Supporting Information

A Nickel/Organoboron Catalyzed Metallaphotoredox Platform for C(sp²)–P and C(sp²)–S Bond Construction

Yuan Zhu, Weisai Zu, Qing Tian, Zifeng Cao, Yu Wei,* Liang Xu*

School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.

Content

1.	General considerations	2
2.	The reaction condition screening for the synthesis of triarylphosphine oxides	3
3.	The synthesis of triarylphosphine oxides	5
4.	The synthesis of thioethers	6
	3.1 Control experiments for the used reaction conditions in thioether synthesis	6
	3.2 General procedure for the synthesis of thioethers	6
5.	A summary of unsuccessful cases	8
6.	Stern-Volmer experiments	9
7.	Characterization data	18
8.	References	39
9.	Copies of NMR spectra	41

1. General considerations

General. Unless otherwise noted, all reactions were carried out under an air atmosphere. Analytical thinlayer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator. Visualization was accomplished by exposure to a UV lamp. All the products in this article are compatible with standard silica gel chromatography. Column chromatography was performed on silica gel (200–300 mesh) using standard methods.

Structural analysis. NMR spectra were measured on a Bruker Ascend 400 spectrometer and chemical shifts (δ) are reported in parts per million (ppm). ¹H NMR spectra were recorded at 400 MHz in NMR solvents and referenced internally to corresponding solvent resonance, and ¹³C NMR spectra were recorded at 101 MHz and referenced to corresponding solvent resonance. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were acquired on Thermo Scientific LTQ Orbitrap XL with an ESI source.

Materials. Commercial reagents and solvent were purchased from Adamas, J&K, Energy, Sigma-Aldrich, Alfa Aesar, Acros Organics, TCI and used as received unless otherwise stated.

2. The reaction condition screening for the synthesis of

triarylphosphine oxides

64% HPLC yield 62% isolated yield

Entry	Variations from the 'standard' conditions	HPLC yield (%)
1.	none	64
	the dosage of AQDAB	
2.	5 mol% AQDAB	64
3.	1 mol% AQDAB	64
4.	0.5 mol% AQDAB	64
5.	0.1 mol% AQDAB	61
6.	0.05 mol% AQDAB	53
	the dosage of $NiCl_2 + ligand$	
7.	NiCl ₂ 10 mol%, bpy 10 mol%	64
8.	NiCl ₂ 20 mol%, bpy 20 mol%	64
	Photocatalyst used instead of AQDAB	
9.	2 mol% CdS	37
10.	2 mol% Ir(ppy) ₂ (dtbbpy)(PF ₆)	46
11.	2 mol% 4CzIPN	49
12.	2 mol% TXO	45
	Ligand used instead of bpy	
13.	dtbbpy	43
14.	4,4'-dimethyl-2,2'-bipyridine	52
15.	1,10-phenanthroline monohydrate	51
16.	5,5'-dimethyl-2,2'-bipyridine	53
17.	triphenylphosphine	37
	Base used instead of DIPEA	
18.	TEA	52
19.	DBU	24
20.	DABCO	16
21.	tBuOK	25

Table S1 Optimization of the reaction conditions

22.	2,6-lutidine	24			
	Solvent used				
23.	Toluene	22			
24.	Dichloroethane	38			
25.	THF	48			
26.	Acetone	23			
Other variations					
27.	Ar atmosphere	63			
28.	1.0 equiv DIPEA	38			
29.	3.0 equiv DIPEA	51			
30.	Reaction time 30 hours	60			
31.	5.0 equiv diphenylphosphine oxide	75			

3. The synthesis of triarylphosphine oxides

General Procedure A: A flame-dried 25 mL quartz column reaction tube was placed with a magnetic stir bar. Then, aryl bromide /aryl iodine (0.3 mmol, 1.0 equiv), diphenylphosphine oxide (120.7 mg, 0.6 mmol, 2.0 equiv), **AQDAB** (2.6 mg, 0.006 mmol, 2 mol%), NiCl₂ (1.9 mg, 0.015 mmol, 5 mol%), bpy (2.3 mg, 0.015 mmol, 5 mol%), DIPEA (77.5 mg, 0.6 mmol, 2.0 equiv), and CH₃CN/DMF (0.5/0.5 mL) were added. The reaction tube was placed on a photocatalytic parallel reactor with a 455 - 460 nm blue LEDs light source (10 W) at the bottom (**Figure S1**). Then the reaction mixture was irradiated with the 455 nm blue LEDs (at approximately 0.3 cm away from the light source). After stirring for 22 hours at 25 °C, the reaction mixture was added 20 mL H₂O and then extracted with ethyl acetate (3 × 10 mL). The combined organic phase was washed with brine (2 × 5.0 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target products.

Figure S1. Picture of the reactor

4. The synthesis of thioethers

3.1 Control experiments for the used reaction conditions in thioether synthesis

	I	5
Br + CN 0.3 mmol	AQDAB (2 mol%) NiCl ₂ (5 mol%) bpy (5 mol%) C ₁₂ H ₂₅ H DIPEA (1.5 equiv) CH ₃ CN/DMF = 1:1 (1.0 mL) 10 W, 455 nm blue LEDs 25 °C, 22 h, air	C ₁₂ H ₂₅ S CN 5aa, 89%
Entry	Variations from the 'standard' conditions	Yield (%) ^[a]
1	no AQDAB	4
2	no NiCl ₂	12
3	no bpy	36
4	no light	N. D.
5	no DIPEA	N. D.

 Table S2. The control experiments for the thioether synthesis ^[a]

Standard reaction conditions: 4-bromobenzonitrile (0.3 mmol, 1.0 equiv), 1-dodecanethiol (0.6 mmol, 2.0 equiv), **AQDAB** (0.006 mmol, 2 mol%), NiCl₂ (0.015 mmol, 5 mol%), bpy (0.015 mmol, 5 mol%), DIPEA (0.45 mmol, 1.5 equiv), and CH₃CN/ DMF (0.5/0.5 mL), 10 W 455 nm blue LEDs, 25 °C, air, 22 h. ^[a] Isolated yield. N.D. = not detected.

3.2 General procedure for the synthesis of thioethers

General Procedure B: A flame-dried 25 mL quartz column reaction tube was placed with a magnetic stir bar. Then, aryl bromide /aryl iodine (0.3 mmol, 1.0 equiv), 1-dodecanethiol (121.4 mg, 0.6 mmol, 2.0 equiv), **AQDAB** (2.6 mg, 0.006 mmol, 2 mol%), NiCl₂ (1.9 mg, 0.015 mmol, 5 mol%), bpy (2.3 mg, 0.015 mmol, 5 mol%), DIPEA (58.2 mg, 0.45 mmol, 1.5 equiv), and CH₃CN/DMF (0.5/0.5 mL) were added. The reaction tube was placed on a photocatalytic parallel reactor with a 455 - 460 nm blue LEDs light source (10 W) at the bottom (**Figure S1**). Then the reaction mixture was irradiated with the 455 nm blue LEDs (at approximately 0.3 cm away from the light source). After stirring for 22 hours at 25 °C, the reaction mixture was added 20 mL H₂O and then extracted with ethyl acetate (3×10 mL). The combined organic phase was washed with brine (2×5.0 mL), dried over anhydrous Na₂SO₄, and concentrated

under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target products.

5. A summary of unsuccessful cases

Scheme S1 A summary of unsuccessful coupling counterparts

Br

Β̈́r

SH

6. Stern-Volmer experiments

Figure S2 Fluorescence quenching date with AQDAB (0.1 mM) and variable diphenylphosphine oxide (10⁻⁴ M)

Figure S3 Fluorescence quenching date with AQDAB (0.1 mM) and variable DIPEA (10^{-4} M)

Figure S4 Fluorescence quenching date with AQDAB (0.1 mM) and variable $C_{12}H_{25}SH~(10^{-4}~M)$

Figure S5 Fluorescence quenching date with AQDAB (0.1 mM) and variable $NiCl_2 (10^{-4} M)$

Figure S6 Fluorescence quenching date with AQDAB (0.1 mM) and variable 4bromobenzonitrile (10⁻⁴ M)

Figure S7 Stern-Volmer plots of AQDAB (0.1 mM) and five quenchers. I_0 and I were luminescence intensities in the absence and presence of the indicated concentrations (10⁻⁴ M) of the corresponding quencher, respectively. The solutions were irradiated at 387 nm and fluorescence was measured from 300 nm to 650 nm.

Figure S8 Fluorescence quenching date with AQDAB (0.01 mM) and variable diphenylphosphine oxide (10⁻⁵ M)

Figure S9 Fluorescence quenching date with AQDAB (0.01 mM) and variable DIPEA (10^{-5} M)

Figure S10 Fluorescence quenching date with AQDAB (0.01 mM) and variable $C_{12}H_{25}SH (10^{-5} M)$

Figure S11 Fluorescence quenching date with AQDAB (0.01 mM) and variable NiCl₂ (10⁻⁵ M)

Figure S12 Fluorescence quenching date with AQDAB (0.01 mM) and variable 4-bromobenzonitrile (10⁻⁵ M)

Figure S13 Stern-Volmer plots of AQDAB (0.01 mM) and five quenchers. I_0 and I were luminescence intensities in the absence and presence of the indicated concentrations (10⁻⁵ M) of the corresponding quencher, respectively. The solutions were irradiated at 387 nm and fluorescence was measured from 300 nm to 650 nm.

Figure S14 Fluorescence quenching date with 0.1 mM AQDAB and five quenchers (0.6 M for the diphenylphosphine oxide, $C_{12}H_{25}SH$ and DIPEA, 0.3 M for 4-bromobenzonitrile, and 15 mM for NiCl₂).

Figure S15 Fluorescence quenching date with AQDAB (0.1 mM) and variable concentration of DIPEA

Figure S16 Stern-Volmer plots of AQDAB (0.1 mM) and DIPEA as the quencher. I_0 and I were luminescence intensities in the absence and presence of the indicated concentrations (mol / L) of the corresponding quencher, respectively.

The quenching phenomenon of DIPEA made us reconsider its function. DIPEA might function as a reductive quencher in the transformation. Based on this, an electron-transfer-based catalytic cycle and the corresponding description were shown below (Scheme S2).

