Supporting Information for

Synthesis of 2-trifluoromethyl chromenes *via* double carbonyl-ene reaction

Shouxiong Chen,^a Hui Wang,^b Qi Lin,^{*a} and Zhiqiang Weng^{*a,b}

^a Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China. E-mail: <u>zweng@mju.edu.cn</u>

^b Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China. E-mail:

Table of Contents

General information	S 2
General procedure of the synthesis of 2-trifluoromethyl chromenes 3	S 3
Procedure for gram scale reaction	S 4
Procedure of inhibition experimentals	S5
Procedure of synthetic transformation of 3	S6
Data for compounds	S7
Crystal structure analyses	S25
References	S28
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra	S29

General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (J) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (CDCl₃ & 7.26), ¹³C NMR (CDCl₃ & 77.0), ¹H NMR (DMSO- $d_6 \delta$ 2.50) and ¹³C NMR (DMSO- $d_6 \delta$ 39.50). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. o-Isopropenylphenols were prepared according to the published procedures.¹ Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography purifications were performed by flash chromatography using silica gel 60. Single-crystal X-ray diffraction data was collected on a Bruker AXS APEX diffractometer. IR spectra were recorded using an FT-IR spectrometer and are reported in cm⁻¹. High-resolution mass spectra (HRMS) were recorded on Waters GC-TOF instrument using EI techniques and on THERMO SCIENTIFIC Q Exactive Hybrid quadrupole orbitrap mass spectrometer using ESI-Orbitrap techniques. Melting points were determined using a melting range apparatus and are uncorrected.

General procedure of the synthesis of 2-trifluoromethyl chromenes 3

Under air atmosphere, to a 5 mL pressure tube equipped with a stir bar was added *o*-Isopropenylphenol **2** (0.50 mmol, 1.0 equiv), trifluoroacetic anhydride **1** (315 mg, 1.50 mmol, 3.0 equiv) and toluene (2.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 12 h. After cooling down to room temperature, the crude mixture was diluted with water (5 mL \times 3) and diethyl ether (15 mL \times 3). The organic phase was combined and dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The resulting 2-trifluoromethyl chromenes product **3** was purified by column chromatography on silica gel with petroleum ether and ethyl ether.

Procedure for gram scale reaction for synthesis of (*E*)-3-(6-bromo-2-(trifluoromethyl)-4*H*-chromen-4-ylidene)-1,1,1-trifluoropropan-2-one (3q)

Under air atmosphere, to a 25 mL pressure tube equipped with a stir bar was added 4bromo-2-(prop-1-en-2-yl)phenol **2q** (0.75 g, 3.5 mmol, 1.0 equiv), trifluoroacetic anhydride **1** (2.20 g, 10.5 mmol, 3 equiv) and toluene (10 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 12 h. After cooling down to room temperature, the crude mixture was diluted with water (30 mL × 3) and diethyl ether (30 mL× 3). The organic phase was combined and dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel with petroleum ether to give 1.29 g of product **3q** (91% yield).

Procedure of inhibition experimentals

Under air atmosphere, to a 5 mL pressure tube equipped with a stir bar was added *o*isopropenylphenol **2a** (67 mg, 0.50 mmol, 1.0 equiv), trifluoroacetic anhydride 1 (315 mg, 1.50 mmol, 3.0 equiv), 2,2,6,6-tetramethylpiperidinooxy (156 mg, 1.00 mmol, 2.0 equiv), and toluene (2.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 12 h. After cooling down to room temperature, the crude mixture was diluted with water (5 mL × 3) and diethyl ether (15 mL × 3). The organic phase was combined and dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The resulting 2-trifluoromethyl chromenes product **3a** was purified by column chromatography on silica gel with petroleum ether and ethyl ether to give 116 mg of product **3a** (75% yield).

Procedure of synthetic transformation of 3 to 4

Under air atmosphere, to a 25 mL flask equipped with a stir bar was added trifluoromethyl chromenes **3** (0.50 mmol, 1.0 equiv), NaH (180 mg, 6.0 equiv). To this mixture at 0 $^{\circ}$ C (ice bath) was added solvent mixture of DMF and H₂O (3.0 mL : 3.0 mL) portionwise. The resulting solution was stirred at 60 $^{\circ}$ C for 3 h. After cooling down to room temperature, the crude mixture was diluted with 3M HCl (10 mL) and ethyl acetate (25 mL). The organic layer was separated and washed with water (10 mL) and then brine (10 mL). The organic solution was then dried over anhydrous MgSO₄ and filtered over a sintered funnel, and the filtrate was evaporated to dryness. The crude products **4** was purified by column chromatography on silica gel with petroleum ether and ethyl acetate.

(*E*)-1,1,1-trifluoro-3-(2-(trifluoromethyl)-4*H*-chromen-4-ylidene)propan-2one (3a)

Obtained as a pale yellow solid in 88% yield (136 mg). Mp: 100–103 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.53 – 7.43 (m, 2H), 6.75 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.4 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.1 Hz), 152.2 (s), 146.7 (q, J = 38.5 Hz), 144.6 (s), 134.0 (s), 126.8 (s), 123.6 (s), 119.0 (s), 118.9 (s), 118.7 (q, J = 273.3 Hz), 116.5 (q, J = 291.7 Hz), 105.7 (q, J = 3.8 Hz), 101.4 (s). IR (ATR): v 3114, 2922, 1649, 1551, 1467, 1367, 1271, 1201, 1131, 1083, 1019, 907, 732 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₆F₆O₂: 308.0272; found: 308.0267.

