *C NMR (150 MHz, CDCls), 6, ppm: 55.5, 110.6, 111.2, 113.0, 114.3,
120.5, 121.2, 122.4, 124.1, 125.1, 125.7, 125.8, 127.8, 128.2, 129.1, 130.5, 131.9, 134.2,
142.1, 143.1, 144.7, 148.4, 160.4; ESI-HRMS, m/z: Calcd for CasH19N4O [M+H]", 391.1553,
found: 391.1550.
3,3-Bis(2-methyl-1H-benzo[d]imidazol-1-yl)acrylaldehyde (4aa), colorless waxy; *H
NMR (600 MHz, CDCls), 6, ppm: 2.22 (s, 3H), 2.33 (s, 3H), 6.41 (d, J = 7.2 Hz, 1H), 7.09 (d,
J=7.2Hz, 1H), 7.24-7.31 (m, 3H), 7.34-7.39 (m, 2H), 7,75 (d, J = 8.4 Hz, 1H), 7,80 (d, J =

12



7.8 Hz, 1H), 9.58 (d, J = 7.2 Hz, 1H); **C NMR (150 MHz, CDCls), J, ppm: 14.6, 15.1, 109.8,
110.4, 117.7, 120.4, 1205, 124.7, 124.9, 125.0, 125.1, 133.9, 135.7, 140.9, 142.5, 142.8,
150.9, 151.2, 188.4; ESI-HRMS, m/z: Calcd for CiHNsO [M+H]", 317.1397, found:
317.1394.
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Data of Single-crystal X-ray Analysis

Table S1. Crystal data and structure refinement for 4a.

Compound 4a
Empirical formula Cio Hia Ny
Formula weight 298.34
Temperature (K) 293.15
Wavelength (A) 0.71073
Crystal system Monoclinic
Space group P121/n1

Unit cell dimensions (A, 9

Volume (A%

Z

Density (calculated) (Mg/m®)
Absorption coefficient (mm™)
F(000)

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 24.999°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F*

Final R indices [I>2sigma(l)]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

a = 7.8364(10), b = 16.955(3), ¢ =11.2061(19)
a =90, f = 94.406(13), y = 90
1484.5(4)

4

1.335

0.082

624

3.507 to 24.999 deg

-9<=h<=9, -13<=k<=20, -12<=I<=13
6190

2613 [R(int) = 0.0627]

0.997

Semi-empirical from equivalents
1.000 and 0.916

Full-matrix least-squares on F
2613/0/209

1.012

R; =0.0647, wR, = 0.0865

R; =0.1349, wR, = 0.1115

n/a

0.170 and -0.189 e. A3

Fig. S1.

The molecular structure of 4a.
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Fig. S2. Top view of packing structure of 4a crystal.
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Table S2. Crystal data and structure refinement for 4i.

Compound 4i

Empirical formula Ca1 HaoCl2N,
Formula weight 519.41
Temperature (K) 290
Wavelength (A) 0.71073
Crystal system Monoclinic
Space group P-1

Unit cell dimensions (A, 9

Volume (A%

Z

Density (calculated) (Mg/m®)
Absorption coefficient (mm™)
F(000)

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 29.325
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F*

Final R indices [I>2sigma(l)]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

a=9.1302(6), b = 11.9492(9), ¢ =11.8521(7)
o =78.067(5), f = 75.145(5), y = 67.721(6)
1244.66(15)

2

1.386

0.290

536.00

7.092 to 58.65°

-12<=h<=11, -12<=k<=16, -17<=I<=15
10948

5742 [R(int) = 0.0265, R(sigma) = 0.0481]
840

Semi-empirical from equivalents

1.000 and 0.615

Full-matrix least-squares on F
574210/ 334

1.012

R; =0.0577, wR, = 0.1163

R; = 0.0920, wR, = 0.1327

n/a

0.43 and -0.38 e. A3

Fig. S3. The molecular structure of 4i.
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Table S3.  Crystal data and structure refinement for 5g.

Compound 59
Empirical formula Cz1 HisN,O
Formula weight 340.38
Temperature (K) 150
Wavelength (A) 1.54184
Crystal system Monoclinic
Space group P2,/c

Unit cell dimensions (A, 9

Volume (A%

Z

Density (calculated) (Mg/m®)
Absorption coefficient (mm™)
F(000)

Theta range for data collection (°)
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 74.166
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F*

Final R indices [I>2sigma(l)]

R indices (all data)

Extinction coefficient

Largest diff. peak and hole (e.A3)

a = 14.9018(14), b = 25.7373(3), ¢ = 8.7556(8)

a =90, 8 = 93.9084(9), y = 90
3350.27(5)

8

1.350

0.691

1424.0

5.944 to 148.332

-18<=h<=17, -31<=k<=331, -7<=1<=10

23917

6731 [R(int) = 0.0255, R(sigma) = 0.0220]

989

Semi-empirical from equivalents
1.000 and 0.764

Full-matrix least-squares on F
6731/0/472

1.033

R; = 0.0385, wR, = 0.0998

R; =0.0434, wR, = 0.1036

n/a

0.43 and -0.27

Fig. S4. The molecular structure of 5g.
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NMR Spectra for All Compounds 4a-40, 5g-5s and Intermediate 4aa
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Emission Spectra of Compound 4a in Different Solvents
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Fig. S77. Emission spectra of compound 4a in different polar solvents (¢ = 10 uM, Aex = 249
nm).
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Table S4. Absolute quantum yields (&) of 4a in different THF/H,O mixture (c = 10 uM).