After the photocatalyst (PC) was excited to PC* under light, The excited photocatalyst was reduced by DIPEA, affording free radical cation DIPEA⁺⁺. The hydrogen of diphenylphosphine oxide was then transferred to DIPEA⁺⁺, generating the P-based radical. As for the nickel-catalyzed cycle, the oxidative addition of ArX onto the zero-valent L_nNi0 (A) would generate $L_nNiII(Ar)X$ (B). The combination of B and the P-radical then occurred to produce the Ni(III) species C, whose reductive elimination would form the desired product along with the one-valent nickel species D. Further reduction of D to A was then realized using PC⁻⁺, completing both the Nicatalyzed and PC-catalyzed cycles.

Scheme S2 A possible mechanism via the electron transfer pathway

7. Characterization data

(3aa) 4-(diphenylphosphoryl)benzonitrile (CAS: 5032-54-2)¹

4-(diphenylphosphoryl)benzonitrile Chemical Formula: C₁₉H₁₄NOP Exact Mass: 303.0813 Molecular Weight: 303.3008

Following the General Procedure A with 4-bromobenzonitrile (54.6 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3aa** was obtained as colorless oil (56.5 mg, 62%). Following the General Procedure A with 4-iodobenzonitrile

(68.8 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3aa** was obtained as colorless oil (49.3 mg, 54%).

This target product was purified by acidic alumina flash chromatography (PE: EA: MeOH = 1:1:0.1).

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H), 7.74 – 7.69 (m, 2H), 7.66 – 7.58 (m, 4H), 7.58 – 7.52 (m, 2H), 7.50 – 7.43 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5 (d, J = 99 Hz), 132.7, 132.6 (d, J = 2 Hz), 132.1 (d, J = 3 Hz), 131.9 (d, J = 1 Hz), 131.2 (d, J = 106 Hz), 128.8 (d, J = 12 Hz), 117.9 (d, J = 1 Hz), 115.6 (d, J = 3 Hz),. ³¹P NMR (162 MHz, CDCl₃) δ 27.76.

(3ba) (4-methoxyphenyl)diphenylphosphine oxide (CAS: 795-44-8)²

(4-methoxyphenyl)diphenylphosphine oxide Chemical Formula: C₁₉H₁₇O₂P Exact Mass: 308.0966 Molecular Weight: 308.3168 Following the General Procedure A with 1-bromo-4methoxybenzene (56.1 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ba** was obtained as white solid (63.2 mg, 68%).

Following the General Procedure A with 4-iodoanisole (70.2 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ba** was obtained as white solid (70.3 mg, 76%).

This target product was purified by acidic alumina

flash chromatography (PE: EA = 1:3). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.61 (m, 4H), 7.61 – 7.54 (m, 2H), 7.54 – 7.48 (m, 2H), 7.47 – 7.39 (m, 4H), 6.98 – 6.92 (m, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, *J* = 3 Hz), 134.0 (d, *J* = 11 Hz), 133.0 (d, *J* = 105 Hz), 132.1 (d, *J* = 10 Hz), 131.8 (d, *J* = 3 Hz), 128.5 (d, *J* = 12 Hz), 123.6 (d, *J* = 111 Hz), 114.1 (d, *J* = 13 Hz), 55.4. ³¹P NMR (162 MHz, CDCl₃) δ 29.04.

(3ca) diphenyl(p-tolyl)phosphine oxide (CAS: 6840-28-4)²

diphenyl(*p*-tolyl)phosphine oxide Chemical Formula: C₁₉H₁₇OP Exact Mass: 292.1017 Molecular Weight: 292.3178

Following the General Procedure A with 4-bromotoluene (51.3 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ca** was obtained as white solid (50.4 mg, 58%).

Following the General Procedure A with 4-iodotoluene (65.4 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ca** was obtained as white solid (47.1 mg, 54%).

This target product was purified by acidic alumina flash chromatography (PE: EA: MeOH = 1:1:0.1).

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.62 (m, 4H), 7.59 – 7.49

(m, 4H), 7.48 - 7.40 (m, 4H), 7.30 - 7.23 (m, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5 (d, J = 3 Hz), 132.8 (d, J = 104 Hz), 132.1 (d, J = 10 Hz), 132.1 (d, J = 10 Hz), 131.8 (d, J = 3 Hz), 129.3 (d, J = 13 Hz), 129.2 (d, J = 107 Hz), 128.5 (d, J = 12 Hz), 21.6 Hz(d, J = 1 Hz).³¹P NMR (162 MHz, CDCl₃) δ 29.20.

(3da) triphenylphosphine oxide (CAS: 791-28-6)²

triphenylphosphine oxide

Exact Mass: 278.0861

Molecular Weight: 278.2908

Following the General Procedure A with bromobenzene (47.1 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), 3da was obtained as white solid (41.9 mg, 50%).

Following the General Procedure A with iodobenzene (61.2 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), 3da was obtained as white solid (47.3 mg, 57%).

This target product was purified by acidic alumina flash Chemical Formula: C₁₈H₁₅OP chromatography (PE: EA: MeOH = 1:1:0.1).

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.61 (m, 6H), 7.56 – 7.49 (m,

3H), 7.48 - 7.40 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 132.5 (d, J = 104 Hz), 132.1 (d, J = 10 Hz), 131.9 (d, J = 3 Hz), 128.5 (d, J = 12 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 29.08.

(3ea) (4-chlorophenyl)diphenylphosphine oxid (CAS: 34303-18-9)²

(4-chlorophenyl)diphenylphosphine oxide Chemical Formula: C18H14CIOP Exact Mass: 312.0471 Molecular Weight: 312.7328

Following the General Procedure A with 1-bromo-4chlorobenzene (57.4)0.3 mg, mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), 3ea was obtained as white solid (32.9 mg, 35%).

Following the General Procedure A with 1-chloro-4iodobenzene (71.5 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), 3ea was obtained as white solid (72.7 mg, 78%).

This target product was purified by acidic alumina flash

chromatography (PE: EA: MeOH = 1:1:0.1).

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.50 (m, 8H), 7.48 – 7.39 (m, 6H).

 13 C NMR (101 MHz, CDCl₃) δ 138.6 (d, J = 3 Hz), 133.5 (d, J = 11 Hz), 132.2 (d, J = 3 Hz), 132.1 (d, J= 105 Hz), 132.0 (d, *J* = 10 Hz), 131.2 (d, *J* = 105 Hz), 128.9 (d, *J* = 13 Hz), 128.6 (d, *J* = 12 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.41.

(3fa) ethyl 4-(diphenylphosphoryl)benzoate (CAS: 101630-35-7)³

ethyl 4-(diphenylphosphoryl)benzoate Chemical Formula: C₂₁H₁₉O₃P Exact Mass: 350.1072 Molecular Weight: 350.3538

Following the General Procedure A with ethyl-4bromobenzoate (68.7 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3fa** was obtained as colorless oil (67.6 mg, 64%).

Following the General Procedure A with ethyl-4iodobenzoate (82.8 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), 3 / 1 a was obtained as colorless oil (86.3 mg, 82%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.10 (dd, J = 8.4, 2.4 Hz, 2H), 7.81 – 7.74 (m, 2H), 7.71 – 7.63 (m, 4H), 7.60 – 7.53 (m, 2H), 7.51 – 7.44 (m, 4H), 4.39 (q, J = 7.0 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 137.4 (d, J = 101 Hz), 133.6 (d, J = 3 Hz), 132.3 (d, J = 3 Hz), 132.2, 132.0 (d, J = 10 Hz), 131.8 (d, J = 104 Hz), 129.4 (d, J = 12 Hz), 128.7 (d, J = 12 Hz), 61.4, 14.3. ³¹P NMR (162 MHz, CDCl₃) δ 28.48.

(3ga) [1,1'-biphenyl]-4-yldiphenylphosphine oxide (CAS: 1942-83-2)¹

[1,1'-biphenyl]-4yldiphenylphosphine oxide Chemical Formula: C₂₄H₁₉OP Exact Mass: 354.1174 Molecular Weight: 354.3888

Following the General Procedure A with 4-bromobiphenyl (69.9 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ga** was obtained as white solid (79.5 mg, 75%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 158.3-159.6.

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.64 (m, 8H), 7.63 - 7.52 (m 4H), 7.51 – 7.41 (m, 6H), 7.38 (t, *J* = 7.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 144.7 (d, J = 3 Hz), 139.9, 132.6 (d, J = 10 Hz), 132.5 (d, J = 105 Hz), 132.1 (d, J = 10 Hz), 132.09 (d, J = 3 Hz), 131.1 (d, J = 106 Hz), 129.0, 128.6 (d, J = 12 Hz), 127.3,

127.3, 127.1.

³¹P NMR (162 MHz, CDCl₃) δ 28.97.

(3ha) tert-butyl 4-(diphenylphosphoryl)benzoate

tert-butyl 4-(diphenylphosphoryl)benzoate Chemical Formula: C₂₃H₂₃O₃P Exact Mass: 378.1385 Molecular Weight: 378.4078

Following the General Procedure A with tert-butyl 4bromobenzoate (77.1 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ha** was obtained as white solid (80.6 mg, 71%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 122.6-125.2.

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.01 (m, 2H), 7.71 (dd, *J* = 11.6, 8.4 Hz, 2H), 7.66 – 7.58 (m, 4H), 7.55 – 7.48 (m, 2H), 7.46 – 7.39 (m, 4H), 1.55 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.8, 137.5 (d, *J* = 101.6 Hz), 135.1 (d, *J* = 2.8 Hz), 132.0 (d, *J* = 105.0

Hz), 132.2 (d, J = 2.8 Hz), 132.0 (d, J = 10.0 Hz), 132.0 (d, J = 10.2 Hz), 129.3 (d, J = 12.2 Hz), 128.6 (d, J = 12.2 Hz), 81.8, 28.1. ³¹P NMR (162 MHz, CDCl₃) δ 28.52. IR (cm⁻¹): 3422, 2980, 1710, 1300, 1188, 1110, 718, 547. HRMS (ESI) m/z calcd for C₂₃H₂₃O₃PNa⁺ (M+Na)⁺ 401.12770, found 401.12796.

(3ia) (4-phenoxyphenyl)diphenylphosphine oxide (CAS: 2412926-10-2)⁴

(4-phenoxyphenyl)diphenylphosphine oxide Chemical Formula: C₂₄H₁₉O₂P Exact Mass: 370.1123 Molecular Weight: 370.3878 Following the General Procedure A with 1-bromo-4-phenoxybenzene (74.7 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ia** was obtained as white solid (72.2 mg, 65%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 4H), 7.62 – 7.55 (m, 2H), 7.54 – 7.48 (m, 2H), 7.47 – 7.39 (m, 4H), 7.38 – 7.31 (m, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.07 – 6.97(m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (d, *J* = 3.0 Hz), 155.5,

134.1 (d, J = 11.2 Hz), 132.7 (d, J = 104.9 Hz), 132.1 (d, J = 10.0 Hz), 131.9 (d, J = 2.8 Hz), 130.1, 128.5 (d, J = 12.1 Hz), 126.0 (d, J = 108.8 Hz), 124.6, 120.2, 117.6 (d, J = 13.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.76.