(*E*)-1,1,1-trifluoro-3-(7-methyl-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3b)

Obtained as a pale yellow solid in 92% yield (148 mg). Mp: 109–112 °C. $R_{\rm f}$ (petroleum ether : ethyl ether = 20 : 1) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.34 – 7.22 (m, 2H), 6.70 (s, 1H), 2.52 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.4 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 33.8 Hz), 152.2 (s), 146.6 (q, J = 38.4 Hz), 145.8 (s), 144.9 (s), 128.2 (s), 123.4 (s), 118.8 (q, J = 273.2 Hz), 118.7 (s), 116.6 (q, J = 291.8 Hz), 116.5 (s), 105.7 (q, J = 3.7 Hz), 100.6 (s), 21.6 (s). IR (ATR): v 2961, 2926, 1645, 1540, 1269, 1194,

1131, 1032, 904, 809, 726, 706 cm⁻¹. HR-MS (EI) m/z: calcd. for $C_{14}H_8F_6O_2$: 322.0428; found: 322.0417.

(*E*)-1,1,1-trifluoro-3-(8-methyl-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3c)

Obtained as a pale yellow solid in 90% yield (145 mg). Mp: 142–145 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.58. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 6.73 (s, 1H), 2.49 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 33.8 Hz), 150.7 (s), 146.6 (q, J = 38.5 Hz), 145.3 (s), 135.1 (s), 128.6 (s), 126.3 (s), 121.2 (s), 118.8 (q, J = 273.3 Hz), 118.7 (s), 116.5 (q, J = 291.7 Hz), 105.6 (q, J = 3.6 Hz), 101.3 (s), 15.6 (s). IR (ATR): v 2253, 1657, 1553, 1381, 1365, 1095, 903, 722, 649, 543 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₄H₈F₆O₂: 322.0428; found: 322.0421.

(*E*)-1,1,1-trifluoro-3-(6-methyl-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3d)

Obtained as a pale yellow solid in 95% yield (153 mg). Mp: 125–128 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.74 (s, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.38 (d, J = 8.5 Hz, 1H), 6.72 (s, 1H), 2.52 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 33.7 Hz), 150.5 (s), 146.5 (q, J = 38.6 Hz), 144.8 (s),

137.0 (s), 135.3 (s), 123.2 (s), 122.9 (s), 118.8 (q, J = 273.3 Hz), 118.7 (s), 116.5 (q, J = 291.7 Hz), 105.6 (q, J = 3.6 Hz), 100.9 (s), 21.2 (s). IR (ATR): v 2253, 1657, 1553, 1381, 1365, 1095, 903, 722, 649, 543 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₄H₈F₆O₂: 322.0428; found: 322.0419.

(E)-3-(6,7-dimethyl-2-(trifluoromethyl)-4H-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3e)

Obtained as a pale yellow solid in 96% yield (161 mg). Mp: 139–141 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.67 (s, 1H), 7.26 (s, 1H), 6.67 (s, 1H), 2.42 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -77.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (q, J = 33.6 Hz), 150.7 (s), 146.5 (q, J = 38.5 Hz), 145.0 (s), 144.9 (s), 136.3 (s), 123.4 (s), 119.1 (s), 118.4 (q, J = 273.4 Hz), 116.6 (s), 116.4 (q, J = 291.6 Hz), 105.6 (q, J = 3.7 Hz), 100.1 (s), 20.3 (s), 19.7 (s). IR (ATR): v 2954, 2925, 1683, 1647, 1545, 1202, 1150, 1090, 1021, 903, 823, 650 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₅H₁₀F₆O₂: 336.0585; found: 336.0578.

(E)-3-(6,8-dimethyl-2-(trifluoromethyl)-4H-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3f)

Obtained as a pale yellow solid in 85% yield (143 mg). Mp: 129–133 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s,

1H), 7.55 (s, 1H), 7.36 (s, 1H), 6.68 (s, 1H), 2.47 (s, 3H), 2.44 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (q, *J* = 33.8 Hz), 149.0 (s), 146.5 (q, *J* = 38.5 Hz), 145.4 (s), 136.5 (s), 136.3 (s), 128.2 (s), 120.7 (s), 118.4 (s), 118.9 (q, *J* = 273.3 Hz), 116.6 (q, *J* = 291.8 Hz), 105.4 (q, *J* = 3.6 Hz), 100.7 (s), 21.1 (s), 15.4 (s). IR (ATR): v 2928, 1647, 1265, 1190, 1148, 1083, 898, 824, 737 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₅H₁₀F₆O₂: 336.0585; found: 336.0579.

(*E*)-1,1,1-trifluoro-3-(6-methoxy-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3g)

Obtained as a pale yellow solid in 99% yield (167 mg). Mp: 123–127 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.37. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.43 (d, J = 9.2 Hz, 1H), 7.35 – 7.20 (m, 2H), 6.62 (s, 1H), 3.96 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.1 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (q, J = 33.8 Hz), 157.9 (s), 146.9 (s), 146.5 (q, J = 38.5 Hz), 144.8 (s), 122.7 (s), 120.2 (s), 119.7 (s), 118.8 (q, J = 273.3 Hz), 116.6 (q, J = 291.8 Hz), 105.0 (q, J = 3.7 Hz), 104.7 (s), 100.7 (s), 56.0 (s). IR (ATR): v 2848, 1646, 1548, 1486, 1369, 1273, 1199, 1139, 1089, 1036, 905, 727, 650 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₄H₈F₆O₃: 338.0378; found: 338.0383.

