Supporting Information

A Nickel/Organoboron Catalyzed Metallaphotoredox Platform for $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathbf{P}$ and $\mathbf{C}\left(\mathbf{s p}^{2}\right)-S$ Bond Construction

Yuan Zhu, Weisai Zu, Qing Tian, Zifeng Cao, Yu Wei,* Liang Xu*

School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.

Content

1. General considerations 2
2. The reaction condition screening for the synthesis of triarylphosphine oxides 3
3. The synthesis of triarylphosphine oxides 5
4. The synthesis of thioethers 6
3.1 Control experiments for the used reaction conditions in thioether synthesis 6
3.2 General procedure for the synthesis of thioethers 6
5. A summary of unsuccessful cases 8
6. Stern-Volmer experiments 9
7. Characterization data 18
8. References 39
9. Copies of NMR spectra 41

1. General considerations

General. Unless otherwise noted, all reactions were carried out under an air atmosphere. Analytical thinlayer chromatography (TLC) was performed on glass plates coated with $0.25 \mathrm{~mm} 230-400$ mesh silica gel containing a fluorescent indicator. Visualization was accomplished by exposure to a UV lamp. All the products in this article are compatible with standard silica gel chromatography. Column chromatography was performed on silica gel (200-300 mesh) using standard methods.

Structural analysis. NMR spectra were measured on a Bruker Ascend 400 spectrometer and chemical shifts (δ) are reported in parts per million (ppm). ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz in NMR solvents and referenced internally to corresponding solvent resonance, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 101 MHz and referenced to corresponding solvent resonance. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wavenumbers (cm^{-} ${ }^{1}$). High resolution mass spectra (HRMS) were acquired on Thermo Scientific LTQ Orbitrap XL with an ESI source.

Materials. Commercial reagents and solvent were purchased from Adamas, J\&K, Energy, SigmaAldrich, Alfa Aesar, Acros Organics, TCI and used as received unless otherwise stated.

2. The reaction condition screening for the synthesis of

triarylphosphine oxides

Table S1 Optimization of the reaction conditions

Entry	Variations from the 'standard' conditions	HPLC yield (\%)
1.	none	64
the dosage of $A Q D A B$		
2.	$5 \mathrm{~mol} \%$ AQDAB	64
3.	$1 \mathrm{~mol} \% \mathrm{AQDAB}$	64
4.	$0.5 \mathrm{~mol} \% \mathrm{AQDAB}$	64
5.	$0.1 \mathrm{~mol} \% \mathrm{AQDAB}$	61
6.	$0.05 \mathrm{~mol} \% \mathrm{AQDAB}$	53
the dosage of $\mathrm{NiCl}_{2}+$ ligand		
7.	$\mathrm{NiCl}_{2} 10 \mathrm{~mol} \%$, bpy $10 \mathrm{~mol} \%$	64
8.	$\mathrm{NiCl}_{2} 20 \mathrm{~mol} \%$, bpy $20 \mathrm{~mol} \%$	64
Photocatalyst used instead of $A Q D A B$		
9.	$2 \mathrm{~mol} \% \mathrm{CdS}$	37
10.	$2 \mathrm{~mol} \% \mathrm{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy})\left(\mathrm{PF}_{6}\right)$	46
11.	$2 \mathrm{~mol} \%$ 4CzIPN	49
12.	$2 \mathrm{~mol} \%$ TXO	45
Ligand used instead of bpy		
13.	dtbbpy	43
14.	4,4'-dimethyl-2,2'-bipyridine	52
15.	1,10-phenanthroline monohydrate	51
16.	5,5'-dimethyl-2,2'-bipyridine	53
17.	triphenylphosphine	37
Base used instead of DIPEA		
18.	TEA	52
19.	DBU	24
20.	DABCO	16
21.	tBuOK	25

22.	2,6 -lutidine	24
	Solvent used	
23.	Toluene	22
24.	Dichloroethane	38
25.	THF	48
26.	Acetone	23
	Other variations	
27.	Ar atmosphere	63
28.	1.0 equiv DIPEA	38
29.	3.0 equiv DIPEA	51
30.	Reaction time 30 hours	60
31.	5.0 equiv diphenylphosphine oxide	75

3. The synthesis of triarylphosphine oxides

General Procedure A: A flame-dried 25 mL quartz column reaction tube was placed with a magnetic stir bar. Then, aryl bromide /aryl iodine ($0.3 \mathrm{mmol}, 1.0$ equiv), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol, 2.0 equiv), AQDAB ($2.6 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{NiCl}_{2}(1.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, bpy ($2.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$), DIPEA ($77.5 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DMF}(0.5 / 0.5 \mathrm{~mL}$) were added. The reaction tube was placed on a photocatalytic parallel reactor with a $455-460 \mathrm{~nm}$ blue LEDs light source (10 W) at the bottom (Figure $\mathbf{S 1}$). Then the reaction mixture was irradiated with the 455 nm blue LEDs (at approximately 0.3 cm away from the light source). After stirring for 22 hours at $25^{\circ} \mathrm{C}$, the reaction mixture was added $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and then extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine $(2 \times 5.0 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target products.

Figure S1. Picture of the reactor

4. The synthesis of thioethers

3.1 Control experiments for the used reaction conditions in thioether synthesis

Table S2. The control experiments for the thioether synthesis ${ }^{[a]}$

Standard reaction conditions: 4-bromobenzonitrile ($0.3 \mathrm{mmol}, 1.0$ equiv), 1-dodecanethiol (0.6 mmol , 2.0 equiv), AQDAB ($0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{NiCl}_{2}(0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, bpy ($0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$), DIPEA ($0.45 \mathrm{mmol}, 1.5$ equiv), and $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DMF}\left(0.5 / 0.5 \mathrm{~mL}\right.$), 10 W 455 nm blue LEDs, $25^{\circ} \mathrm{C}$, air, 22 h. ${ }^{[a]}$ Isolated yield. N.D. $=$ not detected.

3.2 General procedure for the synthesis of thioethers

General Procedure B: A flame-dried 25 mL quartz column reaction tube was placed with a magnetic stir bar. Then, aryl bromide /aryl iodine ($0.3 \mathrm{mmol}, 1.0$ equiv), 1 -dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$, 2.0 equiv), AQDAB ($2.6 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{NiCl}_{2}(1.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, bpy (2.3 mg , $0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$), DIPEA ($58.2 \mathrm{mg}, 0.45 \mathrm{mmol}$, 1.5 equiv), and $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DMF}(0.5 / 0.5 \mathrm{~mL}$) were added. The reaction tube was placed on a photocatalytic parallel reactor with a $455-460 \mathrm{~nm}$ blue LEDs light source (10 W) at the bottom (Figure S1). Then the reaction mixture was irradiated with the 455 nm blue LEDs (at approximately 0.3 cm away from the light source). After stirring for 22 hours at $25^{\circ} \mathrm{C}$, the reaction mixture was added $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and then extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine $(2 \times 5.0 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated
under vacuum to afford the crude product, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the target products.

5. A summary of unsuccessful cases

reactive, hard to purify

not reactive
The synthesis of thioethers

Scheme S1 A summary of unsuccessful coupling counterparts

6. Stern-Volmer experiments

Figure S2 Fluorescence quenching date with $\mathrm{AQDAB}(0.1 \mathrm{mM})$ and variable diphenylphosphine oxide $\left(10^{-4} \mathrm{M}\right)$

Figure S3 Fluorescence quenching date with $\mathrm{AQDAB}(0.1 \mathrm{mM})$ and variable $\operatorname{DIPEA}\left(10^{-4} \mathrm{M}\right)$

Figure S4 Fluorescence quenching date with $\mathrm{AQDAB}(0.1 \mathrm{mM})$ and variable $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{SH}\left(10^{-4} \mathrm{M}\right)$

Figure $\mathbf{S 5}$ Fluorescence quenching date with $\mathrm{AQDAB}(0.1 \mathrm{mM})$ and variable $\mathrm{NiCl}_{2}\left(10^{-4} \mathrm{M}\right)$

Figure S6 Fluorescence quenching date with $\mathrm{AQDAB}(0.1 \mathrm{mM})$ and variable 4bromobenzonitrile $\left(10^{-4} \mathrm{M}\right)$

Figure S7 Stern-Volmer plots of AQDAB $(0.1 \mathrm{mM})$ and five quenchers. I_{0} and I were luminescence intensities in the absence and presence of the indicated concentrations $\left(10^{-4} \mathrm{M}\right)$ of the corresponding quencher, respectively. The solutions were irradiated at 387 nm and fluorescence was measured from 300 nm to 650 nm .