(3ja) 1-(4-(diphenylphosphoryl)phenyl)ethan-1-one (CAS: 5032-76-8)⁴

1-(4-(diphenylphosphoryl)phenyl)ethan-1-one Chemical Formula: C₂₀H₁₇O₂P Exact Mass: 320.0966 Molecular Weight: 320.3278 Following the General Procedure A with 1-(4bromophenyl)ethan-1-one (59.7 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ja** was obtained as white solid (59.6 mg, 62%).

Following the General Procedure A with 1-(4-iodophenyl)ethan-1-one (73.8 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ja** was obtained as colorless oil (73.1 mg, 76%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.98 (m, 2H), 7.80 – 7.74 (m, 2H), 7.68 – 7.60 (m, 4H), 7.58 – 7.52 (m, 2H), 7.49 – 7.43 (m, 4H), 2.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.5, 139.5 (d, *J* = 2.7 Hz), 137.7 (d, *J* = 101 Hz), 132.4 (d, *J* = 10.1 Hz), 132.3 (d, *J* = 3.0 Hz), 132.0 (d, *J* = 10.0 Hz), 131.2, 128.7 (d, *J* = 12.2 Hz), 128.1 (d, *J* = 12.1 Hz), 26.8.

³¹P NMR (162 MHz, CDCl₃) δ 28.35.

(3ka) (4-(tert-butyl)phenyl)diphenylphosphine oxide (CAS: 1448632-01-6)⁵

(4-(*tert*butyl)phenyl)diphenylphosphine oxide Chemical Formula: C₂₂H₂₃OP Exact Mass: 334.1487 Molecular Weight: 334.3988

Hz), 35.0, 31.1. ³¹P NMR (162 MHz, CDCl₃) δ 28.93.

Following the General Procedure A with 1-(tert-butyl)-4iodobenzene (78.0 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ka** was obtained as white solid (63.2 mg, 63%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 4H), 7.61 – 7.54 (m, 2H), 7.53 – 7.40 (m, 8H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 155.4 (d, J = 2.8 Hz), 132.9 (d, J = 104.3 Hz), 132.1 (d, J = 9.7 Hz), 131.9, 131.8 (d, J = 2.7 Hz), 129.2 (d, J = 106.9 Hz), 128.4 (d, J = 12.1 Hz), 125.5 (d, J = 12.4

(3la) diphenyl(m-tolyl)phosphine oxide (CAS: 6840-27-3)⁶

diphenyl(*m*-tolyl)phosphine oxide Chemical Formula: C₁₉H₁₇OP Exact Mass: 292.1017 Molecular Weight: 292.3178 Following the General Procedure A with 1-bromo-3-methylbenzene (51.3 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3la** was obtained as white solid (33.3 mg, 38%).

Following the General Procedure A with 1-iodo-3-methylbenzene (65.4 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3la** was obtained as white solid (48.2 mg, 55%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 4H), 7.60 – 7.50 (m, 3H), 7.48 – 7.42 (m, 4H), 7.40 – 7.31 (m, 3H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5 (d, J = 12.0 Hz), 133.0 (d, J = 43.5 Hz), 132.8 (d, J = 2.9 Hz), 132.5 (d, J = 9.5 Hz), 132.1 (d, J = 9.9 Hz), 131.9 (d, J = 2.8 Hz), 131.8, 129.2 (d, J = 10.3 Hz), 128.5 (d, J = 12.1 Hz), 128.3 (d, J = 12.9 Hz), 21.4. ³¹P NMR (162 MHz, CDCl₃) δ 29.27.

(3ma) (3-methoxyphenyl)diphenylphosphine oxide (CAS: 95278-09-4)⁴

Following the General Procedure A with 1-iodo-3methoxybenzene (70.2 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ma** was obtained as white solid (38.8 mg, 42%). This target product was purified by acidic alumina flash

(3-methoxyphenyl)diphenylphosphine oxide Chemical Formula: C₁₉H₁₇O₂P Exact Mass: 308.0966 Molecular Weight: 308.3168

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.62 (m, 4H), 7.57 – 7.50 (m, 2H), 7.49 – 7.41 (m, 4H), 7.38 – 7.32 (m, 1H), 7.31 – 7.24 (m, 1H), 7.17 – 7.10 (m, 1H), 7.09 – 7.03 (m, 1H), 3.78 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.6 (d, *J* = 14.8 Hz), 133.9 (d, *J* = 103.6 Hz), 133.0, 132.1 (d, *J* = 9.9 Hz), 132.0 (d, *J* = 2.8 Hz), 129.7 (d, *J* = 14.4 Hz), 128.5 (d, *J* = 12.2 Hz), 124.4 (d, *J* = 10.0 Hz), 118.2

chromatography (PE: EA = 1:3).

(d, *J* = 2.6 Hz), 116.8 (d, *J* = 10.7 Hz), 55.4. ³¹P NMR (162 MHz, CDCl₃) δ 29.37.

(3na) (3-phenoxyphenyl)diphenylphosphine oxide

(3-phenoxyphenyl)diphenylphosphine oxide Chemical Formula: C₂₄H₁₉O₂P Exact Mass: 370.1123 Molecular Weight: 370.3878 Following the General Procedure A with 1-bromo-3-phenoxybenzene (74.7 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3na** was obtained as yellow oil (76.7 mg, 69%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.63 (m, 4H), 7.57 – 7.49 (m, 2H), 7.49 – 7.42 (m, 4H), 7.41 – 7.38 (m, 1H), 7.37 – 7.34 (m, 1H), 7.34 – 7.26 (m, 3H), 7.15 – 7.06 (m, 2H), 7.00 – 6.94 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.6 (d, *J* = 15.5 Hz), 156.3, 134.6 (d, *J* = 103.1 Hz), 132.2 (d, *J* = 104.9 Hz), 132.1, 132.0, 130.1 (d, *J* = 13.9 Hz), 129.9, 128.6 (d, *J* = 12.2 Hz), 126.6 (d, *J* = 9.6 Hz), 123.9, 122.0 (d, *J* = 11.0 Hz), 121.8 (d, *J* = 2.6 Hz), 119.2.

³¹P NMR (162 MHz, CDCl₃) δ 28.74.

IR (cm⁻¹): 3659, 3055, 1673, 1580, 1482, 1233, 1110, 908, 757, 698, 537.

HRMS (ESI) m/z calcd for $C_{24}H_{19}O_2PNa^+$ (M+Na)⁺ 393.1015, found 393.1011.

(30a) methyl 3-(diphenylphosphoryl)benzoate (CAS: 204930-15-4)⁷

methyl 3-(diphenylphosphoryl)benzoate Chemical Formula: C₂₀H₁₇O₃P Exact Mass: 336.0915 Molecular Weight: 336.3268 Following the General Procedure A with methyl 3- bromo benzoate (64.5 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **30a** was obtained as white solid (38.4 mg, 38%). Following the General Procedure A with methyl 3-iodobenzoate (78.6 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **30a** was obtained as white solid (41.4 mg, 41%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Exact Mass: 336.0915 Molecular Weight: 336.3268 1 H NMR (400 MHz, CDCl₃) δ 8.33 (dd, J = 12.0, 1.2 Hz, 1H), 8.24 - 8.15 (m, 1H), 7.93 - 7.83 (m, 1H), 7.68 - 7.61 (m, 4H), 7.57 - 7.51 (m, 3H), 7.49 - 7.42 (m, 4H), 3.86 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 136.2 (d, J = 9.8 Hz), 133.5 (d, J = 103.5 Hz), 133.0 (d, J = 14.5 Hz), 132.9, 132.2 (d, J = 2.8 Hz), 132.0 (d, J = 105.2 Hz), 132.0 (d, J = 10.1 Hz), 130.6 (d, J = 12.1 Hz), 128.8 (d, J = 11.8 Hz), 128.7 (d, J = 12.3 Hz), 52.4 .

³¹P NMR (162 MHz, CDCl₃) δ 28.28.

(3pa) 1-(3-(diphenylphosphoryl)phenyl)ethan-1-one (CAS: 50777-54-3)⁸

1-(3-(diphenylphosphoryl)phenyl)ethan-1-one Chemical Formula: C₂₀H₁₇O₂P Exact Mass: 320.0966 Molecular Weight: 320.3278 Following the General Procedure A with 1-(3bromophenyl)ethan-1-one (59.7 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3pa** was obtained as white solid (44.2 mg, 46%).

Following the General Procedure A with 1-(3iodophenyl)ethan-1-one (73.8 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3pa** was obtained as white solid (43.2 mg, 45%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 12.4 Hz, 1H), 8.11 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.86 – 7.77 (m, 1H), 7.70 – 7.60 (m, 4H), 7.58 – 7.51 (m, 3H), 7.49 – 7.43 (m, 4H), 2.56 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.2, 137.2 (d, J = 11.0 Hz), 136.3 (d, J = 10.1 Hz), 133.6 (d, J = 103.1 Hz), 131.9 (d, J = 105.3 Hz), 132.3 (d, J = 2.8 Hz), 132.0 (d, J = 10.1 Hz), 131.9 (d, J = 10.2 Hz), 131.5 (d, J = 2.6 Hz), 128.9 (d, J = 11.9 Hz), 128.7 (d, J = 12.3 Hz), 26.71.

³¹P NMR (162 MHz, CDCl₃) δ 28.51.

(3qa) diphenyl(o-tolyl)phosphine oxide (CAS: 6840-26-2)⁵

diphenyl(*o*-tolyl)phosphine oxide Chemical Formula: C₁₉H₁₇OP Exact Mass: 292.1017 Molecular Weight: 292.3178

Following the General Procedure A with 1-bromo-2-methylbenzene (51.3 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3qa** was obtained as yellow solid (22.5 mg, 26%).