(*E*)-4-(3,3,3-trifluoro-2-oxopropylidene)-2-(trifluoromethyl)-4*H*-chromene-6-carbonitrile (3h)

Obtained as a pale yellow solid in 75% yield (125 mg). Mp: 156–159 °C. $R_{\rm f}$ (petroleum ether : ethyl ether =5 : 1) = 0.31. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.30 (s, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 6.77 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.5 (s, 3F), -78.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.3 (q, J = 34.7 Hz), 154.1 (s), 146.4 (q, J = 39.2 Hz), 141.7 (s), 136.1 (s), 128.8 (s), 120.5 (s), 119.9 (s), 118.4 (q, J = 273.3 Hz), 117.0 (s), 116.4 (q, J = 291.7 Hz), 111.1 (s), 106.3 (q, J = 3.8 Hz), 103.7 (s). IR (ATR): v 2924, 2237, 1692, 1563, 1482, 1271, 1206, 1155, 1089, 1039, 904, 840, 732 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₄H₅F₆NO₂: 333.0224; found: 333.0217.

(*E*)-1,1,1-trifluoro-3-(6-(trifluoromethoxy)-2-(trifluoromethyl)-4*H*-chromen-4-ylidene)propan-2-one (3i)

Obtained as a pale yellow solid in 98% yield (191 mg). Mp: 88–91 °C. R_f (petroleum ether) = 0.30. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.77 (s, 1H), 7.64 – 7.49 (m, 2H), 6.67 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.1 (s, 3F), -71.4 (s, 3F), -78.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.2 (q, J = 34.6 Hz), 150.2 (s), 147.0 (q, J = 2.0 Hz), 146.77 (q, J = 38.9 Hz), 143.1 (s), 126.9 (s), 120.8 (s), 120.3 (q, J = 259.1 Hz), 120.2 (s), 118.6 (q, J = 273.4 Hz), 116.3 (q, J = 291.4 Hz), 115.9 (s), 105.4 (q, J = 3.7 Hz), 102.6 (s). IR (ATR): v 2254, 1696, 1653, 1559, 1483, 1262, 1210, 1158, 1087, 1040, 903, 723, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₄H₅F₉O₃: 392.0095; found: 392.0089.

methyl (*E*)-4-(3,3,3-trifluoro-2-oxopropylidene)-2-(trifluoromethyl)-4*H*chromene-6-carboxylate (3j)

Obtained as a pale yellow solid in 63% yield (115 mg). Mp: 116–118 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.44 (s, 1H), 8.28 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 8.7 Hz, 1H), 6.79 (s, 1H), 4.01 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.6 (s, 3F), -78.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.5 Hz), 165.0 (s), 154.5 (s), 146.4 (q, J = 38.8 Hz), 143.3 (s), 134.4 (s), 128.6 (s), 125.6 (s), 119.1 (s), 118.8 (s), 118.5 (q, J = 273.3 Hz), 116.3 (q, J = 291.5 Hz), 106.0 (q, J = 3.7 Hz), 102.8 (s), 52.7 (s). IR (ATR): v 2924, 1728, 1656, 1555, 1450, 1369, 1268, 1197, 1126, 1035, 880, 745 cm⁻¹. HR-MS (ESI) m/z: calcd. for C₁₅H₉F₆O₄ [M+H]⁺: 367.0395; found: 367.0399.

(*E*)-1,1,1-trifluoro-3-(6-nitro-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3k)

Obtained as a pale yellow solid in 72% yield (127 mg). Mp: 113–115 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.41. ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.67 – 8.34 (m, 2H), 7.64 (d, J = 9.1 Hz, 1H), 6.88 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.5 (s, 3F), -78.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.3 (q, J = 35.2 Hz), 155.2 (s), 146.4 (q, J = 39.2 Hz), 145.5 (s), 141.9 (s), 128.1 (s), 120.5 (s), 120.0 (s), 119.6 (s), 118.4 (q, J = 273.4 Hz), 116.1 (q, J = 292.9 Hz), 106.1 (q, J = 3.6 Hz), 104.3 (s). IR (ATR): v 3085, 2927, 1654, 1546, 1464, 1353, 1198, 1144, 1079, 912, 844, 732 cm⁻¹. HR-MS (ESI) m/z: calcd. for C₁₃H₆NF₆O₄ [M+H]⁺: 354.0195; found: 354.0170.

(*E*)-1,1,1-trifluoro-3-(6-fluoro-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3l)

Obtained as a pale yellow solid in 85% yield (139 mg). Mp: 89–91 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.54 – 7.39 (m, 2H), 6.64 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 71.3 (s, 3F), -78.2 (s, 3F), -112.2 (dd, J = 12.7, 7.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 34.4 Hz), 160.2 (d, J = 249.5 Hz), 148.5 (d, J = 5.8 Hz), 146.7 (q, J = 38.8 Hz), 143.7 (d, J = 10.1 Hz), 122.0 (d, J = 25.2 Hz), 121.0 (d, J = 9.1 Hz), 120.3 (d, J = 8.1 Hz), 118.6 (q, J = 273.4 Hz), 116.4 (q, J = 291.4 Hz), 109.2 (d, J = 24.7 Hz), 105.0 (q, J = 3.7 Hz), 102.1 (s). IR (ATR): v 2254, 1693, 1653, 1556, 1482, 1273, 1208, 1155, 1085, 903, 722, 650 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₅F₇O₂: 326.0178; found: 326.0170.