Figure S8 Fluorescence quenching date with $\mathrm{AQDAB}(0.01 \mathrm{mM})$ and variable diphenylphosphine oxide $\left(10^{-5} \mathrm{M}\right)$

Figure S9 Fluorescence quenching date with $\mathrm{AQDAB}(0.01 \mathrm{mM})$ and variable $\operatorname{DIPEA}\left(10^{-5} \mathrm{M}\right)$

Figure S10 Fluorescence quenching date with AQDAB (0.01 mM) and variable $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{SH}\left(10^{-5} \mathrm{M}\right)$

Figure S11 Fluorescence quenching date with AQDAB (0.01 mM) and variable $\mathrm{NiCl}_{2}\left(10^{-5} \mathrm{M}\right)$

Figure S12 Fluorescence quenching date with $\mathrm{AQDAB}(0.01 \mathrm{mM})$ and variable 4-bromobenzonitrile $\left(10^{-5} \mathrm{M}\right)$

Figure S13 Stern-Volmer plots of AQDAB $(0.01 \mathrm{mM})$ and five quenchers. I_{0} and I were luminescence intensities in the absence and presence of the indicated concentrations $\left(10^{-5} \mathrm{M}\right)$ of the corresponding quencher, respectively. The solutions were irradiated at 387 nm and fluorescence was measured from 300 nm to 650 nm .

Figure S14 Fluorescence quenching date with 0.1 mM AQDAB and five quenchers (0.6 M for the diphenylphosphine oxide, $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{SH}$ and DIPEA, 0.3 M for 4-bromobenzonitrile, and 15 mM for NiCl_{2}).

Figure S15 Fluorescence quenching date with $\mathrm{AQDAB}(0.1 \mathrm{mM})$ and variable concentration of DIPEA

Figure S16 Stern-Volmer plots of AQDAB $(0.1 \mathrm{mM})$ and DIPEA as the quencher. I_{0} and I were luminescence intensities in the absence and presence of the indicated concentrations ($\mathrm{mol} / \mathrm{L}$) of the corresponding quencher, respectively.

The quenching phenomenon of DIPEA made us reconsider its function. DIPEA might function as a reductive quencher in the transformation. Based on this, an electron-transfer-based catalytic cycle and the corresponding description were shown below (Scheme S2).

After the photocatalyst (PC) was excited to PC* under light, The excited photocatalyst was reduced by DIPEA, affording free radical cation DIPEA ${ }^{+}$. The hydrogen of diphenylphosphine oxide was then transferred to DIPEA ${ }^{+*}$, generating the P-based radical. As for the nickel-catalyzed cycle, the oxidative addition of ArX onto the zero-valent $\mathrm{L}_{\mathrm{n}} \mathrm{Ni0}(\mathbf{A})$ would generate $\mathrm{L}_{\mathrm{n}} \mathrm{NiII}(\mathrm{Ar}) \mathrm{X}(\mathbf{B})$. The combination of \mathbf{B} and the P-radical then occurred to produce the $\mathrm{Ni}(\mathrm{III})$ species \mathbf{C}, whose reductive elimination would form the desired product along with the one-valent nickel species \mathbf{D} Further reduction of \mathbf{D} to \mathbf{A} was then realized using PC^{-}, completing both the $\mathrm{Ni}-$ catalyzed and PC-catalyzed cycles.

Scheme S2 A possible mechanism via the electron transfer pathway

7. Characterization data

(3aa) 4-(diphenylphosphoryl)benzonitrile (CAS: 5032-54-2) ${ }^{1}$

4-(diphenylphosphoryl)benzonitrile
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NOP}$
Exact Mass: 303.0813
Molecular Weight: 303.3008

Following the General Procedure A with 4-bromobenzonitrile ($54.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol), 3aa was obtained as colorless oil ($56.5 \mathrm{mg}, 62 \%$).
Following the General Procedure A with 4-iodobenzonitrile $(68.8 \mathrm{mg}, 0.3 \mathrm{mmol})$, diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol), 3aa was obtained as colorless oil ($49.3 \mathrm{mg}, 54 \%$).
This target product was purified by acidic alumina flash chromatography (PE: EA: $\mathrm{MeOH}=1: 1: 0.1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69$
$(\mathrm{m}, 2 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5(\mathrm{~d}, J=99 \mathrm{~Hz}), 132.7,132.6(\mathrm{~d}, J=2 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=3 \mathrm{~Hz})$, $131.9(\mathrm{~d}, J=1 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=106 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=12 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=1 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=3 \mathrm{~Hz})$, ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.76$.

(3ba) (4-methoxyphenyl)diphenylphosphine oxide (CAS: 795-44-8) ${ }^{2}$

(4-methoxyphenyl)diphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{P}$
Exact Mass: 308.0966
Molecular Weight: 308.3168

Following the General Procedure A with 1-bromo-4methoxybenzene (56.1 mg, 0.3 mmol), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ba was obtained as white solid ($63.2 \mathrm{mg}, 68 \%$).
Following the General Procedure A with 4iodoanisole ($70.2 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ba was obtained as white solid ($70.3 \mathrm{mg}, 76 \%$).

This target product was purified by acidic alumina
flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39$ (m, 4H), $6.98-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5(\mathrm{~d}, J=3 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=11 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=105 \mathrm{~Hz}), 132.1(\mathrm{~d}$,
$J=10 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=3 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=12 \mathrm{~Hz}), 123.6(\mathrm{~d}, J=111 \mathrm{~Hz}), 114.1(\mathrm{~d}, J=13 \mathrm{~Hz}), 55.4$.
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.04$.

(3ca) diphenyl(p-tolyl)phosphine oxide (CAS: 6840-28-4) ${ }^{\mathbf{2}}$

diphenyl(p-tolyl)phosphine oxide
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{OP}$ Exact Mass: 292.1017
Molecular Weight: 292.3178

Following the General Procedure A with 4-bromotoluene (51.3 $\mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ca was obtained as white solid ($50.4 \mathrm{mg}, 58 \%$).
Following the General Procedure A with 4-iodotoluene $(65.4 \mathrm{mg}$, 0.3 mmol), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ca was obtained as white solid ($47.1 \mathrm{mg}, 54 \%$).

This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}: \mathrm{MeOH}=1: 1: 0.1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.49$
$(\mathrm{m}, 4 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5(\mathrm{~d}, J=3 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=104 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.1$ $(\mathrm{d}, J=10 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=3 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=13 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=107 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=12 \mathrm{~Hz}), 21.6$ (d, $J=1 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.20$.
(3da) triphenylphosphine oxide (CAS: 791-28-6) ${ }^{\mathbf{2}}$

triphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}$
Exact Mass: 278.0861
Molecular Weight: 278.2908

Following the General Procedure A with bromobenzene $(47.1 \mathrm{mg}$, 0.3 mmol), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3da was obtained as white solid ($41.9 \mathrm{mg}, 50 \%$).
Following the General Procedure A with iodobenzene ($61.2 \mathrm{mg}, 0.3$ mmol), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3da was obtained as white solid ($47.3 \mathrm{mg}, 57 \%$).
This target product was purified by acidic alumina flash chromatography (PE: $\mathrm{EA}: \mathrm{MeOH}=1: 1: 0.1)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.61(\mathrm{~m}, 6 \mathrm{H}), 7.56-7.49(\mathrm{~m}$, 3H), 7.48-7.40 (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.5(\mathrm{~d}, J=104 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=3 \mathrm{~Hz}), 128.5$ (d, $J=12 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.08$.
(3ea) (4-chlorophenyl)diphenylphosphine oxid (CAS: 34303-18-9) ${ }^{\mathbf{2}}$

(4-chlorophenyl)diphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClOP}$
Exact Mass: 312.0471
Molecular Weight: 312.7328

Following the General Procedure A with 1-bromo-4chlorobenzene ($57.4 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ea was obtained as white solid ($32.9 \mathrm{mg}, 35 \%$).
Following the General Procedure A with 1-chloro-4iodobenzene ($71.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ea was obtained as white solid ($72.7 \mathrm{mg}, 78 \%$).
This target product was purified by acidic alumina flash
chromatography (PE: EA: $\mathrm{MeOH}=1: 1: 0.1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.50(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.6(\mathrm{~d}, J=3 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=11 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=3 \mathrm{~Hz}), 132.1(\mathrm{~d}, J$ $=105 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=105 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=13 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=12 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.41$.
(3fa) ethyl 4-(diphenylphosphoryl)benzoate (CAS: 101630-35-7) ${ }^{3}$

ethyl 4-(diphenylphosphoryl)benzoate Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}$

Exact Mass: 350.1072
Molecular Weight: 350.3538

Following the General Procedure A with ethyl-4bromobenzoate ($68.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3fa was obtained as colorless oil ($67.6 \mathrm{mg}, 64 \%$).
Following the General Procedure A with ethyl-4iodobenzoate ($82.8 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathbf{3} / \mathbf{1}$ a was obtained as colorless oil ($86.3 \mathrm{mg}, 82 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16-8.10(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.63(\mathrm{~m}$, $4 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 4.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,137.4(\mathrm{~d}, J=101 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=3 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=3 \mathrm{~Hz})$, 132.2, $132.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=104 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=12 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=12 \mathrm{~Hz}), 61.4,14.3$. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.48$.
(3ga) [1,1'-biphenyl]-4-yldiphenylphosphine oxide (CAS: 1942-83-2) ${ }^{1}$
Following the General Procedure A with 4-bromobiphenyl (69.9 mg ,