Following the General Procedure A with 1-iodo-2-methylbenzene (65.4 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ga** was obtained as white solid (32.9 mg, 38%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.60 (m, 4H), 7.57 – 7.50 (m, 2H), 7.50 – 7.38 (m, 5H), 7.30 – 7.25 (m, 1H), 7.16 – 7.08 (m, 1H),

7.02 (dd, *J* = 14.0, 7.6 Hz, 1H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.3 (d, J = 8.1 Hz), 133.5 (d, J = 12.9 Hz), 132.8 (d, J = 103.8 Hz), 132.1 (d, J = 2.6 Hz), 132.0, 131.9, 131.8 (d, J = 2.8 Hz), 130.8 (d, J = 103.3 Hz), 128.6 (d, J = 12.1 Hz), 125.2 (d, J = 12.9 Hz), 21.7 (d, J = 4.7 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 31.66.

(3ra) methyl 2-(diphenylphosphoryl)benzoate (CAS: 79317-63-8)⁷

methyl 2-(diphenylphosphoryl)benzoate Chemical Formula: C₂₀H₁₇O₃P Exact Mass: 336.0915 Molecular Weight: 336.3268

Following the General Procedure A with methyl 2-bromobenzoate (64.5 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ra** was obtained as white solid (35.3 mg, 35%).

Following the General Procedure A with methyl 2-iodobenzoate (78.6 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ra** was obtained as white solid (27.2 mg, 27%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.86 (m, 1H), 7.71 – 7.58 (m, 5H), 7.57 – 7.40 (m, 8H), 3.48 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.7 (d, *J* = 3.0 Hz), 136.0 (d, *J* = 6.2 Hz), 134.7 (d, *J* = 10.6 Hz), 133.3 (d, *J* = 108.3 Hz), 132.9, 131.8 (d, *J* = 2.5 Hz), 131.7 (d, *J* = 10.0 Hz), 131.6, 130.9 (d, *J* = 11.8 Hz), 130.5 (d, *J* = 8.5 Hz), 128.4 (d, *J* = 12.4 Hz), 52.2. ³¹P NMR (162 MHz, CDCl₃) δ 30.87.

(3sa) diphenyl(2-(trifluoromethoxy)phenyl)phosphine oxide (CAS: 2242839-53-6)

diphenyl(2-(trifluoromethoxy)phenyl)phosphine

oxide

Chemical Formula: C₁₉H₁₄F₃O₂P

Exact Mass: 362.0684

Molecular Weight: 362.2880

Following the General Procedure A with 1-iodo-2-(trifluoromethoxy)benzene (86.4 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3sa** was obtained as yellow solid (44.8 mg, 42%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (°C): 113.1-114.5.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (ddd, *J* = 9.2, 7.6, 1.6 Hz, 1H), 7.76 – 7.66 (m, 4H), 7.62 – 7.50 (m, 3H), 7.50 – 7.41 (m, 4H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.32 – 7.25 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 150.6, 135.5 (d, *J* = 6.5 Hz),

134.2 (d, *J* = 1.7 Hz), 131.9 (d, *J* = 108.7 Hz), 132.1 (d, *J* = 2.8 Hz), 131.8 (d, *J* = 10.3 Hz), 128.5 (d, *J* = 12.6 Hz), 126.0 (d, *J* = 10.8 Hz), 124.3 (d, *J* = 99.6 Hz), 119.9 (d, *J* = 261.6 Hz), 117.8 (dd, *J* = 5.5, 2.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -56.29.

³¹P NMR (162 MHz, CDCl₃) δ 25.22.

IR (cm⁻¹): 3063, 1588, 1439, 1263, 1210, 1167, 1120, 708, 547.

HRMS (ESI) m/z calcd for C₁₉H₁₄F₃O₂PNa⁺ (M+Na)⁺ 385.0576, found 385.0576.

(3ta) (E)-diphenyl(styryl)phosphine oxide (CAS: 3582-82-9)9

(*E*)-diphenyl(styryl)phosphine oxide Chemical Formula: C₂₀H₁₇OP Exact Mass: 304.1017 Molecular Weight: 304.3288

³¹P NMR (162 MHz, CDCl₃) δ 24.43.

Following the General Procedure A with beta-bromostyrene (54.9 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ta** was obtained as white solid (47.0 mg, 52%).

This target product was purified by acidic alumina flash chromatography (PE: EA: MeOH = 1:1:0.1).

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 4H), 7.57 – 7.44 (m, 9H), 7.39 – 7.34 (m, 3H), 6.84 (dd, 22.0, 17.6 Hz, 1H).

Exact Mass: 304.1017 Molecular Weight: 304.3288 (d, J = 10 Hz), 130.1, 128.9, 128.7 (d, J = 12 Hz), 127.8, 119.3 (d, J = 105 Hz).¹³C NMR (101 MHz, CDCl₃) δ 147.6 (d, J = 4 Hz), 135.1 (d, J = 18 Hz), 133.0 (d, J = 106 Hz), 131.9 (d, J = 3 Hz), 131.4 (d, J = 10 \text{ Hz}), 130.1 (d, J = 12 \text{ Hz}), 127.8, 119.3 (d, J = 105 \text{ Hz}).

(3ua) (4-(diphenylamino)phenyl)diphenylphosphine oxide (CAS: 887651-41-4)²

(4-(diphenylamino)phenyl)diphenyl phosphine oxide Chemical Formula: C₃₀H₂₄NOP Exact Mass: 445.1596 Molecular Weight: 445.5018

Following the General Procedure A with 4bromotriphenylamine (97.3 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ua** was obtained as white solid (98.8 mg, 74%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 55.2-56.5.

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.66 (m, 4H), 7.54 – 7.47 (m, 2H), 7.47 – 7.39 (m, 6H), 7.27 (t, J = 8.0 Hz, 4H), 7.13 (d, J = 7.6 Hz, 4H), 7.08 (t, J = 7.4 Hz, 2H), 7.01 (dd, J = 8.8, 2.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 151.1 (d, J = 3 Hz), 146.6, 133.2 (d, J = 11 Hz), 133.0 (d, J = 105 Hz), 132.1 (d, J = 10 Hz), 131.8 (d, J = 3 Hz), 129.5, 128.4 (d, J= 12 Hz), 125.8, 124.5, 123.1 (d, J = 111 Hz), 120.2 (d, J = 13 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.02.

(3va) diphenyl(pyridin-2-yl)phosphine oxide (CAS: 64741-30-6)⁸

diphenyl(pyridin-2-yl)phosphine oxide Chemical Formula: C₁₇H₁₄NOP Exact Mass: 279.0813 Molecular Weight: 279.2788 Following the General Procedure A with 2-bromopyridine (47.4 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3va** was obtained as white solid (43.5 mg, 52%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.6 Hz, 1H), 8.33 – 8.25 (m, 1H), 7.92 – 7.80 (m, 5H), 7.52 – 7.47 (m, 2H), 7.46 – 7.40 (m, 4H), 7.39 – 7.34 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4 (d, J = 132.4 Hz), 150.2 (d, J = 19.2 Hz), 136.2 (d, J = 9.3 Hz), 132.2 (d, J = 104.5 Hz), 132.1 (d, J = 9.5 Hz), 131.9 (d, J = 2.8 Hz), 128.4 (d, J = 19.9 Hz), 128.4 (d, J = 12.2 Hz), 125.3 (d, J = 3.1 Hz).

(3wa) diphenyl(2-(trifluoromethyl)pyridin-4-yl)phosphine oxide

diphenyl(2-(trifluoromethyl)pyridin-4yl)phosphine oxide Chemical Formula: C₁₈H₁₃F₃NOP Exact Mass: 347.0687 Molecular Weight: 347.2770 Following the General Procedure A with 2-(trifluoromethyl)-4-bromopyridine (67.8 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3wa** was obtained as white solid (64.7 mg, 62%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (°C): 138.5-140.0.

¹H NMR (400 MHz, CDCl₃) δ 8.83 (t, J = 4.2 Hz, 1H), 7.98 (d, J = 11.6 Hz, 1H), 7.73 – 7.57 (m, 7H), 7.54 – 7.47 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 150.1 (d, J = 10 Hz), 148.8 (qd, J = 35, 10 Hz), 144.5 (d, J = 94 Hz), 133.0 (d, J = 3 Hz), 131.9 (d, J = 10 Hz), 129.6 (d, J = 107 Hz), 129.1 (d, J = 12 Hz), 128.6 (d, J = 8 Hz), 122.4 (dq, J = 9, 3 Hz), 121.7 (qd, J = 272, 3 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -67.99.

 31 P NMR (162 MHz, CDCl₃) δ 26.08.

IR (cm⁻¹): 3056, 3027, 1436, 1333, 1201, 1136, 683, 533.

HRMS (ESI) m/z calcd for $C_{18}H_{14}F_3NOP^+$ (M+H)⁺ 348.0760, found 348.0761.

(3xa) (6-methoxy-5-(trifluoromethyl)pyridin-3-yl)diphenylphosphine oxide

(6-methoxy-5-(trifluoromethyl)pyridin-3yl)diphenylphosphine oxide Chemical Formula: C₁₉H₁₅F₃NO₂P Exact Mass: 377.0792 Molecular Weight: 377.3030 Following the General Procedure A with 5-bromo-2methoxy-3-(trifluoromethyl)pyridine (78.4 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3xa** was obtained as white solid (60.6 mg, 54%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 69.9-71.1.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 6.0, 2.0 Hz, 1H), 8.16 (dd, J = 10.4, 1.6 Hz, 1H), 7.70 – 7.61 (m, 4H), 7.60 – 7.53 (m, 2H), 7.52 – 7.43 (m, 4H), 4.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 154.5 (d, J = 13.1

Hz), 139.7 (dd, *J* = 10.1, 4.8 Hz), 132.6 (d, *J* = 2.8 Hz), 131.9 (d, *J* = 10.2 Hz), 131.4 (d, *J* = 107.3 Hz), 128.9 (d, *J* = 12.4 Hz), 123.8, 121.1, 121.1 (d, *J* = 106.7 Hz), 54.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -64.09.

³¹P NMR (162 MHz, CDCl₃) δ 25.80.

IR (cm⁻¹): 3412, 3029, 2916, 2229, 1600, 1404, 1186, 1127, 847, 694, 578.

HRMS (ESI) m/z calcd for C₁₉H₁₅F₃NO₂PNa⁺ (M+Na)⁺ 400.06847, found 400.06854.

(3ya) (1-methyl-1H-indol-5-yl)diphenylphosphine oxide

(1-methyl-1H-indol-5yl)diphenylphosphine oxide Chemical Formula: C₂₁H₁₈NOP Exact Mass: 331.1126 Molecular Weight: 331.3548

Following the General Procedure A with 5-bromo-1-methyl-1Hindole (63.0 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3va** was obtained as yellow solid (71.0 mg, 71%). This target product was purified by acidic alumina flash chromatography (PE: EA = 1:2).