(*E*)-1,1,1-trifluoro-3-(7-fluoro-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3m)

Obtained as a pale yellow solid in 93% yield (151 mg). Mp: 86–89 °C. R_f (petroleum ether) = 0.20. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.00 (dd, J = 8.9, 5.8 Hz, 1H), 7.28 – 7.11 (m, 2H), 6.70 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.4 (s, 3F), -78.2 (s, 3F), -101.8 (dd, J = 13.9, 7.8 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 34.3 Hz), 165.5 (d, J = 258.6 Hz), 153.2 (d, J = 13.0 Hz), 146.6 (q, J = 38.9 Hz), 143.6 (s), 125.9 (d, J = 10.2 Hz), 118.6 (q, J = 273.2 Hz), 116.4 (q, J = 291.5 Hz), 115.6 (s), 115.5 (d, J = 23.2 Hz), 105.9 (q, J = 4.3 Hz), 105.8 (d, J = 25.2 Hz), 101.6

(s). IR (ATR): v 2254, 1694, 1654, 1618, 1556, 1207, 1156, 1032, 903, 722, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₅F₇O₂: 326.0178; found: 326.0171.

(*E*)-3-(6,8-difluoro-2-(trifluoromethyl)-4*H*-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3n)

Obtained as a pale yellow solid in 89% yield (153 mg). Mp: 94–98 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.28 (t, J = 9.2 Hz, 1H), 6.64 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F), -78.4 (s, 3F), -109.2 – -109.3 (m, 1F), -123.6 – -130.0 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 34.8 Hz), 159.2 (dd, J = 251.5, 10.5 Hz), 151.9 (dd, J = 260.6, 13.1 Hz), 146.2 (q, J = 39.3 Hz), 142.1 (t, J = 2.8 Hz), 138.1 (dd, J = 12.3, 3.0 Hz), 121.5 (d, J = 9.4 Hz), 118.5 (q, J = 273.4 Hz), 116.2 (q, J = 291.4 Hz), 109.2 (dd, J = 28.1, 20.3 Hz), 105.3 (q, J = 3.7 Hz), 104.4 (dd, J = 24.2, 4.0 Hz), 103.3 (s). IR (ATR): v 2257, 1698, 1656, 1562, 1269, 1079, 904, 724, 649, 622 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₄F₈O₂: 344.0084; found: 344.0078.

(E)-3-(6-chloro-2-(trifluoromethyl)-4H-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (30)

Obtained as a pale yellow solid in 99% yield (169 mg). Mp: 118–120 °C. $R_{\rm f}$ (petroleum ether : ethyl ether =20 : 1) = 0.61. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.92 (s, 1H), 7.66 (d, J = 8.9 Hz, 1H), 7.43 (d, J = 8.9 Hz, 1H), 6.68 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ

179.1 (q, J = 34.5 Hz), 150.6 (s), 146.6 (q, J = 39.0 Hz), 143.1 (s), 134.1 (s), 132.7 (s), 123.2 (s), 120.5 (s), 120.2 (s), δ 118.6 (q, J = 273.4 Hz), 116.3 (q, J = 291.5 Hz), 105.6 (q, J = 3.7 Hz), 102.2 (s). IR (ATR): v 2258, 1690, 1578, 1382, 1287, 1215, 1158, 1089, 903, 656 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₅ClF₆O₂: 341.9882; found: 341.9878.

(E)-3-(7-chloro-2-(trifluoromethyl)-4H-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3p)

Obtained as a pale yellow solid in 99% yield (169 mg). Mp: 106–108 °C. $R_{\rm f}$ (petroleum ether : ethyl ether = 20 : 1) = 0.59. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.49 (s, 1H), 7.44 (d, J = 8.8 Hz, 1H), 6.72 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.5 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.2 Hz), 152.3 (s), 146.5 (q, J = 38.8 Hz), 143.4 (s), 140.1 (s), 127.5 (s), 124.8 (s), 119.0 (s), 118.6 (q, J = 273.3 Hz), 117.6 (s), 116.4 (q, J = 291.6 Hz), 105.9 (q, J = 3.7 Hz), 101.9 (s). IR (ATR): v 2278, 1658, 1590, 1437, 1398, 1277, 1239, 1212, 913, 742, 650 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₅ClF₆O₂: 341.9882; found: 341.9885.

(*E*)-3-(6-bromo-2-(trifluoromethyl)-4*H*-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3q)

Obtained as a pale yellow solid in 93% yield (180 mg). Mp: 130–133 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s,

1H), 8.07 (s, 1H), 7.79 (d, J = 8.9 Hz, 1H), 7.36 (d, J = 8.9 Hz, 1H), 6.68 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.4 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.4 Hz), 151.0 (s), 146.5 (q, J = 38.8 Hz), 142.9 (s), 136.9 (s), 126.3 (s), 120.7 (q, J = 4.2 Hz), 120.6 (s), 120.1 (s), 118.9 (q, J = 273.3 Hz), 116.5 (q, J = 291.7 Hz), 105.7 (q, J = 3.7 Hz), 102.2 (s). IR (ATR): v 3072, 1692, 1650, 1554, 1464, 1272, 1196, 1144, 1033, 904, 830, 728 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₅BrF₆O₂: 385.9377; found: 385.9372.