[1,1'-biphenyl]-4yldiphenylphosphine oxide Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{OP}$ Exact Mass: 354.1174
Molecular Weight: 354.3888 0.3 mmol), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ga was obtained as white solid ($79.5 \mathrm{mg}, 75 \%$).
This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).
Melting point (${ }^{\circ} \mathrm{C}$): 158.3-159.6.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.64(\mathrm{~m}, 8 \mathrm{H}), 7.63-7.52(\mathrm{~m}$ $4 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7(\mathrm{~d}, J=3 \mathrm{~Hz}), 139.9,132.6(\mathrm{~d}$, $J=10 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=105 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.09(\mathrm{~d}, J$ $=3 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=106 \mathrm{~Hz}), 129.0,128.6(\mathrm{~d}, J=12 \mathrm{~Hz}), 127.3$, 127.3, 127.1.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.97$.
(3ha) tert-butyl 4-(diphenylphosphoryl)benzoate

tert-butyl 4-
(diphenylphosphoryl)benzoate
Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}$ Exact Mass: 378.1385
Molecular Weight: 378.4078

Following the General Procedure A with tert-butyl 4bromobenzoate ($77.1 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide $(120.7 \mathrm{mg}, 0.6 \mathrm{mmol})$, 3ha was obtained as white solid (80.6 mg , 71\%).
This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).
Melting point $\left({ }^{\circ} \mathrm{C}\right): 122.6-125.2$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-8.01$ (m, 2H), 7.71 (dd, $J=$ $11.6,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.39(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.8,137.5(\mathrm{~d}, J=101.6 \mathrm{~Hz}), 135.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=105.0$
$\mathrm{Hz}), 132.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 128.6$ (d, $J=12.2 \mathrm{~Hz}$), 81.8, 28.1.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.52$.
IR (cm^{-1}): 3422, 2980, 1710, 1300, 1188, 1110, 718, 547.
HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{PNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 401.12770$, found 401.12796 .
(3ia) (4-phenoxyphenyl)diphenylphosphine oxide (CAS: 2412926-10-2) ${ }^{4}$

Following the General Procedure A with 1-bromo-4phenoxybenzene ($74.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ia was obtained as white solid ($72.2 \mathrm{mg}, 65 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.62-$
$7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.38$
$-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 155.5$,
$134.1(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.1,128.5$ $(\mathrm{d}, J=12.1 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=108.8 \mathrm{~Hz}), 124.6,120.2,117.6(\mathrm{~d}, J=13.1 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.76$.
(3ja) 1-(4-(diphenylphosphoryl)phenyl)ethan-1-one (CAS: 5032-76-8) ${ }^{4}$

1-(4-(diphenylphosphoryl)phenyl)ethan-1-one

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{P}$
Exact Mass: 320.0966
Molecular Weight: 320.3278

Following the General Procedure A with 1-(4-bromophenyl)ethan-1-one ($59.7 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathbf{3 j a}$ was obtained as white solid ($59.6 \mathrm{mg}, 62 \%$).
Following the General Procedure A with 1-(4-iodophenyl)ethan-1-one ($73.8 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ja was obtained as colorless oil ($73.1 \mathrm{mg}, 76 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.52$ (m, 2H), $7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,139.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 137.7(\mathrm{~d}, J=101 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=10.1$ $\mathrm{Hz}), 132.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 131.2,128.7(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=12.1 \mathrm{~Hz})$, 26.8.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.35$.
(3ka) (4-(tert-butyl)phenyl)diphenylphosphine oxide (CAS: 1448632-01-6) ${ }^{5}$

(4-(tert-
butyl)phenyl)diphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{OP}$
Exact Mass: 334.1487
Molecular Weight: 334.3988

Following the General Procedure A with 1-(tert-butyl)-4iodobenzene ($78.0 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide $(120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ka was obtained as white solid (63.2 mg , 63\%).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.63$ (m, 4H), $7.61-7.54$ $(\mathrm{m}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 8 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.9(\mathrm{~d}, J$ $=104.3 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 131.9,131.8(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $129.2(\mathrm{~d}, J=106.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=12.4$

Hz), 35.0, 31.1.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.93$.

(3la) diphenyl(m-tolyl)phosphine oxide (CAS: 6840-27-3) ${ }^{6}$

diphenyl(m-tolyl)phosphine oxide
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{OP}$ Exact Mass: 292.1017
Molecular Weight: 292.3178

Following the General Procedure A with 1-bromo-3-methylbenzene $(51.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, diphenylphosphine oxide $(120.7 \mathrm{mg}, 0.6$ mmol), 3la was obtained as white solid ($33.3 \mathrm{mg}, 38 \%$).
Following the General Procedure A with 1-iodo-3-methylbenzene $(65.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, diphenylphosphine oxide $(120.7 \mathrm{mg}, 0.6$ mmol), 3la was obtained as white solid ($48.2 \mathrm{mg}, 55 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.50(\mathrm{~m}$, 3H), $7.48-7.42$ (m, 4H), $7.40-7.31$ (m, 3H), 2.35 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=43.5 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $132.5(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.8,129.2(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 128.5$ (d, $J=12.1 \mathrm{~Hz}$), $128.3(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 21.4$.
${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 29.27.
(3ma) (3-methoxyphenyl)diphenylphosphine oxide (CAS: 95278-09-4) ${ }^{4}$

(3-methoxyphenyl)diphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{P}$
Exact Mass: 308.0966
Molecular Weight: 308.3168

Following the General Procedure A with 1-iodo-3methoxybenzene ($70.2 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ma was obtained as white solid ($38.8 \mathrm{mg}, 42 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.57-$
$7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31$
$-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=103.6 \mathrm{~Hz}), 133.0,132.1(\mathrm{~d}, J=9.9$ $\mathrm{Hz}), 132.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 118.2$
(d, $J=2.6 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 55.4$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.37$.

(3na) (3-phenoxyphenyl)diphenylphosphine oxide

(3-phenoxyphenyl)diphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ Exact Mass: 370.1123
Molecular Weight: 370.3878

Following the General Procedure A with 1-bromo-3phenoxybenzene ($74.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3na was obtained as yellow oil ($76.7 \mathrm{mg}, 69 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.57-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37$ $-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H})$, $7.00-6.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6(\mathrm{~d}, J=15.5 \mathrm{~Hz}), 156.3,134.6(\mathrm{~d}, J=103.1 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=104.9$ $\mathrm{Hz}), 132.1,132.0,130.1(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 129.9,128.6(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 126.6(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 123.9$, $122.0(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 121.8(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 119.2$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.74$.
IR $\left(\mathrm{cm}^{-1}\right): 3659,3055,1673,1580,1482,1233,1110,908,757,698,537$.
HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{PNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 393.1015$, found 393.1011.

(3oa) methyl 3-(diphenylphosphoryl)benzoate (CAS: 204930-15-4) ${ }^{7}$

methyl 3-
(diphenylphosphoryl)benzoate
Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{P}$
Exact Mass: 336.0915
Molecular Weight: 336.3268

Following the General Procedure A with methyl 3- bromo benzoate ($64.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide (120.7 $\mathrm{mg}, 0.6 \mathrm{mmol}$), 3oa was obtained as white solid ($38.4 \mathrm{mg}, 38 \%$). Following the General Procedure A with methyl 3-iodobenzoate ($78.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide $(120.7 \mathrm{mg}, 0.6$ mmol), 3oa was obtained as white solid ($41.4 \mathrm{mg}, 41 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{dd}, J=12.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.24-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 4 \mathrm{H})$, $7.57-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,136.2(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=103.5 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=14.5$ $\mathrm{Hz}), 132.9,132.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=105.2 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=12.1 \mathrm{~Hz})$, $128.8(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 52.4$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.28$.
(3pa) 1-(3-(diphenylphosphoryl)phenyl)ethan-1-one (CAS: 50777-54-3) ${ }^{8}$

1-(3-(diphenylphosphoryl)phenyl)ethan-1-one
Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{P}$
Exact Mass: 320.0966
Molecular Weight: 320.3278

Following the General Procedure A with 1-(3-bromophenyl)ethan-1-one ($59.7 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3pa was obtained as white solid ($44.2 \mathrm{mg}, 46 \%$).
Following the General Procedure A with 1-(3-iodophenyl)ethan-1-one ($73.8 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3pa was obtained as white solid ($43.2 \mathrm{mg}, 45 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.77(\mathrm{~m}$, $1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2,137.2(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 136.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=103.1$ $\mathrm{Hz}), 131.9(\mathrm{~d}, J=105.3 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 131.5$ (d, $J=2.6 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 26.71$.
${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.51$.