No. fw (vol%) Dk [%]?
1 0 47.50
2 10 58.68
3 20 68.07
4 30 75.60
5 40 79.22
6 50 84.21
7 60 86.92
8 70 89.31
9 80 91.42
10 90 89.27
11 95 88.19

& Absolute quantum yields (@) of 4a in different THF/H,O mixture with increasing f,, to
95% (c = 10 uM).
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Fluorescence Responses of 4a to NAEs

1. Fluorescence titration

Global concern regarding the environmental and public security impact of nitroaromatic
explosives (NAEs) has increased greatly in recent years.> Compared with other NAESs, picric
acid (PA) is of relatively high burst energy, toxicity and solubility in water. PA can enter the
body through the respiratory tract or skin contact and cause diseases such as dermatitis,
bronchitis, etc. More seriously, it can result in the chronic poisoning of liver, kidney, and other
tissues, and even death.® Therefore, the development of reliable sensing materials for rapid
and sensitive detection of PA in aqueous solution has received special attention.*® Being an
electron deficient species, PA is expected to quench the emission via the photoinduced
electron transfer (PET) mechanism and non-radiative electron decay processes.’

Caution! Aromatic explosives, e.g., PA and 2,4-dinitrophenol (DNP), used in the
present study are highly explosive and should be used only in small quantities.

Thus, based on the previous researches of fluorescent probes in our laboratory’*? and the
fact that compound 4a shows the best fluorescence intensity at a f,, of 80% (water/THF), we
used 4a as an example to study the photoluminescence spectra of 4a upon adding the PA
solution into the THF/H,0O solvent (f, = 80%). With the addition of the PA solution (0-10
equiv.) into the 4a solution, the fluorescence intensity of compound 4a at 442 nm is
significantly decreased. Particularly, when the PA concentration is 100 M, the fluorescence
guenching efficiency can reach 94.9% (see Fig. 3 in the main text).

2. Limit of detection (LOD)

Limit of detection (LOD) is usually used as the standard for judging probe sensitivity.
First, the standard deviation (J) of the blank measurements (n = 10) is calculated, and ¢ =
1.6758. Then, a calibration curve is plotted between the luminescence intensity of 4a in 442
nm and the concentration of PA, the slope of the calibration curve K = -43.7 (Fig. S78).

According to the literature,” LOD is determined by using the equation:

LOD = 30/K

The corresponding LOD can be calculated to be 1.15 <107 M (26.3 ppb). This value of

LOD possesses certain advantages among the reported PA probes.*®!3%9
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Fig. S78. The fluorescence intensity of 4a at 442 nm as a function of picric acid

PA (uM)

concentration.

3. Stern-Volmer quenching constant (Ksv)

To further evaluate the quenching efficiency, the fluorometric titration data of 4a are

transformed to the Stern-\Volmer

plot as shown in Fig. S79.
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Fig. S79. Stern-Volmer plot in response to PA.

According to the literature,*

via the Stern-Volmer equation:

% Stern-Volmer quenching constant (Ksv) can be calculated
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lo/ 1-1 = Ksv [Q]

Where lpand | are the fluorescence intensities observed in the absence and presence of
PA, respectively; [Q] is the quencher concentration. Thus, the quenching constant Ksv is
calculated to be 3.39 x 10* M?, and this value is higher than those of some reported PA

prObeS 4,8,13-16,20,21

4. DFT studies for quenching mechanism

The quenching mechanism of 4a towards PA may be confirmed via theoretical
calculations. Therefore, the DFT studies were carried out by using the B3LYP/6-31G basis set.
The HOMO-LUMO energy levels and their DE values for 4a and PA are summarized in Fig.
S80.
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Fig. S80. HOMOs-LUMOs of 4a and PA calculated by the DFT methods.

The HOMO and LUMO energy levels of 4a are -5.69 eV and -1.68 eV, while those of
PA are -8.28 eV and -3.93 eV, respectively. The LUMO energy of electron-deficient PA is
higher than the HOMO energy of 4a but lower than the LUMO energy of 4a, so the electron
transfer from the LUMO of 4a to the LUMO of PA is feasible. This result clearly reveals that
the PET can occur from 4a to PA.
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5. Fluorometric detection experiments of other NAEs

We further explored the fluorometric detection experiments of other NAEs to study the
selectivity of 4a (see Table S5). When 10 equivalents of other NAEs (or analogues) are added
dropwise to the THF/H,O (f,, = 80%) solution of 4a, the fluorescence intensity is quenched to

different degrees.

Table S5.  Sensing performance of 4a towards NAEs (or analogues).

Quenching Quenching
NAEs Structure efficiency® NAEs Structure efficiency®
PA ON ' NO, 2-HBAC COOH
(picric acid) 94.9% | (2-hydroxybenzoic @(OH 83.3%
P acid)
2,4-DNP e 2-NA 1 o
! 0 2 0
(2,4-dinitrophenol) To, 69.0% (2-nitroaniline) ©/ 06.6%
4NBA 4-NBAc foor
. 62.9% (4-nitrobenzoic 61.4%
(4-nitrobenzaldehyde) .
No acid) NO,
4-NP 4 4-DNT vo,
(4-nitrophenol) 23.9% (1-methyl-2,4- 21.5%
P NO, dinitrobenzene) NO,
NM NB
0, 0,
(Nitromethane) CHaNO, 8.8% (nitrobenzene) NO, 76%
PhOH ™ 5 506 4-NT L 2 70/
(phenol) 270 (4-nitrotoluene) I 7

4The quenching efficiency were calculated after adding 10 equiv. NACs into 4a solution.

In a word, 4a can be used as a fluorescent AIE probe to detect PA by “turn-off” response
in aqueous system and has the advantages of low detection limit and large quenching constant.

At the same time, 4a also has a moderate response to some other NAEs.
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