(E)-3-(7-bromo-2-(trifluoromethyl)-4H-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3r)

Obtained as a pale yellow solid in 97% yield (188 mg). Mp: 110–113 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.67 (s, 1H), 7.58 (d, J = 8.7 Hz, 1H), 6.73 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.4 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.3 Hz), 152.2 (s), 146.4 (q, J = 39.0 Hz), 143.5 (s), 130.3 (s), 128.1 (s), 124.8 (s), 122.1 (s), 118.5 (q, J = 273.5 Hz), 116.4 (q, J = 291.6 Hz), 118.0 (s), 105.9 (q, J = 3.7 Hz), 102.0 (s). IR (ATR): v 2254, 1654, 1557, 1438, 1400, 1365, 1272, 1239, 1198, 1101, 903, 723, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₅BrF₆O₂: 385.9377; found: 385.9372.

(*E*)-3-(6,8-dibromo-2-(trifluoromethyl)-4*H*-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3s)

Obtained as a pale yellow solid in 86% yield (200 mg). Mp: 93–96 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.04 – 8.00 (m, 2H), 6.68 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.7 Hz), 148.0 (s), 146.5 (q, J = 39.4 Hz), 142.3 (s), 139.6 (s), 125.4 (s), 121.6 (s), 119.8 (s), 118.4 (q, J = 273.5 Hz), 116.2 (q, J = 291.5 Hz), 114.2 (s), 106.0 (q, J = 3.6 Hz), 103.4 (s). IR (ATR): v 2254, 1656, 1560, 1453, 1388, 1361, 1298, 1269, 1204, 1160, 1084, 903, 722, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₄Br₂F₆O₂: 463.8482; found: 463.8485.

(E)-3-(8-bromo-6-chloro-2-(trifluoromethyl)-4H-chromen-4-ylidene)-1,1,1trifluoropropan-2-one (3t)

Obtained as a pale yellow solid in 89% yield (187 mg). Mp: 86–89 °C. R_f (petroleum ether) = 0.37. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.90 (s, 1H), 7.86 (s, 1H), 6.68 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.9 Hz), 147.6 (s), 146.6 (q, J = 39.3 Hz), 142.4 (s), 137.0 (s), 132.6 (s), 122.3 (s), 121.2 (s), 118.4 (q, J = 273.5 Hz), 116.2 (q, J = 291.4 Hz), 114.0 (s), 105.9 (q, J = 3.7 Hz), 103.4 (s). IR (ATR): v 3113, 2925, 1556, 1453, 1359, 1267, 1197, 1047, 904, 728, 647 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₃H₄BrClF₆O₂: 419.8987; found: 419.8985.

(*E*)-1,1,1-trifluoro-3-(6-phenyl-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3u)

Obtained as a pale yellow solid in 99% yield (190 mg). Mp: 127–130 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.53. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.08 (s, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.73 – 7.45 (m, 6H), 6.81 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.1 Hz), 151.6 (s), 146.5 (q, J = 38.8 Hz), 144.6 (s), 140.3 (s), 139.0 (s), 133.2 (s), 129.2 (s), 128.4 (s), 127.3 (s), 121.6 (s), 119.4 (s), 119.2 (s), 118.8 (q, J = 273.3 Hz), 116.5 (q, J = 291.6 Hz), 105.8 (q, J = 3.6 Hz), 101.5 (s). IR (ATR): v 2922, 1644, 1541, 1474, 1390, 1270, 1202, 1142, 1010, 903, 828, 723, 650 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₉H₁₀F₆O₂: 384.0585; found: 384.0577.

(*E*)-1,1,1-trifluoro-3-(7-phenyl-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3v)

Obtained as a pale yellow solid in 99% yield (190 mg). Mp: 132–135 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.80 – 7.62 (m, 4H), 7.59 – 7.45 (m, 3H), 6.77 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 33.9 Hz), 152.6 (s), 147.2 (s), 146.8 (q, J = 38.5 Hz), 144.4 (s), 138.0 (s), 129.3 (s), 129.2 (s), 127.2 (s), 125.6 (s), 124.1 (s), 118.8 (q, J = 273.3 Hz), 117.8 (s), 116.6 (s), 116.5 (q, J = 291.7 Hz), 105.8 (q, J = 3.7 Hz), 101.2 (s). IR (ATR): v 2254, 1690, 1651, 1551, 1268, 1206, 1153, 1018, 903, 824, 723, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₉H₁₀F₆O₂: 384.0585; found: 384.0574.

(*E*)-1,1,1-trifluoro-3-(6-mesityl-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3w)

Obtained as a pale yellow solid in 89% yield (189 mg). Mp: 157–159 °C. $R_{\rm f}$ (petroleum ether) = 0.56. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.02 (s, 1H), 7.77 – 7.70 (m, 2H), 7.20 (s, 2H), 6.95 (s, 1H), 2.55 (s, 3H), 2.27 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 33.9 Hz), 151.3 (s), 146.8 (q, J = 38.5 Hz), 144.7 (s), 140.6 (s), 137.7 (s), 136.8 (s), 135.9 (s), 135.7 (s), 128.7 (s), 124.3 (s), 119.4 (s), 119.2 (s), 119.1 (q, J = 273.2 Hz), 116.7 (q, J = 291.8 Hz), 105.9 (q, J = 3.7 Hz), 101.6 (s), 21.0 (s), 20.7 (s). IR (ATR): v 2254, 1692, 1651, 1553, 1469, 1273, 1030, 903, 832, 723, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₂₂H₁₆F₆O₂: 426.1054; found: 426.1052.