(3qa) diphenyl(o-tolyl)phosphine oxide (CAS: 6840-26-2) ${ }^{5}$

diphenyl(o-tolyl)phosphine oxide
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{OP}$
Exact Mass: 292.1017
Molecular Weight: 292.3178

Following the General Procedure A with 1-bromo-2-methylbenzene ($51.3 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide $(120.7 \mathrm{mg}, 0.6$ mmol), 3qa was obtained as yellow solid ($22.5 \mathrm{mg}, 26 \%$).
Following the General Procedure A with 1-iodo-2-methylbenzene ($65.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol), 3qa was obtained as white solid ($32.9 \mathrm{mg}, 38 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 1 \mathrm{H})$, 7.02 (dd, $J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=103.8 \mathrm{~Hz})$, $132.1(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 132.0,131.9,131.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=103.3 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=12.1 \mathrm{~Hz})$, $125.2(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 21.7(\mathrm{~d}, J=4.7 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.66$.
(3ra) methyl 2-(diphenylphosphoryl)benzoate (CAS: 79317-63-8) ${ }^{7}$

methyl 2-
(diphenylphosphoryl)benzoate
Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{P}$
Exact Mass: 336.0915
Molecular Weight: 336.3268

Following the General Procedure A with methyl 2-bromobenzoate ($64.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol), 3ra was obtained as white solid ($35.3 \mathrm{mg}, 35 \%$).

Following the General Procedure A with methyl 2-iodobenzoate ($78.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide $(120.7 \mathrm{mg}, 0.6$ mmol), 3ra was obtained as white solid ($27.2 \mathrm{mg}, 27 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.58(\mathrm{~m}$, $5 \mathrm{H}), 7.57-7.40(\mathrm{~m}, 8 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 136.0(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=108.3 \mathrm{~Hz}), 132.9,131.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=10.0$ $\mathrm{Hz}), 131.6,130.9(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 52.2$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.87$.
(3sa) diphenyl(2-(trifluoromethoxy)phenyl)phosphine oxide (CAS: 2242839-53-6)

diphenyl(2-
(trifluoromethoxy)phenyl)phosphine oxide
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{P}$ Exact Mass: 362.0684
Molecular Weight: 362.2880

Following the General Procedure A with 1-iodo-2(trifluoromethoxy)benzene ($86.4 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3sa was obtained as yellow solid ($44.8 \mathrm{mg}, 42 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).

Melting point (${ }^{\circ} \mathrm{C}$): 113.1-114.5.
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93$ (ddd, $J=9.2,7.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.41(\mathrm{~m}$, $4 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,135.5(\mathrm{~d}, J=6.5 \mathrm{~Hz})$,
134.2 (d, $J=1.7 \mathrm{~Hz}$), 131.9 (d, $J=108.7 \mathrm{~Hz}$), 132.1 (d, $J=2.8 \mathrm{~Hz}$), 131.8 (d, $J=10.3 \mathrm{~Hz}$), 128.5 (d, J $=12.6 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=99.6 \mathrm{~Hz}), 119.9(\mathrm{~d}, J=261.6 \mathrm{~Hz}), 117.8(\mathrm{dd}, J=5.5$,
2.4 Hz).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-56.29.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.22$.
IR (cm^{-1}): 3063, 1588, 1439, 1263, 1210, 1167, 1120, 708, 547.
HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{PNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 385.0576$, found 385.0576 .
(3ta) (E)-diphenyl(styryl)phosphine oxide (CAS: 3582-82-9) ${ }^{9}$

(E)-diphenyl(styryl)phosphine oxide Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{OP}$

Exact Mass: 304.1017
Molecular Weight: 304.3288

Following the General Procedure A with beta-bromostyrene ($54.9 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol), 3ta was obtained as white solid ($47.0 \mathrm{mg}, 52 \%$).

This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}: \mathrm{MeOH}=1: 1: 0.1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.72$ (m, 4H), $7.57-$ $7.44(\mathrm{~m}, 9 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.84$ (dd, 22.0, 17.6 Hz , $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6(\mathrm{~d}, J=4 \mathrm{~Hz}), 135.1(\mathrm{~d}$, $J=18 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=106 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=3 \mathrm{~Hz}), 131.4$ (d, $J=10 \mathrm{~Hz}$), 130.1, $128.9,128.7(\mathrm{~d}, J=12 \mathrm{~Hz}), 127.8,119.3(\mathrm{~d}, J=105 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.43$.
(3ua) (4-(diphenylamino)phenyl)diphenylphosphine oxide (CAS: 887651-41-4)²

(4-(diphenylamino)phenyl)diphenyl phosphine oxide
Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NOP}$
Exact Mass: 445.1596
Molecular Weight: 445.5018

Following the General Procedure A with 4bromotriphenylamine $\quad(97.3 \mathrm{mg}, \quad 0.3 \mathrm{mmol})$, diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ua was obtained as white solid ($98.8 \mathrm{mg}, 74 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
Melting point $\left({ }^{\circ} \mathrm{C}\right)$: 55.2-56.5.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.47$ (m, 2H), $7.47-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.8,2.4$ $\mathrm{Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 146.6$, $133.2(\mathrm{~d}, J=11 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=105 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=3 \mathrm{~Hz}), 129.5,128.4(\mathrm{~d}, J$ $=12 \mathrm{~Hz}), 125.8,124.5,123.1(\mathrm{~d}, J=111 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=13 \mathrm{~Hz})$.
${ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.02$.

(3va) diphenyl(pyridin-2-yl)phosphine oxide (CAS: 64741-30-6) ${ }^{\mathbf{8}}$

diphenyl(pyridin-2-yl)phosphine oxide Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NOP}$

Exact Mass: 279.0813
Molecular Weight: 279.2788

Following the General Procedure A with 2-bromopyridine ($47.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide (120.7 mg , 0.6 mmol), 3va was obtained as white solid (43.5 mg , 52%).

This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.33-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.80(\mathrm{~m}, 5 \mathrm{H}), 7.52-7.47(\mathrm{~m}$, $2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H})$.

[^0]${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.83$.

(3wa) diphenyl(2-(trifluoromethyl)pyridin-4-yl)phosphine oxide

diphenyl(2-(trifluoromethyl)pyridin-4-
yl)phosphine oxide
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NOP}$
Exact Mass: 347.0687
Molecular Weight: 347.2770

Following the General Procedure A with 2-(trifluoromethyl)-
4-bromopyridine ($67.8 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3wa was obtained as white solid ($64.7 \mathrm{mg}, 62 \%$).
This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).
Melting point (${ }^{\circ} \mathrm{C}$): 138.5-140.0.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$
(d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.57(\mathrm{~m}, 7 \mathrm{H}), 7.54-7.47(\mathrm{~m}$, 4H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 148.8(\mathrm{qd}, J=35,10 \mathrm{~Hz}), 144.5(\mathrm{~d}, J=94 \mathrm{~Hz})$, $133.0(\mathrm{~d}, J=3 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=10 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=107 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=12 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=8 \mathrm{~Hz})$, 122.4 (dq, $J=9,3 \mathrm{~Hz}$), 121.7 ($\mathrm{qd}, J=272,3 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-67.99$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.08$.
IR (cm^{-1}): 3056, 3027, 1436, 1333, 1201, 1136, 683, 533.
HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NOP}^{+}(\mathrm{M}+\mathrm{H})^{+} 348.0760$, found 348.0761 .

(3xa) (6-methoxy-5-(trifluoromethyl)pyridin-3-yl)diphenylphosphine oxide

(6-methoxy-5-(trifluoromethyl)pyridin-3yl)diphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$
Exact Mass: 377.0792
Molecular Weight: 377.3030

Following the General Procedure A with 5-bromo-2-methoxy-3-(trifluoromethyl)pyridine $\quad(78.4 \mathrm{mg}, \quad 0.3$ mmol), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3xa was obtained as white solid ($60.6 \mathrm{mg}, 54 \%$).
This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).
Melting point $\left({ }^{\circ} \mathrm{C}\right): 69.9-71.1$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 4 \mathrm{H})$, $7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,154.5(\mathrm{~d}, J=13.1$
$\mathrm{Hz}), 139.7(\mathrm{dd}, J=10.1,4.8 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=107.3 \mathrm{~Hz})$, $128.9(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 123.8,121.1,121.1(\mathrm{~d}, J=106.7 \mathrm{~Hz}), 54.8$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.09$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.80$.
IR (cm^{-1}): 3412, 3029, 2916, 2229, 1600, 1404, 1186, 1127, 847, 694, 578.
HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{PNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 400.06847$, found 400.06854.
(3ya) (1-methyl-1H-indol-5-yl)diphenylphosphine oxide

(1-methyl-1H-indol-5yl)diphenylphosphine oxide Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NOP}$

Exact Mass: 331.1126
Molecular Weight: 331.3548

Following the General Procedure A with 5-bromo-1-methyl-1Hindole ($63.0 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide (120.7 mg , 0.6 mmol), 3ya was obtained as yellow solid ($71.0 \mathrm{mg}, 71 \%$).

This target product was purified by acidic alumina flash chromatography (PE: EA=1:2).