Melting point (°C): 181.2-183.0.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 13.2 Hz, 1H), 7.72 – 7.64 (m, 4H), 7.53 – 7.47 (m, 3H), 7.44 – 7.35 (m, 5H), 7.09 (d, J = 3.2 Hz, 1H), 6.48 (d, J = 2.8 Hz, 1H), 3.77 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.4 (d, J = 3 Hz), 133.5 (d, J = 104 Hz), 132.2 (d, J = 10 Hz), 131.7 (d, J = 3 Hz), 130.3, 128.4 (d, J = 12 Hz), 126.4 (d, J = 12 Hz), 124.6 (d, J = 12 Hz), 121.5 (d, J = 110 Hz), 109.6 (d, J = 14 Hz), 102.2, 33.0.

³¹P NMR (162 MHz, CDCl₃) δ 31.43.

IR (cm⁻¹): 3102, 2914, 1436, 1324, 1173, 1166, 706, 505.

HRMS (ESI) m/z calcd for $C_{21}H_{19}NOP^+$ (M+H)⁺ 332.1199, found 332.1201.

(3za) phenanthren-9-yldiphenylphosphine oxide (CAS: 401798-09-2)¹⁰

phenanthren-9-

Exact Mass: 378.1174

Following the General Procedure A with 9-bromophenanthrene (77.1 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3za** was obtained as white solid (56.8 mg, 50%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.60 (m, 3H), 7.79 – 7.43 (m, 16H).

¹³C NMR (101 MHz, CDCl₃) δ 136.9 (d, J = 11.3 Hz), 133.2, 132.2 yldiphenylphosphine oxide (d, J = 9.8 Hz), 132.2, 132.0 (d, J = 2.7 Hz), 131.0 (d, J = 8.4 Hz),Chemical Formula: C₂₆H₁₉OP 130.8 (d, J = 8.5 Hz), 130.1, 129.70 (d, J = 14.8 Hz), 129.2, 128.8, Molecular Weight: 378.4108 128.7, 128.6, 127.9 (d, J = 102.3 Hz), 127.2 (d, J = 5.8 Hz), 127.1,

123.1. 122.7.

³¹P NMR (162 MHz, CDCl₃) δ 32.64.

(3zb) diphenyl(pyren-1-yl)phosphine oxide (CAS: 2260821-57-4)¹¹

diphenyl(pyren-1-yl)phosphine oxide Chemical Formula: C₂₈H₁₉OP Exact Mass: 402.1174 Molecular Weight: 402.4328

Following the General Procedure A with 1-bromopyrene (84.3 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3zb** was obtained as white solid (66.4 mg, 55%). This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 9.3 Hz, 1H), 8.23 - 8.11 (m, 3H), 8.09 - 7.97 (m, 4H), 7.79 - 7.68 (m, 5H), 7.58 - 7.51 (m, 2H), 7.50 - 7.42 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 134.3 (d, J = 2.5 Hz), 134.2

(d, J = 8.1 Hz), 133.3 (d, J = 104.7 Hz), 132.2 (d, J = 9.8 Hz), 132.0 (d, J = 2.7 Hz), 131.2 (d, J = 12.3 Hz), 131.2 (dHz), 131.0, 130.4, 129.4 (d, J = 95.5 Hz), 128.7 (d, J = 12.2 Hz), 127.1, 126.5, 126.3 (d, J = 6.6 Hz), 126.2, 125.6, 125.1 (d, J = 10.2 Hz), 124.6, 124.2, 123.6 (d, J = 13.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 32.85.

(3zc) fluoranthen-3-yldiphenylphosphine oxide

fluoranthen-3yldiphenylphosphine oxide Chemical Formula: C₂₈H₁₉OP Exact Mass: 402.1174 Molecular Weight: 402.4328 Following the General Procedure A with 3-bromofluoranthene (84.3 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3zc** was obtained as white solid (97.8 mg, 81%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 87.9-90.3.

¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.4 Hz, 1H), 7.84 – 7.68 (m, 8H), 7.56 – 7.41 (m, 8H), 7.39 – 7.27 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 141.5 (d, J = 2.8 Hz), 140.2, 138.3, 137.5 (d, J = 1.5 Hz), 135.3 (d, J = 12.4 Hz), 133.6, 132.9 (d, J = 10.2 Hz), 132.6, 132.1 (d, J = 9.9 Hz), 132.0 (d, J = 2.7), 130.9 (d,

J = 8.2 Hz), 128.9 (d, *J* = 102.4 Hz), 129.3, 128.9, 128.6 (d, *J* = 12.2 Hz), 127.83, 127.18 (d, *J* = 3.9 Hz), 121.9 (d, *J* = 64.4 Hz), 120.8, 118.3 (d, *J* = 14.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 30.69.

IR (cm⁻¹): 3429, 3055, 1604, 1439, 1186, 1112, 753, 702, 543.

HRMS (ESI) m/z calcd for C₂₈H₁₉OPNa⁺ (M+Na)⁺ 425.1066, found 425.1064.

(3zd) (9H-fluoren-2-yl)diphenylphosphine oxide

(9*H*-fluoren-2yl)diphenylphosphine oxide Chemical Formula: C₂₅H₁₉OP Exact Mass: 366.1174 Molecular Weight: 366.3998

Following the General Procedure A with 9-bromophenanthrene (73.5 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3zd** was obtained as yellow oil (73.6 mg, 67%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 11.6 Hz, 1H), 7.84 – 7.77 (m, 2H), 7.75 – 7.66 (m, 4H), 7.62 (dd, J = 11.6, 8.0 Hz, 1H), 7.56 – 7.49 (m, 3H), 7.48 – 7.41 (m, 4H), 7.39 – 7.31 (m, 2H), 3.87 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 145.5 (d, J = 2.7 Hz), 144.0, 143.3 (d, J = 13.2 Hz), 140.4, 132.8 (d, J = 104.5 Hz), 132.1 (d, J = 9.9 Hz), 131.9 (d, J = 2.7 Hz), 131.0 (d, J = 11.1 Hz), 130.1 (d, J = 105.7 Hz), 128.6 (d, J = 10.3 Hz), 128.5 (d, J = 12.1 Hz), 128.0, 127.0, 125.2, 120.7, 119.8 (d, J = 13.6 Hz), 36.9. ³¹P NMR (162 MHz, CDCl₃) δ 29.96.

IR (cm⁻¹): 3661, 3055, 2884, 1720, 1492, 1435, 1190, 737, 700, 543.

HRMS (ESI) m/z calcd for C₂₅H₁₉OPNa⁺ (M+Na)⁺ 389.1066, found 389.1067.

(3ze) (4-(benzo[d]thiazol-2-yl)phenyl)diphenylphosphine oxide (CAS: 1438435-79-0)¹²

(4-(benzo[*d*]thiazol-2yl)phenyl)diphenylphosphine oxide Chemical Formula: C₂₅H₁₈NOPS Exact Mass: 411.0847 Molecular Weight: 411.4588 Following the General Procedure A with 2-(4bromophenyl)benzo[d]thiazole (88.8 mg, 0.3 mmol), diphenylphosphine oxide (120.7 mg, 0.6 mmol), **3ze** was obtained as white solid (83.9 mg, 68%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.0 Hz, 2H), 8.05 (d, J = 8.2 Hz, 1H), 7.86 (dd, J = 8.0, 0.6 Hz, 1H), 7.79 (dd, J = 11.6, 8.4 Hz, 2H), 7.69 (dd, J = 12.4, 7.6 Hz, 4H), 7.56 – 7.49 (m, 2H), 7.48 – 7.41 (m, 5H), 7.40 – 7.32 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 154.1, 136.7 (d, *J* = 2.9 Hz), 135.3 (d, *J* = 103.0 Hz), 135.2, 132.8 (d, *J* = 10.1 Hz), 132.1 (d, *J* = 105.1 Hz), 132.2 (d, *J* = 2.7 Hz), 132.1 (d, *J* = 10.0 Hz), 128.7 (d, *J* = 12.2 Hz), 127.4 (d, *J* = 12.3 Hz), 126.6, 125.8, 123.6, 121.8. ³¹P NMR (162 MHz, CDCl₃) δ 28.43.

(3ab) (4-isocyanophenyl)di-p-tolylphosphine oxide

(4-isocyanophenyl)di-*p*tolylphosphine oxide Chemical Formula: C₂₁H₁₈NOP Exact Mass: 331.1126 Molecular Weight: 331.3548 Following the General Procedure A with 4-bromobenzonitrile (54.6 mg, 0.3 mmol), di-p-tolylphosphine oxide (138.2 mg, 0.6 mmol), **3ab** was obtained as white solid (60.6 mg, 61%).

Following the General Procedure A with 4-iodobenzonitrile (68.7 mg, 0.3 mmol), di-p-tolylphosphine oxide (138.2 mg, 0.6 mmol), **3ab** was obtained as white solid (75.5 mg, 76%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (°C): 101.4-103.2.

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.70 (m, 4H), 7.53 (dd, *J* = 12.0, 8.0 Hz, 4H), 7.33 – 7.26 (m, 4H), 2.41 (s, 6H).

Molecular Weight: 331.3548 ¹³C NMR (101 MHz, CDCl₃) δ 143.1 (d, J = 2.8 Hz), 139.1 (d, J = 99.4 Hz), 132.6 (d, J = 9.9 Hz), 132.0 (d, J = 10.4 Hz), 131.8, 129.5 (d, J = 12.7 Hz), 128.0 (d, J = 108.4 Hz), 118.0 (d, J = 1.4 Hz), 115.4 (d, J = 3.0 Hz), 21.6 (d, J = 1.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 27.94.

IR (cm⁻¹): 3420, 3037, 2922, 2228, 1604, 1398, 1186, 1114, 808, 659, 514.

HRMS (ESI) m/z calcd for C₂₁H₁₈NOPNa⁺ (M+Na)⁺ 354.10182, found 354.10211.

(3ac) 4-(bis(4-methoxyphenyl)phosphoryl)benzonitrile

4-(bis(4methoxyphenyl)phosphoryl)benzonitrile Chemical Formula: C₂₁H₁₈NO₃P Exact Mass: 363.1024 Molecular Weight: 363.3528 Following the General Procedure A with 4bromobenzonitrile (54.6 mg, 0.3 mmol), bis(4methoxyphenyl)phosphine oxide (157.2 mg, 0.6 mmol), **3ac** was obtained as white solid (65.3 mg, 60%).