(*E*)-1,1,1-trifluoro-3-(7-mesityl-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3x)

Obtained as a pale yellow solid in 87% yield (185 mg). Mp: 171–173 °C. R_f (petroleum ether) = 0.47. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.01 (s, 2H), 6.80 (s, 1H), 2.38 (s, 3H), 2.06 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 34.1 Hz), 152.3 (s), 148.3 (s), 146.8 (q, J = 38.5 Hz), 144.6 (s), 137.9 (s), 136.2 (s), 135.3 (s), 128.6 (s), 128.5 (s), 119.5 (s), 118.8 (q, J = 273.4 Hz), 117.6 (s), 116.6 (q, J = 291.8 Hz), 105.9 (q, J = 3.8 Hz), 102.0 (s), 101.2 (s), 21.0 (s), 20.6 (s). IR (ATR): v 2958, 2253, 1651, 1553, 1272, 1205, 1151, 1020, 904, 824, 727, 650 cm⁻¹. HR-MS (EI) m/z: calcd. for C₂₂H₁₆F₆O₂: 426.1054; found: 426.1055.

(*E*)-2-(4-(3,3,3-trifluoro-2-oxopropylidene)-2-(trifluoromethyl)-4*H*chromen-7-yl)benzonitrile (3y)

Obtained as a pale yellow solid in 77% yield (157 mg). Mp: 168–171 °C. R_f (petroleum ether : ethyl ether = 5 : 1) = 0.31. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.70 – 7.67 (m, 2H), 7.65 – 7.57 (m, 2H), 6.82 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, J = 34.3 Hz), 152.1 (s), 146.8 (q, J = 38.8 Hz), 142.4 (s), 134.1 (s), 133.3 (s), 133.1 (s), 132.9 (s), 130.6 (s), 129.9 (s), 129.2 (q, J = 7.1 Hz), 127.3 (s), 124.2 (s), 121.7 (s), 119.1 (q, J = 7.0 Hz), 118.4 (q, J = 273.5 Hz), 117.9 (s), 116.4 (q, J = 291.8 Hz), 115.0 (s), 111.3 (s). IR (ATR): v 2254, 1656, 1406, 1368, 1158, 1097, 1018, 903, 824, 722, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₂₀H₉F₆NO₂: 409.0537; found: 409.0533.

Obtained as a pale yellow solid in 99% yield (228 mg). Mp: 138–141 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.48. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.13 (s, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.86 – 7.64 (m, 6H), 7.63 – 7.48 (m, 3H), 7.43 (t, J = 6.8 Hz, 1H), 6.84 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.2 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.3 (q, J = 34.9 Hz), 151.7 (s), 146.8 (s), 146.4 (s), 144.6 (s), 141.4 (s), 140.2 (s), 139.9 (s), 137.8 (s), 133.1 (s), 129.0 (s), 127.9 (s), 127.7 (q, J = 6.5 Hz), 127.1 (s), 121.5 (s), 119.4 (s), 119.2 (s), 118.2 (q, J =

273.5 Hz), 116.2 (q, J = 291.4 Hz), 105.8 (q, J = 3.7 Hz), 101.5 (s). IR (ATR): v 2257, 1691, 1648, 1550, 1478, 1368, 1271, 1198, 1143, 1101, 905, 825, 729 cm⁻¹. HR-MS (EI) m/z: calcd. for C₂₅H₁₄F₆O₂: 460.0898; found: 460.0889.

(*E*)-1,1,1-trifluoro-3-(7-(naphthalen-2-yl)-2-(trifluoromethyl)-4*H*-chromen-4-ylidene)propan-2-one (3aa)

Obtained as a pale yellow solid in 85% yield (184 mg). Mp: 198–201 °C. R_f (petroleum ether : ethyl ether = 20 : 1) = 0.44. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.15 (s, 1H), 8.10 – 7.88 (m, 4H), 7.85 – 7.78 (m, 3H), 7.65 – 7.53 (m, 2H), 6.78 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.3 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.0 (q, J = 33.5 Hz), 152.7 (s), 147.1 (s), 146.8 (q, J = 38.6 Hz), 144.4 (s), 135.3 (s), 133.4 (q, J = 5.6 Hz), 129.2 (s), 128.5 (s), 127.8 (s), 127.1 (s), 126.9 (s), 126.7 (s), 125.8 (s), 124.5 (s), 124.2 (s), 118.3 (q, J = 273.5 Hz), 118.0 (s), 117.9 (s), 116.8 (s), 116.2 (q, J = 291.4 Hz), 105.9 (q, J = 3.7 Hz), 101.2 (s). IR (ATR): v 2957, 2925, 1650, 1550, 1449, 1270, 1201, 1142, 1100, 904, 723, 650 cm⁻¹. HR-MS (EI) m/z: calcd. for C₂₃H₁₂F₆O₂: 434.0741; found: 434.0739.

(*E*)-1,1,1-trifluoro-3-(6-(pyridin-4-yl)-2-(trifluoromethyl)-4*H*-chromen-4ylidene)propan-2-one (3ab)

Obtained as a pale yellow solid in 78% yield (150 mg). Mp: 155–158 °C. R_f (ethyl ether) = 0.64. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 5.6 Hz, 2H), 8.53 (s, 1H), 8.13 (d, J = 2.0 Hz, 1H), 7.95 (dd, J = 8.7, 2.0 Hz, 1H), 7.63 – 7.53 (m, 3H), 6.81 (s,

1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.4 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 179.1 (q, *J* = 34.3 Hz), 152.5 (s), 150.6 (s), 146.6 (q, *J* = 38.7 Hz), 146.1 (s), 143.9 (s), 137.2 (s), 132.7 (s), 122.0 (s), 121.7 (s), 119.9 (s), 119.5 (s), 118.7 (q, *J* = 273.3 Hz), 116.4 (q, *J* = 291.6 Hz), 105.8 (q, *J* = 3.7 Hz), 102.0 (s). IR (ATR): v 2254, 1652, 1556, 1273, 1239, 1202, 1153, 1111, 903, 723, 649 cm⁻¹. HR-MS (EI) m/z: calcd. for C₁₈H₉F₆NO₂: 385.0537; found: 385.0532.