Melting point (${ }^{\circ} \mathrm{C}$): 181.2-183.0.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-$ $7.64(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4(\mathrm{~d}, J=3 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=$ $104 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=3 \mathrm{~Hz}), 130.3,128.4(\mathrm{~d}, J=12 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=12 \mathrm{~Hz})$, $124.6(\mathrm{~d}, J=12 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=110 \mathrm{~Hz}), 109.6(\mathrm{~d}, J=14 \mathrm{~Hz}), 102.2,33.0$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.43$.
IR (cm^{-1}): 3102, 2914, 1436, 1324, 1173, 1166, 706, 505.
HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NOP}^{+}(\mathrm{M}+\mathrm{H})^{+} 332.1199$, found 332.1201.

(3za) phenanthren-9-yldiphenylphosphine oxide (CAS: 401798-09-2) ${ }^{10}$

phenanthren-9-
yldiphenylphosphine oxide
Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{OP}$
Exact Mass: 378.1174
Molecular Weight: 378.4108

Following the General Procedure A with 9-bromophenanthrene ($77.1 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol), 3za was obtained as white solid ($56.8 \mathrm{mg}, 50 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74-8.60(\mathrm{~m}, 3 \mathrm{H}), 7.79-7.43(\mathrm{~m}$, 16H).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.9(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 133.2,132.2$ (d, $J=9.8 \mathrm{~Hz}$), 132.2, $132.0(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=8.4 \mathrm{~Hz})$, $130.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 130.1,129.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 129.2,128.8$, 128.7, 128.6, 127.9 (d, $J=102.3 \mathrm{~Hz}$), 127.2 (d, $J=5.8 \mathrm{~Hz}$), 127.1, 123.1, 122.7.
${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta 32.64$.
(3zb) diphenyl(pyren-1-yl)phosphine oxide (CAS: 2260821-57-4) ${ }^{11}$

diphenyl(pyren-1-yl)phosphine oxide
Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{OP}$
Exact Mass: 402.1174
Molecular Weight: 402.4328

Following the General Procedure A with 1-bromopyrene ($84.3 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide (120.7 mg , 0.6 mmol), 3zb was obtained as white solid ($66.4 \mathrm{mg}, 55 \%$). This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ - $8.11(\mathrm{~m}, 3 \mathrm{H}), 8.09-7.97(\mathrm{~m}, 4 \mathrm{H}), 7.79-7.68(\mathrm{~m}, 5 \mathrm{H})$, $7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.3(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 134.2$
$(\mathrm{d}, J=8.1 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=104.7 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=12.3$ $\mathrm{Hz}), 131.0,130.4,129.4(\mathrm{~d}, J=95.5 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 127.1,126.5,126.3(\mathrm{~d}, J=6.6 \mathrm{~Hz})$,

(3zc) fluoranthen-3-yldiphenylphosphine oxide

fluoranthen-3yldiphenylphosphine oxide Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{OP}$

Exact Mass: 402.1174
Molecular Weight: 402.4328

Following the General Procedure A with 3-bromofluoranthene (84.3 $\mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3zc was obtained as white solid ($97.8 \mathrm{mg}, 81 \%$).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).

Melting point (${ }^{\circ} \mathrm{C}$): 87.9-90.3.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.68$ (m, 8H), $7.56-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5$ (d, $J=2.8 \mathrm{~Hz}$), 140.2, 138.3, $137.5(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 133.6,132.9(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}), 132.6,132.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=2.7), 130.9(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=102.4 \mathrm{~Hz}), 129.3,128.9,128.6(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 127.83,127.18(\mathrm{~d}, J=3.9 \mathrm{~Hz})$, $121.9(\mathrm{~d}, J=64.4 \mathrm{~Hz}), 120.8,118.3(\mathrm{~d}, J=14.1 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.69$.
IR (cm^{-1}): 3429, 3055, 1604, 1439, 1186, 1112, 753, 702, 543.
HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{OPNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 425.1066$, found 425.1064.

(3zd) (9H-fluoren-2-yl)diphenylphosphine oxide

(9H-fluoren-2-
yl)diphenylphosphine oxide Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{OP}$

Exact Mass: 366.1174 Molecular Weight: 366.3998

Following the General Procedure A with 9-bromophenanthrene ($73.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6$ mmol), 3zd was obtained as yellow oil ($73.6 \mathrm{mg}, 67 \%$).

This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.77$ (m, 2H), $7.75-7.66$ (m, 4H), $7.62(\mathrm{dd}, J=11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ $-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, 2 H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 144.0,143.3(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 140.4,132.8(\mathrm{~d}, J=$ $104.5 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=105.7 \mathrm{~Hz})$, $128.6(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 128.0,127.0,125.2,120.7,119.8(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 36.9$. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.96$.
IR (cm^{-1}): 3661, 3055, 2884, 1720, 1492, 1435, 1190, 737, 700, 543.
HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{OPNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 389.1066$, found 389.1067.

(3ze) (4-(benzo[d]thiazol-2-yl)phenyl)diphenylphosphine oxide (CAS: 1438435-79-0) ${ }^{12}$

(4-(benzo[d]thiazol-2yl)phenyl)diphenylphosphine oxide Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NOPS}$

Exact Mass: 411.0847
Molecular Weight: 411.4588

Following the General Procedure A with 2-(4bromophenyl)benzo[d]thiazole ($88.8 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), diphenylphosphine oxide ($120.7 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ze was obtained as white solid ($83.9 \mathrm{mg}, 68 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J$ $=11.6,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=12.4,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.56-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,154.1,136.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=103.0 \mathrm{~Hz}), 135.2,132.8$ (d, $J=10.1 \mathrm{~Hz}$), $132.1(\mathrm{~d}, J=105.1 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=12.2$ Hz), $127.4(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 126.6,125.8,123.6,121.8$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.43$.
(3ab) (4-isocyanophenyl)di-p-tolylphosphine oxide

(4-isocyanophenyl)di-ptolylphosphine oxide
Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NOP}$ Exact Mass: 331.1126
Molecular Weight: 331.3548

Following the General Procedure A with 4-bromobenzonitrile ($54.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), di-p-tolylphosphine oxide ($138.2 \mathrm{mg}, 0.6$ mmol), 3ab was obtained as white solid ($60.6 \mathrm{mg}, 61 \%$).

Following the General Procedure A with 4-iodobenzonitrile (68.7 $\mathrm{mg}, 0.3 \mathrm{mmol}$), di-p-tolylphosphine oxide ($138.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ab was obtained as white solid ($75.5 \mathrm{mg}, 76 \%$).

This target product was purified by acidic alumina flash chromatography (PE: EA = 1:3).
Melting point $\left({ }^{\circ} \mathrm{C}\right): 101.4-103.2$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{dd}, J=$ $12.0,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 139.1(\mathrm{~d}, J$ $=99.4 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 131.8,129.5(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=$ 108.4 Hz), 118.0 (d, $J=1.4 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 21.6(\mathrm{~d}, J=1.1 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.94$.
IR (cm^{-1}): $3420,3037,2922,2228,1604,1398,1186,1114,808,659,514$.
HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NOPNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 354.10182$, found 354.10211.

4-(bis(4-
methoxyphenyl)phosphoryl)benzonitrile
Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{P}$
Exact Mass: 363.1024
Molecular Weight: 363.3528

Following the General Procedure A with 4bromobenzonitrile ($54.6 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), bis(4methoxyphenyl)phosphine oxide ($157.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ac was obtained as white solid ($65.3 \mathrm{mg}, 60 \%$).
Following the General Procedure A with 4iodobenzonitrile ($68.7 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), bis(4methoxyphenyl)phosphine oxide ($157.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ac was obtained as white solid ($78.4 \mathrm{mg}, 72 \%$).

This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
Melting point $\left({ }^{\circ} \mathrm{C}\right):$ 69.0-72.1.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 139.4(\mathrm{~d}, J=100.0 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=11.4 \mathrm{~Hz})$, $132.5(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=112.7 \mathrm{~Hz}), 118.0,115.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 114.4$ (d, $J=13.3 \mathrm{~Hz}$), 55.4.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.43$.
IR (cm^{-1}): 3414, 2951, 2805, 2229, 1596, 1500, 1298, 1259, 1178, 1114, 1020, 831.
HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{PNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 386.09165$, found 386.09137.

(3ad) bis(3,5-dimethylphenyl)(4-isocyanophenyl)phosphine oxide

bis(3,5-dimethylphenyl)(4isocyanophenyl)phosphine oxide Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NOP}$

Exact Mass: 359.1439
Molecular Weight: 359.4088

Following the General Procedure A with 4-bromobenzonitrile ($54.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), bis(3,5-dimethylphenyl)phosphine oxide ($155.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), 3ad was obtained as white solid (67.9 mg , 63\%).