Following the General Procedure A with 4iodobenzonitrile (68.7 mg, 0.3 mmol), bis(4methoxyphenyl)phosphine oxide (157.2 mg, 0.6 mmol), **3ac** was obtained as white solid (78.4 mg, 72%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 69.0-72.1.

¹H NMR (400 MHz, CDCl₃) δ 7.80-7.66 (m, 4H), 7.56 – 7.46 (m, 4H), 6.99 – 6.90 (m, 4H), 3.81 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8 (d, *J* = 2.8 Hz), 139.4 (d, *J* = 100.0 Hz), 133.9 (d, *J* = 11.4 Hz), 132.5 (d, *J* = 9.9 Hz), 131.9 (d, *J* = 11.8 Hz), 125.6 (d, *J* = 112.7 Hz), 118.0, 115.3 (d, *J* = 3.0 Hz), 114.4 (d, *J* = 13.3 Hz), 55.4.

³¹P NMR (162 MHz, CDCl₃) δ 27.43.

IR (cm⁻¹): 3414, 2951, 2805, 2229, 1596, 1500, 1298, 1259, 1178, 1114, 1020, 831. HRMS (ESI) m/z calcd for C₂₁H₁₈NO₃PNa⁺ (M+Na)⁺ 386.09165, found 386.09137.

(3ad) bis(3,5-dimethylphenyl)(4-isocyanophenyl)phosphine oxide

bis(3,5-dimethylphenyl)(4isocyanophenyl)phosphine oxide Chemical Formula: C₂₃H₂₂NOP Exact Mass: 359.1439 Molecular Weight: 359.4088 Following the General Procedure A with 4-bromobenzonitrile (54.6 mg, 0.3 mmol), bis(3,5-dimethylphenyl)phosphine oxide (155.0 mg, 0.6 mmol), **3ad** was obtained as white solid (67.9 mg, 63%).

Following the General Procedure A with 4-iodobenzonitrile (68.7 mg, 0.3 mmol), bis(3,5-dimethylphenyl)phosphine oxide (155.0 mg, 0.6 mmol), **3ad** was obtained as white solid (89.4 mg, 83%). This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 150.6-153.4.

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.68 (m, 4H), 7.22 (d, J = 12.6 Hz, 4H), 7.17 (s, 2H), 2.30 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 139.5, 138.5 (d, *J* = 12.9 Hz), 134.2 (d, *J* = 2.9 Hz), 132.6 (d, *J* = 9.8 Hz), 131.9 (d, *J* = 11.8 Hz), 131.0 (d, *J* = 104.9 Hz), 129.5 (d, *J* = 10.0 Hz), 118.0 (d, *J* = 1.4 Hz), 115.4 (d, *J* = 3.1 Hz), 21.3.

³¹P NMR (162 MHz, CDCl₃) δ 28.37.

IR (cm⁻¹): 3412, 3031, 2918, 2855, 2229, 1596, 1406, 1186, 1127, 849, 696, 578.

HRMS (ESI) m/z calcd for C₂₃H₂₂NOPNa⁺ (M+Na)⁺ 382.13312, found 382.13345.

(3ae) 4-(di(naphthalen-2-yl)phosphoryl)benzonitrile

4-(di(naphthalen-2yl)phosphoryl)benzonitrile Chemical Formula: C₂₇H₁₈NOP Exact Mass: 403.1126 Molecular Weight: 403.4208 Following the General Procedure A with 4-bromobenzonitrile (54.6 mg, 0.3 mmol), di(naphthalen-2-yl)phosphine oxide (181.2 mg, 0.6 mmol), **3ae** was obtained as white solid (87.5 mg, 69%). Following the General Procedure A with 4-iodobenzonitrile (68.7 mg, 0.3 mmol), di(naphthalen-2-yl)phosphine oxide (181.2 mg, 0.6 mmol), **3ae** was obtained as white solid (101.5 mg, 80%). This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (° C): 72.8-74.2.

¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 14.2 Hz, 2H), 7.96 – 7.83 (m, 8H), 7.74 (dd, *J* = 8.4, 2.2 Hz, 2H), 7.69 – 7.51 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 138.6 (d, J = 99.8 Hz), 134.9 (d, J = 2.3 Hz), 134.3 (d, J = 9.6 Hz), 132.8 (d, J = 10.0 Hz), 132.5 (d, J = 13.6 Hz), 132.1 (d, J = 12.0 Hz), 129.0, 128.9, 128.7 (d, J = 3.3 Hz), 128.0, 127.7, 127.3, 126.5 (d, J = 10.8 Hz), 117.9, 115.7 (d, J = 3.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 27.93.

IR (cm⁻¹): 3431, 3055, 2229, 1633, 1388, 1190, 1094, 822, 657.

HRMS (ESI) m/z calcd for C₂₇H₁₈NOPNa⁺ (M+Na)⁺ 426.10182, found 426.10172.

(5aa) 4-(dodecylthio)benzonitrile (CAS: 26960-82-7)¹³

Following the General Procedure B with 4-bromobenzonitrile (54.6 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5aa** was obtained as yellow solid (80.9 mg, 89%).

4-(dodecylthio)benzonitrile Chemical Formula: C₁₉H₂₉NS Exact Mass: 303.2021 Molecular Weight: 303.5080 obtained as yellow solid (80.9 mg, 89%). Following the General Procedure B with 4-iodobenzonitrile (68.8 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5aa** was

This target product was purified by silica gel flash chromatography

(PE: EA = 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.48 (m, 2H), 7.30 – 7.25 (m, 2H), 2.96 (t, *J* = 7.4 Hz, 2H), 1.69 (pent, *J* = 7.6 Hz, 2H), 1.49 – 1.39 (m, 2H), 1.36 - 1.22 (m, 16H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 132.2, 126.6, 119.0, 107.84, 31.9, 31.9, 29.7, 29.6, 29.6, 29.5,

obtained as yellow solid (74.4 mg, 82%).

29.5, 29.1, 28.9, 28.6, 22.7, 14.2.

(5ba) dodecyl(4-methoxyphenyl)sulfane (CAS: 867017-31-0)¹³

Following the General Procedure B with 4-iodoanisole (70.2 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ba** was obtained as white solid (80.4 mg, 87%).

dodecyl(4-methoxyphenyl)sulfane Chemical Formula: C₁₉H₃₂OS Exact Mass: 308.2174 Molecular Weight: 308.5240 This target product was purified by silica gel flash chromatography (PE: EA = 200:1).

Exact Mass: 308.2174 Molecular Weight: 308.5240 7.4 Hz, 2H), 1.42 - 1.34 (m, 2H), 1.31 - 1.21 (m, 16H), 0.88 (t, J = 7.0 Hz, 3H). ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.31 (m, 2H), 6.87 - 6.81(m, 2H), 3.79 (s, 3H), 2.81 (t, J = 7.4 Hz, 2H), 1.57 (pent, J = 7.4 Hz, 2H), 1.57 (pent, J = 7.4 Hz, 2H), 1.42 - 1.34 (m, 2H), 1.31 - 1.21 (m, 16H), 0.88 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 158.7, 132.9, 127.0, 114.5, 55.3, 35.84, 31.9, 29.7, 29.7, 29.6, 29.5, 29.4, 29.2, 28.7, 22.7, 14.2.

(5ca) dodecyl(p-tolyl)sulfane (CAS: 94435-76-4)¹⁴

dodecyl(*p*-tolyl)sulfane Chemical Formula: C₁₉H₃₂S Exact Mass: 292.2225 Molecular Weight: 292.5250

(PE: EA = 200:1).

Following the General Procedure B with 4 4-bromotoluene (51.3 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ca** was obtained as colorless oil (68.5 mg, 78%).

Following the General Procedure B with 4-iodotoluene (65.4 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ca** was obtained as colorless oil (68.4 mg, 78%).

This target product was purified by silica gel flash chromatography

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.09 (d, J = 8.0 Hz, 2H), 2.87 (t, J = 7.4 Hz, 2H), 2.31 (s, 3H), 1.61 (pent, J = 7.4 Hz, 2H), 1.1.43 - 1.34 (m, 2H), 1.32 – 1.22 (m, 16H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 135.8, 133.2, 129.7, 129.6, 34.4, 32.0, 29.7, 29.7, 29.6, 29.6, 29.4, 29.3, 29.2, 28.9, 22.7, 21.0, 14.2.

(5da) dodecyl(phenyl)sulfane (CAS: 56056-49-6)¹³

dodecyl(phenyl)sulfane Chemical Formula: C₁₈H₃₀S Exact Mass: 278.2068 Molecular Weight: 278.4980 Following the General Procedure B with bromobenzene (47.1 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5da** was obtained as colorless oil (73.6 mg, 88%). Following the General Procedure B with indehenzene (61.2 mg, 0.3

Following the General Procedure B with iodobenzene (61.2 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5da** was obtained as colorless oil (53.8 mg, 64%).

This target product was purified by silica gel flash chromatography

(PE: EA = 200:1).

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.29 – 7.25 (m, 2H), 7.19 – 7.12 (m, 1H), 2.91 (t, *J* = 7.4 Hz, 2H), 1.64 (pent, *J* = 7.6 Hz, 2H), 1.40 (m, 2H), 1.33 – 1.22 (m, 16H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 128.8, 128.8, 125.6, 33.6, 31.93, 29.7, 29.6, 29.6, 29.5, 29.4, 29.2, 29.2, 28.9, 22.7, 14.1.

(5ea) ethyl 4-(dodecylthio)benzoate (CAS: 1207539-20-5)¹⁴

ethyl 4-(dodecylthio)benzoate Chemical Formula: C₂₁H₃₄O₂S Exact Mass: 350.2280 Molecular Weight: 350.5610 Following the General Procedure B with ethyl-4-bromobenzoate (68.7 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ea** was obtained as yellow oil (63.8 mg, 61%).

Following the General Procedure B with ethyl-4-iodobenzoate (82.8 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ea** was obtained as yellow oil (86.2 mg, 82%).

This target product was purified by silica gel flash chromatog raphy (PE: EA = 200:1).

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.30 – 7.25 (m, 2H), 4.36 (q, J = 7.1 Hz, 2H), 2.97 (t, J = 7.4 Hz, 2H), 1.69 (pent, J = 7.5 Hz, 2H), 1.48 - 1.41 (m, 2H), 1.38 (t, J = 7.2 Hz, 3H), 1.34 - 1.22 (m, 16H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 144.3, 129.9, 126.9, 126.3, 60.9, 32.1, 31.9, 29.7, 29.6, 29.6, 29.5, 29.4, 29.2, 28.9, 28.8, 22.7, 14.4, 14.2.