2-hydroxy-4-methyl-2-(trifluoromethyl)-2H-chromene-6-carboxylic acid (4j)

Obtained as a pale yellow solid in 38% yield (52 mg). Mp: 47–50 °C. R_f (petroleum ether : ethyl ether = 1 : 2) = 0.53. ¹H NMR (400 MHz, DMSO- d_6) δ 12.94 (br s, 1H), 8.63 (br s, 1H), 7.97 (d, J = 2.0 Hz, 1H), 7.91 (dd, J = 8.4, 2.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 5.89 (s, 1H), 2.22 (d, J = 1.2 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -83.8 (s). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.2 (s), 153.9 (s), 134.6 (s), 132.0 (s), 126.1 (s), 125.1 (s), 122.6 (q, J = 280.7 Hz), 120.2 (s), 116.7 (s), 115.2 (s), 94.5 (q, J = 33.1 Hz), 17.9 (s). IR (ATR): v 3393, 1656, 1530, 1395, 1152, 1035, 968, 912, 747, 624, 535 cm⁻¹. HR-MS (ESI) m/z: calcd. for C₁₂H₁₀F₃O₄ [M+H]⁺: 275.0525; found: 275.0523.

4-methyl-6-nitro-2-(trifluoromethyl)-2H-chromen-2-ol (4k)

Obtained as a pale yellow solid in 51% yield (71 mg). Mp: 146–148 °C. R_f (petroleum ether : ethyl ether = 5 : 1) = 0.33. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.29 (d, J = 2.4 Hz, 1H), 8.22 (dd, J = 8.8, 2.4 Hz, 1H), 7.20 (d, J = 8.8 Hz, 1H), 5.92 (s, 1H), 4.15 (br s, 1H), 2.32 (d, J = 1.6 Hz, 3H). ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -85.4 (s). ¹³C NMR (101 MHz, CD₂Cl₂) δ 156.6 (s), 144.8 (s), 137.3 (s), 127.8 (s), 123.5 (q, J = 286.6 Hz), 122.2 (s), 122.1 (s), 119.2 (s), 116.3 (s), 96.3 (q, J = 34.5 Hz), 19.8 (s). IR (ATR): v 3388, 3113, 2926, 1661, 1612, 1511, 1338, 1172, 1114, 955, 737 cm⁻¹. HR-MS (ESI) m/z: calcd. for C₁₁H₉F₃NO₄ [M+H]⁺: 276.0478; found: 276.0477.

6-bromo-4-methyl-2-(trifluoromethyl)-2H-chromen-2-ol (4q)

Obtained as a pale yellow oil in 54% yield (82 mg). R_f (petroleum ether : ethyl ether = 5 : 1) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 2.3 Hz, 1H), 7.40 (dd, J = 8.6, 2.3 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 5.76 (d, J = 0.9 Hz, 1H), 3.77 (br s, 1H), 2.19 (d, J = 1.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -85.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.8 (s), 135.4 (s), 133.0 (s), 126.9 (s), 121.8 (s), 121.7 (q, J = 285.6 Hz), 118.4 (s), 114.8 (s), 113.5 (s), 93.7 (q, J = 34.2 Hz), 18.0 (s). IR (ATR): v 3115, 2922, 1650, 1553, 1467, 1271, 1202, 1144, 1033, 904, 728 cm⁻¹. HR-MS (ESI) m/z: calcd. for C₁₁H₉BrF₃O₂ [M+H]⁺: 309.9422; found: 309.9419.

Crystal structure analyses

The crystal samples of **3a** and **4k** were prepared by slow volatilization in diethyl ether. The suitable crystals of **3a** (CCDC 1966094) and **4k** (CCDC 2122313) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using CuK α radiation (λ 1.54178 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.² Structure solution and refinement were carried out with the SHELXTL suite of programs.² The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

ORTEP diagrams

ORTEP diagram of 3a with thermal ellipsoids at the 40% probability level

ORTEP diagram of 4k with thermal ellipsoids at the 40% probability level

References:

- A. Seoane, N. Casanova, N. Quiñones, J. L. Mascareñas and M. Gulás, Rhodium(III)-Catalyzed Dearomatizing (3 + 2) Annulation of 2-Alkenylphenols and Alkynes, *J. Am. Chem. Soc.*, 2014, **136**, 7607-7610.
- 2. SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra

¹H NMR spectra of **3a** in CDCl₃

¹⁹F NMR spectra of **3a** in CDCl₃

¹³C NMR spectra of **3a** in CDCl₃

¹⁹F NMR spectra of **3b** in CDCl₃

¹H NMR spectra of 3c in CDCl₃

¹⁹F NMR spectra of **3c** in CDCl₃

^{13}C NMR spectra of 3c in CDCl_3

¹H NMR spectra of **3d** in CDCl₃

 ^{19}F NMR spectra of **3d** in CDCl₃

 13 C NMR spectra of **3d** in CDCl₃

¹H NMR spectra of **3e** in CDCl₃

¹⁹F NMR spectra of **3e** in CDCl₃

¹³C NMR spectra of **3e** in CDCl₃

¹H NMR spectra of **3f** in CDCl₃

^{19}F NMR spectra of **3f** in CDCl₃

 13 C NMR spectra of **3f** in CDCl₃

¹H NMR spectra of 3g in CDCl₃

¹⁹F NMR spectra of **3g** in CDCl₃

¹³C NMR spectra of **3g** in CDCl₃

¹H NMR spectra of **3h** in CDCl₃

¹⁹F NMR spectra of **3h** in CDCl₃

¹³C NMR spectra of **3h** in CDCl₃

¹H NMR spectra of **3i** in CDCl₃

¹⁹F NMR spectra of **3i** in CDCl₃

¹³C NMR spectra of **3i** in CDCl₃

¹H NMR spectra of **3j** in CDCl₃

 ^{19}F NMR spectra of **3j** in CDCl₃

¹³C NMR spectra of **3j** in CDCl₃

¹H NMR spectra of 3k in CDCl₃

¹⁹F NMR spectra of **3k** in CDCl₃

¹H NMR spectra of **3l** in CDCl₃

¹⁹F NMR spectra of **3l** in CDCl₃

 13 C NMR spectra of **3l** in CDCl₃

61 95 61 61	46 99	12444 125554 125555 125555 125555 125555 125555 125555 1255555 125555 125555 1
62.28 28.29	58.	44444447222222222222222222222222222222
~~	11	

¹H NMR spectra of **3m** in CDCl₃

¹⁹F NMR spectra of **3m** in CDCl₃

¹³C NMR spectra of **3m** in CDCl₃

¹H NMR spectra of **3n** in CDCl₃

¹⁹F NMR spectra of **3n** in CDCl₃

¹³C NMR spectra of **3n** in CDCl₃

 179, 77

 177, 179, 73

 1778, 93

 1778, 93

 1778, 93

 1778, 94

 1778, 94

 1778, 94

 1778, 95

 1778, 95

 1778, 94

 1778, 94

 1778, 95

 1778, 95

 1778, 95

 1778, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

 1714, 95

¹H NMR spectra of **30** in CDCl₃

¹⁹F NMR spectra of **30** in CDCl₃

¹³C NMR spectra of **30** in CDCl₃

¹H NMR spectra of **3p** in CDCl₃

-6.72

¹⁹F NMR spectra of **3p** in CDCl₃

¹³C NMR spectra of **3p** in CDCl₃

¹H NMR spectra of 3q in CDCl₃

¹⁹F NMR spectra of **3q** in CDCl₃

¹³C NMR spectra of **3q** in CDCl₃

¹H NMR spectra of **3r** in CDCl₃

 19 F NMR spectra of **3r** in CDCl₃

¹³C NMR spectra of **3r** in CDCl₃

53 33 24 E	52222222222222222222222222222222222222
79. 78.	0000000111441112001222222228003000000000000000000000

¹H NMR spectra of **3s** in CDCl₃

¹⁹F NMR spectra of **3s** in CDCl₃

¹³C NMR spectra of **3s** in CDCl₃

¹H NMR spectra of **3t** in CDCl₃

¹⁹F NMR spectra of **3t** in CDCl₃

¹³C NMR spectra of **3t** in CDCl₃

¹H NMR spectra of 3u in CDCl₃

 19 F NMR spectra of 3u in CDCl₃

¹³C NMR spectra of **3u** in CDCl₃

¹H NMR spectra of 3v in CDCl₃

 19 F NMR spectra of 3v in CDCl₃

 ^{13}C NMR spectra of 3v in CDCl₃

¹H NMR spectra of 3w in CDCl₃

 ^{19}F NMR spectra of **3w** in CDCl₃

 13 C NMR spectra of **3w** in CDCl₃

¹H NMR spectra of **3x** in CDCl₃

 19 F NMR spectra of 3x in CDCl₃

¹³C NMR spectra of **3x** in CDCl₃

¹H NMR spectra of **3y** in CDCl₃

 19 F NMR spectra of 3y in CDCl₃

¹³C NMR spectra of **3y** in CDCl₃

¹H NMR spectra of **3z** in CDCl₃

 ^{19}F NMR spectra of 3z in CDCl₃

¹³C NMR spectra of **3z** in CDCl₃

¹H NMR spectra of **3aa** in CDCl₃

¹⁹F NMR spectra of **3aa** in CDCl₃

¹³C NMR spectra of **3aa** in CDCl₃

¹H NMR spectra of **3ab** in CDCl₃

¹⁹F NMR spectra of **3ab** in CDCl₃

¹³C NMR spectra of **3ab** in CDCl₃

¹H NMR spectra of **4j** in DMSO- d_6

¹⁹F NMR spectra of 4j in DMSO- d_6

¹³C NMR spectra of **4j** in DMSO- d_6

¹H NMR spectra of **4k** in CD₂Cl₂

^{19}F NMR spectra of 4k in CD_2Cl_2

¹H NMR spectra of 4q in CDCl₃

 $\begin{cases} 7.47 \\ 7.46 \\ 7.741 \\ 7.39 \\ 7.39 \\ 7.39 \\ 6.92 \\ 6.92 \\ 6.92 \\ 6.216 \\ -3.77 \\ -3.77 \end{cases}$

¹⁹F NMR spectra of **4q** in CDCl₃

¹³C NMR spectra of **4q** in CDCl₃