Following the General Procedure A with 4-iodobenzonitrile (68.7 $\mathrm{mg}, 0.3 \mathrm{mmol}$), bis(3,5-dimethylphenyl)phosphine oxide (155.0 $\mathrm{mg}, 0.6 \mathrm{mmol}$), 3ad was obtained as white solid ($89.4 \mathrm{mg}, 83 \%$). This target product was purified by acidic alumina flash chromatography (PE: EA=1:3).
Melting point $\left({ }^{\circ} \mathrm{C}\right)$: 150.6-153.4.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.17$ ($\mathrm{s}, 2 \mathrm{H}$), $2.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,138.5(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=9.8 \mathrm{~Hz})$, $131.9(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 115.4(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}$), 21.3.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.37$.
IR (cm^{-1}): 3412, 3031, 2918, 2855, 2229, 1596, 1406, 1186, 1127, 849, 696, 578.
HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NOPNa}^{+}(\mathrm{M}+\mathrm{Na})^{+}$382.13312, found 382.13345.

4-(di(naphthalen-2-
yl)phosphoryl)benzonitrile
Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{NOP}$
Exact Mass: 403.1126
Molecular Weight: 403.4208

Following the General Procedure A with 4-bromobenzonitrile ($54.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), di(naphthalen-2-yl)phosphine oxide (181.2 $\mathrm{mg}, 0.6 \mathrm{mmol}$), 3ae was obtained as white solid ($87.5 \mathrm{mg}, 69 \%$). Following the General Procedure A with 4-iodobenzonitrile (68.7 $\mathrm{mg}, 0.3 \mathrm{mmol}$), di(naphthalen-2-yl)phosphine oxide (181.2 mg , 0.6 mmol), 3ae was obtained as white solid ($101.5 \mathrm{mg}, 80 \%$).

This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=1: 3$).
Melting point $\left({ }^{\circ} \mathrm{C}\right): 72.8-74.2$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ (d, $J=14.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.96-$ 7.83 (m, 8H), 7.74 (dd, $J=8.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.51(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6(\mathrm{~d}, J=99.8 \mathrm{~Hz}), 134.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 132.8$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 129.0,128.9,128.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 128.0$, $127.7,127.3,126.5(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 117.9,115.7(\mathrm{~d}, J=3.1 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.93$.
IR (cm^{-1}): 3431, 3055, 2229, 1633, 1388, 1190, 1094, 822, 657.
HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{NOPNa}^{+}(\mathrm{M}+\mathrm{Na})^{+}$426.10182, found 426.10172.
(5aa) 4-(dodecylthio)benzonitrile (CAS: 26960-82-7) ${ }^{13}$

4-(dodecylthio)benzonitrile Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NS}$ Exact Mass: 303.2021
Molecular Weight: 303.5080

Following the General Procedure B with 4-bromobenzonitrile (54.6 $\mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5aa was obtained as yellow solid ($80.9 \mathrm{mg}, 89 \%$).
Following the General Procedure B with 4-iodobenzonitrile (68.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5aa was obtained as yellow solid ($74.4 \mathrm{mg}, 82 \%$).
This target product was purified by silica gel flash chromatography (PE: EA = 100:1).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69$ (pent, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.4,132.2,126.6,119.0,107.84,31.9,31.9,29.7,29.6,29.6,29.5$, 29.5, 29.1, 28.9, 28.6, 22.7, 14.2.
(5ba) dodecyl(4-methoxyphenyl)sulfane (CAS: 867017-31-0) ${ }^{13}$

dodecyl(4-methoxyphenyl)sulfane Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{OS}$ Exact Mass: 308.2174 Molecular Weight: 308.5240

Following the General Procedure B with 4-iodoanisole (70.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$), 1 -dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ba was obtained as white solid ($80.4 \mathrm{mg}, 87 \%$).
This target product was purified by silica gel flash chromatography ($\mathrm{PE}: \mathrm{EA}=200: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81$ $(\mathrm{m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.57$ (pent, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.7,132.9,127.0,114.5,55.3,35.84,31.9,29.7,29.7,29.6,29.5,29.4$, 29.2, 28.7, 22.7, 14.2.
(5ca) dodecyl(p-tolyl)sulfane (CAS: 94435-76-4) ${ }^{14}$

dodecyl(p-tolyl)sulfane Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~S}$

Exact Mass: 292.2225
Molecular Weight: 292.5250

Following the General Procedure B with 4 4-bromotoluene (51.3 mg , 0.3 mmol), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), $5 \mathbf{c a}$ was obtained as colorless oil ($68.5 \mathrm{mg}, 78 \%$).
Following the General Procedure B with 4-iodotoluene ($65.4 \mathrm{mg}, 0.3$ mmol), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ca was obtained as colorless oil ($68.4 \mathrm{mg}, 78 \%$).
This target product was purified by silica gel flash chromatography
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{pent}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.1 .43-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 135.8,133.2,129.7,129.6,34.4,32.0,29.7,29.7,29.6,29.6,29.4,29.3$, 29.2, 28.9, 22.7, 21.0, 14.2.

(5da) dodecyl(phenyl)sulfane (CAS: 56056-49-6) ${ }^{13}$

dodecyl(phenyl)sulfane
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~S}$
Exact Mass: 278.2068
Molecular Weight: 278.4980

Following the General Procedure B with bromobenzene ($47.1 \mathrm{mg}, 0.3$ mmol), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5da was obtained as colorless oil ($73.6 \mathrm{mg}, 88 \%$).
Following the General Procedure B with iodobenzene ($61.2 \mathrm{mg}, 0.3$ mmol), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5da was obtained as colorless oil ($53.8 \mathrm{mg}, 64 \%$).
This target product was purified by silica gel flash chromatography (PE: EA = 200:1).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.64($ pent, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1,128.8,128.8,125.6,33.6,31.93,29.7,29.6,29.6,29.5,29.4,29.2$, 29.2, 28.9, 22.7, 14.1.

(5ea) ethyl 4-(dodecylthio)benzoate (CAS: 1207539-20-5) ${ }^{14}$

ethyl 4-(dodecylthio)benzoate
Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}$
Exact Mass: 350.2280
Molecular Weight: 350.5610

Following the General Procedure B with ethyl-4-bromobenzoate ($68.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ea was obtained as yellow oil ($63.8 \mathrm{mg}, 61 \%$).
Following the General Procedure B with ethyl-4-iodobenzoate ($82.8 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ea was obtained as yellow oil ($86.2 \mathrm{mg}, 82 \%$).
This target product was purified by silica gel flash chromatog raphy ($\mathrm{PE}: \mathrm{EA}=200: 1$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.97$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.69 (pent, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.22$ $(\mathrm{m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,144.3,129.9,126.9,126.3,60.9,32.1,31.9,29.7,29.6,29.6,29.5$, 29.4, 29.2, 28.9, 28.8, 22.7, 14.4, 14.2.
(5fa) dodecyl(3-methoxyphenyl)sulfane (CAS: 2126724-71-6) ${ }^{15}$

dodecyl(3-methoxyphenyl)sulfane
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{OS}$
Exact Mass: 308.21739
Molecular Weight: 308.52400

Following the General Procedure B with 1-iodo-3methoxybenzene ($70.2 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol (121.4 $\mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathbf{5 f a}$ was obtained as colorless oil ($70.3 \mathrm{mg}, 76 \%$) This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-$ 6.84 (m, 2H), 6.69 (dd, $J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 2.95 $-2.85(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.26$
(s, 16H), $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,138.6,129.6,120.8,114.0,111.2,55.2,33.4,32.0,29.7,29.7,29.6$, 29.6, 29.4, 29.2, 29.2, 28.9, 22.7, 14.2.

(5ga) dodecyl(m-tolyl)sulfane (CAS: 1450829-03-4) ${ }^{16}$

dodecyl(m-tolyl)sulfane
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~S}$
Exact Mass: 292.22247
Molecular Weight: 292.52500

Following the General Procedure B with 1-iodo-3-methylbenzene ($65.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ga was obtained as colorless oil ($57.0 \mathrm{mg}, 65 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=100: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.49$ $-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 16 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 138.5,136.9,129.5,128.7,126.5,125.8,33.6,32.0,29.7,29.7,29.6$, 29.6, 29.4, 29.2, 29.2, 28.9, 22.7, 21.4, 14.2.
(5ha) dodecyl(o-tolyl)sulfane (CAS: 1079988-46-7) ${ }^{16}$

dodecyl(o-tolyl)sulfane
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~S}$
Exact Mass: 292.22247
Molecular Weight: 292.52500

Following the General Procedure B with 1-iodo-2-methylbenzene ($65.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ha was obtained as colorless oil ($48.3 \mathrm{mg}, 55 \%$).

This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=100: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=$ 6.6 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,136.5,130.0,127.3,126.3,125.2,32.8,32.0,29.7,29.7,29.6$, 29.6, 29.4, 29.2, 29.1, 29.0, 22.7, 20.4, 14.2.
(5ia) 4-(dodecylthio)-2-methylpyridine

4-(dodecylthio)-2-methylpyridine Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NS}$

Exact Mass: 293.2177
Molecular Weight: 293.5130

Following the General Procedure B with 4-bromo-2methylpyridine ($51.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol (121.4 mg , 0.6 mmol), 5 ia was obtained as colorless oil ($29.6 \mathrm{mg}, 34 \%$).