(5fa) dodecyl(3-methoxyphenyl)sulfane (CAS: 2126724-71-6)¹⁵

dodecyl(3-methoxyphenyl)sulfane Chemical Formula: C₁₉H₃₂OS Exact Mass: 308.21739 Molecular Weight: 308.52400 Following the General Procedure B with 1-iodo-3methoxybenzene (70.2 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5fa** was obtained as colorless oil (70.3 mg, 76%). This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1).

¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 8.0 Hz, 1H), 6.91 – 6.84 (m, 2H), 6.69 (dd, J = 8.2, 2.4 Hz, 1H), 3.78 (s, 3H), 2.95 – 2.85 (m, 2H), 1.69 – 1.60 (m, 2H), 1.45 – 1.37 (m, 2H), 1.26

```
(s, 16H), 0.88 (t, J = 6.8 Hz, 3H).
```

¹³C NMR (101 MHz, CDCl₃) δ 159.8, 138.6, 129.6, 120.8, 114.0, 111.2, 55.2, 33.4, 32.0, 29.7, 29.7, 29.6, 29.6, 29.4, 29.2, 29.2, 28.9, 22.7, 14.2.

(5ga) dodecyl(m-tolyl)sulfane (CAS: 1450829-03-4)¹⁶

dodecyl(*m*-tolyl)sulfane Chemical Formula: C₁₉H₃₂S Exact Mass: 292.22247 Molecular Weight: 292.52500 Following the General Procedure B with 1-iodo-3-methylbenzene (65.4 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ga** was obtained as colorless oil (57.0 mg, 65%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1).

¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.11 (m, 3H), 6.98 (d, J = 7.6 Hz, 1H), 2.98 – 2.87 (m, 2H), 2.34 (s, 3H), 1.72 – 1.60 (m, 2H), 1.49 – 1.38 (m, 2H), 1.28 (s, 16H), 0.90 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5, 136.9, 129.5, 128.7, 126.5, 125.8, 33.6, 32.0, 29.7, 29.7, 29.6, 29.6, 29.4, 29.2, 29.2, 28.9, 22.7, 21.4, 14.2.

(5ha) dodecyl(o-tolyl)sulfane (CAS: 1079988-46-7)¹⁶

dodecyl(*o*-tolyl)sulfane Chemical Formula: C₁₉H₃₂S Exact Mass: 292.22247 Molecular Weight: 292.52500 Following the General Procedure B with 1-iodo-2-methylbenzene (65.4 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ha** was obtained as colorless oil (48.3 mg, 55%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1).

¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 6.6 Hz, 2H), 7.09 – 7.03 (m, 1H), 2.94 – 2.83 (m, 2H), 2.36 (s, 3H), 1.71 – 1.61 (m, 2H), 1.47 – 1.39 (m, 2H), 1.26 (s, 16H), 0.88 (t, J =

6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.2, 136.5, 130.0, 127.3, 126.3, 125.2, 32.8, 32.0, 29.7, 29.7, 29.6, 29.6, 29.4, 29.2, 29.1, 29.0, 22.7, 20.4, 14.2.

(5ia) 4-(dodecylthio)-2-methylpyridine

4-(dodecylthio)-2-methylpyridine Chemical Formula: C₁₈H₃₁NS Exact Mass: 293.2177 Molecular Weight: 293.5130 Following the General Procedure B with 4-bromo-2methylpyridine (51.6 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ia** was obtained as colorless oil (29.6 mg, 34%).

This target product was purified by silica gel flash chromatography (PE: EA = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 5.2 Hz, 1H), 6.95 (s, 1H), 6.90 (dd, J = 5.6, 1.6 Hz, 1H), 2.94 (t, J = 7.4 Hz, 2H), 2.48

(s, 3H), 1.75 - 1.64 (m, 2H), 1.49 - 1.39 (m, 2H), 1.28 - 1.22 (m, 16H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 149.6, 148.6, 120.0, 117.8, 31.9, 30.6, 29.6, 29.6, 29.6, 29.5, 29.3,

29.1, 28.9, 28.5, 24.4, 22.7, 14.1.

IR (cm⁻¹): 2961, 2933, 2848, 1578, 1474, 872.

HRMS (ESI) m/z calcd for $C_{18}H_{32}NS^+$ (M+H)⁺ 294.2250, found 294.2253.

(5ja) 4-(dodecylthio)-2-(trifluoromethyl)pyridine

4-(dodecylthio)-2-(trifluoromethyl)pyridine Chemical Formula: C₁₈H₂₈F₃NS Exact Mass: 347.1895 Molecular Weight: 347.4842 Following the General Procedure B with 2-(trifluoromethyl)-4-bromopyridine (67.8 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ja** was obtained as colorless oil (85.7 mg, 82%).

This target product was purified by silica gel flash chromatography (PE: EA = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 5.2 Hz, 1H),

7.44 (d, J = 1.6 Hz, 1H), 7.23 (dd, J = 5.4, 1.4 Hz, 1H), 2.99 (t, J = 7.4 Hz, 2H), 1.77 – 1.65 (m, 2H), 1.51 – 1.41 (m, 2H), 1.35 – 1.19 (m, 16H), 0.86 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 152.4, 149.2, 148.0 (q, *J* = 34 Hz), 122.5, 121.5 (q, *J* = 276 Hz), 117.1 (q, *J* = 3 Hz), 31.9, 30.8, 29.6, 29.5, 29.4, 29.3, 29.1, 28.8, 28.2, 22.7, 14.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -68.32.

IR (cm⁻¹): 2943, 2848, 1587, 1314, 1145, 721.

HRMS (ESI) m/z calcd for $C_{18}H_{29}F_3NS^+$ (M+H)⁺ 348.1967, found 348.1968.

(5ka) 5-(dodecylthio)-2-methoxy-3-(trifluoromethyl)pyridine

5-(dodecylthio)-2-methoxy-3-(trifluoromethyl)pyridine Chemical Formula: C₁₉H₃₀F₃NOS Exact Mass: 377.2000 Molecular Weight: 377.5102 Following the General Procedure B with 5-bromo-2-methoxy-3-(trifluoromethyl)pyridine (76.8 mg, 0.3 mmol), 1dodecanethiol (121.4 mg, 0.6 mmol), **5ka** was obtained as colorless oil (76.8 mg, 68%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.27 (m, 1H), 7.90 (dd, J = 20.0, 1.6 Hz, 1H), 4.02 (s, 3H), 2.80 (t, J = 7.2 Hz, 1H), 2.61

– 2.41 (m, 1H), 1.57 (m, 2H), 1.39 (d, *J* = 11.6 Hz, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.1, 151.1, 140.0 (q, *J* = 4.8 Hz), 138.8 (q, *J* = 5.0 Hz), 124.3, 110.6, 54.4, 54.2, 36.1, 31.9, 29.6, 29.6, 29.5, 29.3, 29.3, 29.1, 28.5, 22.7, 14.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -64.00 (s).

IR (cm⁻¹): 2924, 2855, 1718, 1598, 1469, 1324, 1149, 1057, 918, 692.

HRMS (ESI) m/z calcd for $C_{19}H_{31}F_3NOS^+$ (M+H)⁺ 378.2073, found 378.2071.
(5la) 2-(dodecylthio)pyridine (CAS: 1079988-48-9)¹⁷

2-(dodecylthio)pyridine Chemical Formula: C₁₇H₂₉NS Exact Mass: 279.2021 Molecular Weight: 279.4860 Following the General Procedure B with 2-bromopyridine (47.4 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5la** was obtained as colorless oil (50.3 mg, 60%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 4.4 Hz, 1H), 7.44 (td, J = 8.0, 2.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 6.94 (dd, J = 6.8, 5.2 Hz,

1H), 3.15 (t, *J* = 7.4 Hz, 2H), 1.77 – 1.63 (m, 2H), 1.49 – 1.39 (m, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 149.4, 135.8, 122.1, 119.1, 31.9, 30.1, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 22.7, 14.1.

(5ma) dodecyl(1H-inden-2-yl)sulfane

SC₁₂H₂₅

dodecyl(1*H*-inden-2-yl)sulfane Chemical Formula: C₂₁H₃₂S Exact Mass: 316.2225 Molecular Weight: 316.5470 Following the General Procedure B with 2-bromo-1H-indene (58.5 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5ma** was obtained as white solid (60.3 mg, 64%).

This target product was purified by silica gel flash chromatography (PE: EA = 200:1).

Melting point (° C): 49.8-51.2.

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.2 Hz, 1H), 7.22 (d, J = 4.0 Hz, 2H), 7.12 – 7.04 (m, 1H), 6.50 (s, 1H), 3.49 (s, 2H), 2.93 (t, J = 7.4 Hz, 2H), 1.74 (pent, J = 7.4

Hz, 2H), 1.51 - 1.42 (m, 2H), 1.38 - 1.24 (m, 16H), 0.91 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 145.2, 144.1, 142.2, 126.6, 124.3, 123.4, 123.1, 119.0, 42.1, 32.6, 32.0, 29.7, 29.7, 29.6, 29.6, 29.4, 29.3, 29.1, 29.0, 22.7, 14.2.

IR (cm⁻¹): 2961, 2914, 2858, 1465, 834, 721.

HRMS (ESI) m/z calcd for $C_{21}H_{33}S^+$ (M+H)⁺ 317.2298, found 317.2299.

(5na) 3-(dodecylthio)thiophene (CAS: 120186-63-2)

SSC12H25

Following the General Procedure B with 3-iodothiophene (63.0 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **5na** was obtained as brown solid (72.0 mg, 84%).

3-(dodecylthio)thiophene Chemical Formula: C₁₆H₂₈S₂ Exact Mass: 284.1632 Molecular Weight: 284.5200

This target product was purified by silica gel flash chromatography (PE: EA = 200:1).

Melting point (° C): 32.5-33.7.

¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 5.0, 3.0 Hz, 1H), 7.11 (dd, J = 2.8, 1.2 Hz, 1H), 7.02 (dd, J = 5.2, 1.2 Hz, 1H), 2.84 (t, J = 7.4 Hz, 2H), 1.62 (pent, J = 7.4 Hz, 2H), 1.45 - 1.36 (m, 2H), 1.35 - 1.19 (m, 16H), 0.89 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 132.4, 129.7, 126.0, 122.8, 35.4, 32.0, 29.7, 29.7, 29.6, 29.5, 29.4, 29.4, 29.2, 28.7, 22.7, 14.2.