This target product was purified by silica gel flash chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 6.90(\mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48$
($\mathrm{s}, 3 \mathrm{H}$), $1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 16 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,149.6,148.6,120.0,117.8,31.9,30.6,29.6,29.6,29.6,29.5,29.3$, 29.1, 28.9, 28.5, 24.4, 22.7, 14.1.

IR (cm^{-1}): 2961, 2933, 2848, 1578, 1474, 872.
HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NS}^{+}(\mathrm{M}+\mathrm{H})^{+}$294.2250, found 294.2253.

(5ja) 4-(dodecylthio)-2-(trifluoromethyl)pyridine

4-(dodecylthio)-2-(trifluoromethyl)pyridine Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NS}$ Exact Mass: 347.1895
Molecular Weight: 347.4842

Following the General Procedure B with 2-(trifluoromethyl)-4-bromopyridine (67.8 mg, 0.3 mmol), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathbf{5 j a}$ was obtained as colorless oil ($85.7 \mathrm{mg}, 82 \%$).
This target product was purified by silica gel flash chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.44(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 16 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.4,149.2,148.0(\mathrm{q}, J=34 \mathrm{~Hz}), 122.5,121.5(\mathrm{q}, J=276 \mathrm{~Hz}), 117.1$ (q, $J=3 \mathrm{~Hz}$), 31.9, 30.8, 29.6, 29.5, 29.4, 29.3, 29.1, 28.8, 28.2, 22.7, 14.1.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-68.32$.
IR (cm^{-1}): 2943, 2848, 1587, 1314, 1145, 721.
HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NS}^{+}(\mathrm{M}+\mathrm{H})^{+} 348.1967$, found 348.1968 .

(5ka) 5-(dodecylthio)-2-methoxy-3-(trifluoromethyl)pyridine

5-(dodecylthio)-2-methoxy-3-
(trifluoromethyl)pyridine
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NOS}$
Exact Mass: 377.2000
Molecular Weight: 377.5102

Following the General Procedure B with 5-bromo-2-methoxy-3-(trifluoromethyl)pyridine ($76.8 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), 1dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ka was obtained as colorless oil ($76.8 \mathrm{mg}, 68 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J$ $=20.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$
$-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 16 \mathrm{H}), 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,151.1,140.0(\mathrm{q}, J=4.8 \mathrm{~Hz}), 138.8(\mathrm{q}, J=5.0 \mathrm{~Hz}), 124.3,110.6$, $54.4,54.2,36.1,31.9,29.6,29.6,29.5,29.3,29.3,29.1,28.5,22.7,14.1$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.00(\mathrm{~s})$.
IR (cm^{-1}): 2924, 2855, 1718, 1598, 1469, 1324, 1149, 1057, 918, 692.
HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NOS}^{+}(\mathrm{M}+\mathrm{H})^{+}$378.2073, found 378.2071.
(5la) 2-(dodecylthio)pyridine (CAS: 1079988-48-9) ${ }^{17}$

2-(dodecylthio)pyridine Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NS}$

Exact Mass: 279.2021
Molecular Weight: 279.4860

Following the General Procedure B with 2-bromopyridine (47.4 mg , 0.3 mmol), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5la was obtained as colorless oil ($50.3 \mathrm{mg}, 60 \%$).
This target product was purified by acidic alumina flash chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=$ $8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=6.8,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 16 \mathrm{H}), 0.87(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.7,149.4,135.8,122.1,119.1,31.9,30.1,29.7,29.7,29.6,29.5,29.4$, 29.3, 29.2, 29.0, 22.7, 14.1.

(5ma) dodecyl(1H-inden-2-yl)sulfane

dodecyl(1H-inden-2-yl)sulfane
Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~S}$
Exact Mass: 316.2225
Molecular Weight: 316.5470

Following the General Procedure B with 2-bromo-1H-indene (58.5 $\mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5 ma was obtained as white solid ($60.3 \mathrm{mg}, 64 \%$).
This target product was purified by silica gel flash chromatography (PE: EA = 200:1).
Melting point (${ }^{\circ} \mathrm{C}$): 49.8-51.2.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74$ (pent, $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 16 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,144.1,142.2,126.6,124.3,123.4,123.1,119.0,42.1,32.6,32.0$, 29.7, 29.7, 29.6, 29.6, 29.4, 29.3, 29.1, 29.0, 22.7, 14.2.

IR (cm^{-1}): 2961, 2914, 2858, 1465, 834, 721.
HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} 317.2298$, found 317.2299.

(5na) 3-(dodecylthio)thiophene (CAS: 120186-63-2)

3-(dodecylthio)thiophene
Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~S}_{2}$ Exact Mass: 284.1632
Molecular Weight: 284.5200

Following the General Procedure B with 3-iodothiophene $(63.0 \mathrm{mg}$, 0.3 mmol), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5 na was obtained as brown solid ($72.0 \mathrm{mg}, 84 \%$).

This target product was purified by silica gel flash chromatography (PE: EA = 200:1).
Melting point $\left({ }^{\circ} \mathrm{C}\right)$: 32.5-33.7.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J$ $=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.62($ pent, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.19$ (m, 16H), $0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 132.4,129.7,126.0,122.8,35.4,32.0,29.7,29.7,29.6,29.5,29.4,29.4$, 29.2, 28.7, 22.7, 14.2.

HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~S}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$285.1705, found 285.1706.

dodecyl(phenanthren-9-yl)sulfane
Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~S}$
Exact Mass: 378.23812
Molecular Weight: 378.61800

Following the General Procedure B with 9-bromophenanthrene ($78.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1-dodecanethiol ($121.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), 50 a was obtained as white solid ($46.1 \mathrm{mg}, 41 \%$).
This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1).
Melting point $\left({ }^{\circ} \mathrm{C}\right):$ 60.7-62.0.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71$ (dd, $J=6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.53-8.47(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}$, $1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 16 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 132.9,131.9,131.3,130.6,129.4,127.8,127.3,126.9,126.9,126.8$, 126.4, 125.6, 123.0, 122.6, 33.8, 32.0, 29.7, 29.7, 29.6, 29.5, 29.4, 29.2, 29.0, 22.7, 14.2.

IR (cm^{-1}): 3059, 2924, 2849, 1716, 1580, 1459, 1365, 941, 753.
HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{SNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} 401.2273$, found 401.2270
(5ab) 4-((6-oxo-4-propyl-1,6-dihydropyrimidin-2-yl)thio)benzonitrile (CAS: 1019608-50-4)

4-((6-oxo-4-propyl-1,6-dihydropyrimidin-2yl)thio)benzonitrile Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$ Exact Mass: 271.0779
Molecular Weight: 271.3380

Following the General Procedure B with 4bromobenzonitrile ($54.6 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$), propylthiouracil ($102.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ab was obtained as white solid ($43.2 \mathrm{mg}, 53 \%$).

Following the General Procedure B with 4iodobenzonitrile $\quad(68.8 \mathrm{mg}, \quad 0.3 \mathrm{mmol})$, propylthiouracil ($102.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ab was obtained as white solid ($40.7 \mathrm{mg}, 50 \%$).
This target product was purified by acidic alumina
flash chromatography (DCM: EA: $\mathrm{MeOH}=1: 1: 0.1$).
Melting point $\left({ }^{\circ} \mathrm{C}\right)$: 182.2-184.1.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.02(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.65(\mathrm{~m}, 4 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.60-1.49$ (m, 2H), 0.88 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,165.5,158.2,135.2,133.3,132.6,118.1,113.4,108.9,39.3,20.8$, 13.5.

IR (cm^{-1}): 2971, 2933, 2227, 1653, 1541, 1173, 975, 834, 533.
HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}^{+}(\mathrm{M}+\mathrm{H})^{+} 272.0852$, found 272.0856.
(5ac) 4-(octylthio)benzonitrile (CAS: 153199-19-0) ${ }^{18}$

4-(octylthio)benzonitrile
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NS}$
Exact Mass: 247.13947
Molecular Weight: 247.40000

Following the General Procedure B with 4-bromobenzonitrile (54.6 $\mathrm{mg}, 0.3 \mathrm{mmol}$), octane-1-thiol ($85.6 \mathrm{mg}, 0.6 \mathrm{mmol}$), 5ac was obtained as colorless oil ($57.9 \mathrm{mg}, 78 \%$).

This target product was purified by acidic alumina flash chromatography (PE: EA = 100:1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.02$ - $2.92(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 8 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 145.4,132.2,126.6,119.0,107.9$,
31.9, 31.8, 29.1, 29.1, 28.9, 28.6, 22.6, 14.1.