HRMS (ESI) m/z calcd for $C_{16}H_{29}S_2^+$ (M+H)⁺ 285.1705, found 285.1706.

(50a) dodecyl(phenanthren-9-yl)sulfane (CAS: 259270-08-1)

Following the General Procedure B with 9-bromophenanthrene (78.7 mg, 0.3 mmol), 1-dodecanethiol (121.4 mg, 0.6 mmol), **50a** was obtained as white solid (46.1 mg, 41%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1).

dodecyl(phenanthren-9-yl)sulfane Chemical Formula: C₂₆H₃₄S Exact Mass: 378.23812 Molecular Weight: 378.61800

Melting point (° C): 60.7-62.0.

¹H NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 6.7, 2.8 Hz, 1H), 8.64 (d, J = 7.6 Hz, 1H), 8.53 – 8.47 (m, 1H), 7.84 – 7.79 (m,

1H), 7.78 (s, 1H), 7.70 – 7.65 (m, 2H), 7.64 – 7.56 (m, 2H), 3.06 (t, *J* = 7.4 Hz, 2H), 1.82 – 1.68 (m, 2H), 1.53 – 1.46 (m, 2H), 1.26 (s, 16H), 0.89 (t, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 132.9, 131.9, 131.3, 130.6, 129.4, 127.8, 127.3, 126.9, 126.9, 126.8, 126.4, 125.6, 123.0, 122.6, 33.8, 32.0, 29.7, 29.7, 29.6, 29.5, 29.4, 29.2, 29.0, 22.7, 14.2.

IR (cm⁻¹): 3059, 2924, 2849, 1716, 1580, 1459, 1365, 941, 753.

HRMS (ESI) m/z calcd for $C_{26}H_{34}SNa^+$ (M+Na)⁺ 401.2273, found 401.2270

(5ab) 4-((6-oxo-4-propyl-1,6-dihydropyrimidin-2-yl)thio)benzonitrile (CAS: 1019608-50-4)

4-((6-oxo-4-propyl-1,6-dihydropyrimidin-2yl)thio)benzonitrile Chemical Formula: C₁₄H₁₃N₃OS Exact Mass: 271.0779 Molecular Weight: 271.3380 Following the General Procedure B with 4bromobenzonitrile (54.6 mg, 0.3 mmol), propylthiouracil (102.1 mg, 0.6 mmol), **5ab** was obtained as white solid (43.2 mg, 53%).

Following the General Procedure B with 4iodobenzonitrile (68.8 mg, 0.3 mmol), propylthiouracil (102.1 mg, 0.6 mmol), **5ab** was obtained as white solid (40.7 mg, 50%).

This target product was purified by acidic alumina 0.1).

flash chromatography (DCM: EA: MeOH = 1:1:0.1).

Melting point (° C): 182.2-184.1.

¹H NMR (400 MHz, CDCl₃) δ 13.02 (s, 1H), 7.77 - 7.65 (m, 4H), 6.09 (s, 1H), 2.38 (t, *J* = 7.4 Hz, 2H), 1.60 - 1.49 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 170.0, 165.5, 158.2, 135.2, 133.3, 132.6, 118.1, 113.4, 108.9, 39.3, 20.8, 13.5.

IR (cm⁻¹): 2971, 2933, 2227, 1653, 1541, 1173, 975, 834, 533.

HRMS (ESI) m/z calcd for $C_{14}H_{14}N_3OS^+$ (M+H)⁺ 272.0852, found 272.0856.

(5ac) 4-(octylthio)benzonitrile (CAS: 153199-19-0)¹⁸

4-(octylthio)benzonitrile Chemical Formula: C₁₅H₂₁NS Exact Mass: 247.13947 Molecular Weight: 247.40000 Following the General Procedure B with 4-bromobenzonitrile (54.6 mg, 0.3 mmol), octane-1-thiol (85.6 mg, 0.6 mmol), **5ac** was obtained as colorless oil (57.9 mg, 78%).

This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1).

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H), 3.02 – 2.92 (m, 2H), 1.73 – 1.64 (m, 2H), 1.49 – 1.40 (m, 2H), 1.28 (s, 8H), 0.89 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) & 145.4, 132.2, 126.6, 119.0, 107.9,

31.9, 31.8, 29.1, 29.1, 28.9, 28.6, 22.6, 14.1.

8. References

- (1) Yang, J.; Xiao, J.; Chen, T.; Yin, S. F.; Han, L. B., Efficient nickel-catalyzed phosphinylation of C-S bonds forming C-P bonds. *Chemical Communications* **2016**, *52* (82), 12233-12236.
- (2) Fu, T.; Qiao, H.; Peng, Z.; Hu, G.; Wu, X.; Gao, Y.; Zhao, Y., Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides. *Organic & Biomolecular Chemistry* **2014**, *12* (18), 2895-2902.
- (3) Berrino, R.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Stabile, P., Arenediazonium tetrafluoroborates in palladium-catalyzed C–P bond-forming reactions. Synthesis of arylphosphonates, -phosphine oxides, and -phosphines. *Organic & Biomolecular Chemistry* 2010, 8 (20), 4518-4520.
- (4) Zhong, C. H.; Huang, W., Synthesis of Aryldiphenylphosphine Oxides by Quaternization of Tertiary Diphenylphosphines with Aryl Bromides Followed by the Wittig Reaction. ACS Omega 2020, 5 (26), 16010-16020.
- (5) Koohgard, M.; Karimitabar, H.; Hosseini-Sarvari, M., Visible-light-mediated semi-heterogeneous black TiO₂/nickel dual catalytic C (sp²)-P bond formation toward aryl phosphonates. *Dalton Trans* 2020, 49 (47), 17147-17151.
- (6) Dong, J.; Liu, L.; Ji, X.; Shang, Q.; Liu, L.; Su, L.; Chen, B.; Kan, R.; Zhou, Y.; Yin, S. F.; Han, L.
 B., General Oxidative Aryl C-P Bond Formation through Palladium-Catalyzed Decarbonylative Coupling of Aroylhydrazides with P(O)H Compounds. *Organic Letters* 2019, *21* (9), 3198-3203.
- (7) Zhu, D.-L.; Jiang, S.; Wu, Q.; Wang, H.; Chai, L.-L.; Li, H.-Y.; Li, H.-X., Visible-Light-Induced Nickel-Catalyzed P(O)–C(sp²) Coupling Using Thioxanthen-9-one as a Photoredox Catalysis. *Organic Letters* 2020, 23 (1), 160-165.
- (8) Zhao, Y.-L.; Wu, G.-J.; Li, Y.; Gao, L.-X.; Han, F.-S., [NiCl₂(dppp)]-Catalyzed Cross-Coupling of Aryl Halides with Dialkyl Phosphite, Diphenylphosphine Oxide, and Diphenylphosphine. *Chemistry - A European Journal* **2012**, *18* (31), 9622-9627.
- (9) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y., Copper-catalyzed addition of H-phosphine oxides to alkynes forming alkenylphosphine oxides. *Chemical Communications* **2007**, (3), 272-274.
- (10) Zhang, J. S.; Chen, T.; Yang, J.; Han, L. B., Nickel-catalysed P-C bond formation via P-H/C-CN cross coupling reactions. *Chemical Communications* **2015**, *51* (35), 7540-2.
- (11) Yang, B.; Wang, Z.-X., Ni-Catalyzed C–P Coupling of Aryl, Benzyl, or Allyl Ammonium Salts with P(O)H Compounds. *The Journal of Organic Chemistry* **2019**, *84* (3), 1500-1509.
- (12) Liu, D.; Ren, H.; Deng, L.; Zhang, T., Synthesis and Electrophosphorescence of Iridium Complexes Containing Benzothiazole-Based Ligands. ACS Applied Materials & Interfaces 2013, 5 (11), 4937-4944.
- (13) Chen, C. W.; Chen, Y. L.; Reddy, D. M.; Du, K.; Li, C. E.; Shih, B. H.; Xue, Y. J.; Lee, C. F., CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Bromides and Chlorides. *Chemistry - A European Journal* **2017**, *23* (42), 10087-10091.
- (14) Chen, C.-K.; Chen, Y.-W.; Lin, C.-H.; Lin, H.-P.; Lee, C.-F., Synthesis of CuO on mesoporous silica and its applications for coupling reactions of thiols with aryl iodides. *Chemical Communications* 2010, 46 (2), 282-284.
- (15) Yoshida, S.; Nagai, A.; Uchida, K.; Hosoya, T., Enhancing the Synthetic Utility of 3-Haloaryne Intermediates by Their Efficient Generation from Readily Synthesizable ortho-Iodoaryl Triflatetype Precursors. *Chemistry Letters* **2017**, *46* (5), 733-736.
- (16) Liu, T. J.; Yi, C. L.; Chan, C. C.; Lee, C. F., Manganese-catalyzed cross-coupling of thiols with aryl

iodides. Chemistry - An Asian Journal 2013, 8 (5), 1029-34.

- (17) Wang, S. F.; Li, C. E.; Liu, Y. C.; Mallikarjuna Reddy, D.; Sidick Basha, R.; Park, J. K.; Lee, S.; Lee, C. F., Palladium-Catalyzed Decarbonylative Thioetherification of 2-Pyridyl Thioesters. *Asian Journal of Organic Chemistry* **2020**, *9* (11), 1826-1833.
- (18) Mitrofanov, A. Y.; Murashkina, A. V.; Martín-García, I.; Alonso, F.; Beletskaya, I. P., Formation of C-C, C-S and C-N bonds catalysed by supported copper nanoparticles. *Catalysis Science & Technology* **2017**, *7* (19), 4401-4412.

9. Copies of NMR spectra

-29.197

3ca (162 MHz, CDCI₃)

71 / 183

100 9 fl (ppm) 73 / 183 -10

3la (400 MHz, CDCl₃)

78 / 183

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

101 / 183

102 / 183

105 / 183

----67.986

3wa (376 MHz, CDCl₃)

-26.080

-31.427

119 / 183

100 90 fl (ppm) 121 / 183 -10

129 / 183

132 / 183

137 / 183

138 / 183

141 / 183

142 / 183

146 / 183

147 / 183

148 / 183

149 / 183

151 / 183

153 / 183

154 / 183

155 / 183

157 / 183

158 / 183

160 / 183

162 / 183

163 / 183

164 / 183

165 / 183

166 / 183

168 / 183

169 / 183

175 / 183

178 / 183

180 / 183

181 / 183

182 / 183