8. References

(1) Yang, J.; Xiao, J.; Chen, T.; Yin, S. F.; Han, L. B., Efficient nickel-catalyzed phosphinylation of CS bonds forming C-P bonds. Chemical Communications 2016, 52 (82), 12233-12236.
(2) Fu, T.; Qiao, H.; Peng, Z.; Hu, G.; Wu, X.; Gao, Y.; Zhao, Y., Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides. Organic \& Biomolecular Chemistry 2014, 12 (18), 2895-2902.
(3) Berrino, R.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Stabile, P., Arenediazonium tetrafluoroborates in palladium-catalyzed C-P bond-forming reactions. Synthesis of arylphosphonates, -phosphine oxides, and -phosphines. Organic \& Biomolecular Chemistry 2010, 8 (20), 4518-4520.
(4) Zhong, C. H.; Huang, W., Synthesis of Aryldiphenylphosphine Oxides by Quaternization of Tertiary Diphenylphosphines with Aryl Bromides Followed by the Wittig Reaction. ACS Omega 2020, 5 (26), 16010-16020.
(5) Koohgard, M.; Karimitabar, H.; Hosseini-Sarvari, M., Visible-light-mediated semi-heterogeneous black $\mathrm{TiO}_{2} /$ nickel dual catalytic $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-P bond formation toward aryl phosphonates. Dalton Trans 2020, 49 (47), 17147-17151.
(6) Dong, J.; Liu, L.; Ji, X.; Shang, Q.; Liu, L.; Su, L.; Chen, B.; Kan, R.; Zhou, Y.; Yin, S. F.; Han, L. B., General Oxidative Aryl C-P Bond Formation through Palladium-Catalyzed Decarbonylative Coupling of Aroylhydrazides with $\mathrm{P}(\mathrm{O}) \mathrm{H}$ Compounds. Organic Letters 2019, 21 (9), 3198-3203.
(7) Zhu, D.-L.; Jiang, S.; Wu, Q.; Wang, H.; Chai, L.-L.; Li, H.-Y.; Li, H.-X., Visible-Light-Induced Nickel-Catalyzed $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ Coupling Using Thioxanthen-9-one as a Photoredox Catalysis. Organic Letters 2020, 23 (1), 160-165.
(8) Zhao, Y.-L.; Wu, G.-J.; Li, Y.; Gao, L.-X.; Han, F.-S., $\left[\mathrm{NiCl}_{2}\right.$ (dppp)]-Catalyzed Cross-Coupling of Aryl Halides with Dialkyl Phosphite, Diphenylphosphine Oxide, and Diphenylphosphine. Chemistry - A European Journal 2012, 18 (31), 9622-9627.
(9) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y., Copper-catalyzed addition of H-phosphine oxides to alkynes forming alkenylphosphine oxides. Chemical Communications 2007, (3), 272-274.
(10) Zhang, J. S.; Chen, T.; Yang, J.; Han, L. B., Nickel-catalysed P-C bond formation via P-H/C-CN cross coupling reactions. Chemical Communications 2015, 51 (35), 7540-2.
(11) Yang, B.; Wang, Z.-X., Ni-Catalyzed C-P Coupling of Aryl, Benzyl, or Allyl Ammonium Salts with P(O)H Compounds. The Journal of Organic Chemistry 2019, 84 (3), 1500-1509.
(12) Liu, D.; Ren, H.; Deng, L.; Zhang, T., Synthesis and Electrophosphorescence of Iridium Complexes Containing Benzothiazole-Based Ligands. ACS Applied Materials \& Interfaces 2013, 5 (11), 49374944.
(13) Chen, C. W.; Chen, Y. L.; Reddy, D. M.; Du, K.; Li, C. E.; Shih, B. H.; Xue, Y. J.; Lee, C. F., CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Bromides and Chlorides. Chemistry - A European Journal 2017, 23 (42), 10087-10091.
(14) Chen, C.-K.; Chen, Y.-W.; Lin, C.-H.; Lin, H.-P.; Lee, C.-F., Synthesis of CuO on mesoporous silica and its applications for coupling reactions of thiols with aryl iodides. Chemical Communications 2010, 46 (2), 282-284.
(15) Yoshida, S.; Nagai, A.; Uchida, K.; Hosoya, T., Enhancing the Synthetic Utility of 3-Haloaryne Intermediates by Their Efficient Generation from Readily Synthesizable ortho-Iodoaryl Triflatetype Precursors. Chemistry Letters 2017, 46 (5), 733-736.
(16) Liu, T. J.; Yi, C. L.; Chan, C. C.; Lee, C. F., Manganese-catalyzed cross-coupling of thiols with aryl
iodides. Chemistry - An Asian Journal 2013, 8 (5), 1029-34.
(17) Wang, S. F.; Li, C. E.; Liu, Y. C.; Mallikarjuna Reddy, D.; Sidick Basha, R.; Park, J. K.; Lee, S.; Lee, C. F., Palladium-Catalyzed Decarbonylative Thioetherification of 2-Pyridyl Thioesters. Asian Journal of Organic Chemistry 2020, 9 (11), 1826-1833.
(18) Mitrofanov, A. Y.; Murashkina, A. V.; Martín-García, I.; Alonso, F.; Beletskaya, I. P., Formation of $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ bonds catalysed by supported copper nanoparticles. Catalysis Science \& Technology 2017, 7 (19), 4401-4412.
9. Copies of NMR spectra

3ba ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ジッ゙がった。

3ca $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$48 / 183$

3ca $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

51 / 183

$\begin{array}{llllllllll}133.0 & 132.5 & 132.0 & 131.5 & \begin{array}{c}131.0 \\ \text { f1 } \\ (\mathrm{ppm})\end{array} & 130.5 & 130.0 & 129.5 & 129.0 & 128.5\end{array}$

-128.45

3da (101 MHz, CDCl_{3})

145	140	135	130	125	120	115	110	${ }^{105}$	$\begin{aligned} & 100 \\ & \mathrm{pm}) \end{aligned}$	95	90	85	80	75	70	65	60

$52 / 183$

3da (162 MHz, CDCl_{3})

$53 / 183$

3ea ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

150	145	140	135	130	125	120	115	110	105	100	95	90	85	80	75	70
		1	13	1	12	12	15				9	9	8		\%	

3ea ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\&iN

3 fa ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ga ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ia ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ja ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$71 / 183$

1	1	T	1	1	1	T	140	1	1	1	1		1	1	1	1	1	1	T	1		-10
210	200	190	180	170	160	150		130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \\ \mathbf{7 3 / 1 8 3} \end{gathered}$		80	70	60	50	40	30	20	10	0	

3la ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ma ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3na ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3oa ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3pa ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3pa ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

100 / 183

3ta（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

102 ／ 183

3ua ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$103 / 183$

3ua ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

105 / 183

109 / 183

3wa ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

111 / 183

3wa ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

112 / 183

3xa ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

発

mm	Nજ
∞	
	-

$\hat{-}$
$\stackrel{\rightharpoonup}{\circ}$
$\frac{1}{-}$

3ya ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ya（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

119 ／ 183

$\underbrace{\infty} \infty$

3za ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3zb ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3zc ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{m}{\stackrel{m}{\tau}} \stackrel{-}{i}$

138 / 183

141 / 183

$144 / 183$

147 / 183

5aa ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

148 / 183

$\stackrel{\underset{\sim}{\infty}}{\underset{\sim}{~}}$					$\stackrel{\circ}{\infty}$
735	7.25	7.15		6.95	6.85

Cor
5ba ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

150 / 183

151 / 183

153 / 183

 $\stackrel{m}{\stackrel{m}{\dot{J}}}$

5da (101 MHz, CDCl_{3})

154 / 183

8
8
1

엉 N-N

5ea ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

155 / 183

$\begin{aligned} & \text { en } \\ & \text { en } \\ & \stackrel{1}{1} \end{aligned}$				${ }_{\sim}^{\circ}$	

$\underbrace{\text { ño }}_{\text {ano }}$
$\underbrace{\text { ño }}_{\text {ano }}$

5fa ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

158 / 183

$5 \mathrm{ga}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

159 / 183

1							1	,		,		1					
170	160	150	140	130	120	110	100	90	$\begin{array}{r} 80 \\ \mathrm{fl}(\mathrm{ppm}) \end{array}$	70	60	50	40	30	20	10	0

$160 / 183$

$\frac{n}{\frac{n}{i}}$

5ha ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1			1											
. 50	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

162 / 183

$163 / 183$

5ia ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

164 / 183

165 / 183

166 / 183

$$
5 \mathbf{5 a (3 7 6 ~ M H z , \mathrm { CDCl } _ { 3 })}
$$

$168 / 183$

169 / 183

5ka ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5la ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

173 / 183

174 / 183

175 / 183
 MัN ํ

$$
\text { 5na (101 MHz, } \mathrm{CDCl}_{3} \text {) }
$$

176 / 183

ค会

50a ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

178 / 183

5ab ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

179 / 183

5ab ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

180 / 183

181 / 183

182 / 183

[^0]: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4(\mathrm{~d}, J=132.4 \mathrm{~Hz}), 150.2(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 136.2(\mathrm{~d}, J=9.3 \mathrm{~Hz})$, $132.2(\mathrm{~d}, J=104.5 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, J$ $=12.2 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=3.1 \mathrm{~Hz})$.

