N-Aroyloxycarbamates as switchable nitrogen and oxygen precusor: Ir/Cu controlled divergent C–H functionalization of heteroarenes

Shanshan Liu^{a,*}, Yuanyuan Zhang^a, Chen Zhao^a, Xianying Zhou^a, Jiahui Liang^a, Pingjun Zhang^a, Lin-Yu Jiao^{b,*}, Xiufang Yang^a, Yangmin Ma^{a,*}

^a Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical

Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China

^b School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China

E-mail addresses: liushanshan@sust.edu.cn (S. Liu), lyjiao@nwu.edu.cn (L.-Y. Jiao),

mym63@sina.com (Y. Ma)

Supporting Information

Table of Contents

1	General Information	S2
2	Full Table of Reaction Optimization	S3
3	Experimental Details for Ir(III) catalyzed Amidation reactions	S6
3.1	General Procedure for the Catalytic Amidation (GP A)	S6
3.2	Studies on Reuse of Catalytic System	S6
3.3	Characterization Data of the Amidation Products	S6
4	Experimental Details for Copper Enabled Aroyloxylation Reactions	S15
4.1	General Procedure for the Aroyloxylation Reactions (GP B)	S15
4.2	Characterization Data of the Aroyloxylation Products	S15
5	Experimental Details for the Difluoroboron Complexes	S28
5.1	General Procedure for the Synthesis of Difluoroboron Complexes (GP C)	S28
5.2	Characterization Data of the Difluoroboron Complexes	S28
6	Experimental Details for the Product Derivation	S31
7	Mechanistic Investigation Experiments	S34
8	X-Ray Crystal Data of Compound 6aa	S41
9	References and Notes	S43
10	Copies of NMR Spectra of the All Compounds	S44

1. General Information

All purchased reagents were used without further purification unless otherwise noted. Analytical thin-layer chromatography was performed with 0.25 mm coated commercial silica gel plates (TLC Silica Gel 60 F_{254}); visualization of the developed chromatogram was performed by fluorescence. ¹H nuclear magnetic resonance (¹H NMR) data were acquired at 400 MHz on a Bruker Ascend 400 (400 MHz) spectrometer, and chemical shifts are reported in delta (δ) units, in parts per million (ppm) downfield from tetramethylsilane. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, coupling constants *J* are quoted in Hz. ¹³C NMR data were acquired at 100 MHz on a Bruker Ascend 400 spectrometer, chemical shifts are reported in ppm relative to the center line of a triplet at 77.0 ppm for CDCl₃.Infrared spectra (IR) data were recorded on a TENSOR 27 FT-IR spectrometer and recorded in wave numbers (cm⁻¹). High resolution mass spectra were acquired on a Bruker Daltonics MicroTof-Q II mass spectrometer. **1a–1m** were prepared according to literature methods^[S1], **2a** and **2f–2t** were prepared according to literature methods^[S2].

2 Full Table of Reaction Optimization

Table S1 Identification of reaction conditions for the transformation between 7-azaindole and N-benzyloxycarbamate

Entry	Catalyst	Ligand	Additives	Temperature (°C)	Solvent	Yield of 3aa	Yield of 4aa
,						(%) ^a	(%) ^a
1	[lrCp*Cl ₂] ₂	_	AgNTf ₂ (10 mol%)	rt	DCE	70	—
2	[lrCp*Cl ₂] ₂	-	AgNTf ₂ (10 mol%)	rt	BMIMPF ₆	73	—
3	[IrCp*Cl ₂] ₂	_	AgNTf ₂ (10 mol%)	rt	BMIMNTf ₂	75	—
4	[IrCp*Cl ₂] ₂	—	AgNTf ₂ (10 mol%)	rt	BMIMBF ₄	82 (89 ^b)	_
5	[IrCp*Cl ₂] ₂	—	AgSbF ₆ (10 mol%)	rt	BMIMBF ₄	83 ^b	_
6	[IrCp*Cl ₂] ₂	—	AgOAc (10 mol%)	rt	BMIMBF ₄	80 ^b	_
7	[IrCp*Cl ₂] ₂	—	AgOTf (10 mol%)	rt	BMIMBF ₄	98 ^b	_
8	[Cp*RhCl ₂] ₂ (5 mol%)	_	AgOTf (10 mol%)	rt	BMIMBF ₄	25	_
9	Fe(TPP)CI (10 mol%)	—	K ₂ CO ₃	100	toluene	-	_
10	Zn(OTf) ₂ (10 mol%)	—	_	100	toluene	-	_
11	Ni(acac) ₂ (10 mol%)	MePPh₃ (20 mol%)	_	100	toluene	-	_
12	Pd(OAc) ₂ (20 mol%)	—	_	100	toluene	-	_
13	Cu(OAc) ₂ (20 mol%)	—	_	100	toluene	-	_
14	CuTc	—	_	100	toluene	-	trace
15	Cu(OAc) ₂	—	_	100	toluene	-	18
16	Cu(OAc) ₂	2,6-lutidine	_	100	toluene	-	32
17	Cu(OTf) ₂	2,6-lutidine	_	100	toluene	-	26
18	CuCN	2,6-lutidine	_	100	toluene	_	_

19	Cul	2,6-lutidine	_	100	toluene	-	—
20	CuCl	2,6-lutidine	_	100	toluene	_	_
21	CuBr·SMe	2,6-lutidine	_	100	toluene	_	_
22	Cu ₂ O	2,6-lutidine	_	100	toluene	_	_
23	Cu(CH ₃ CN) ₄ BF ₄	2,6-lutidine	_	100	toluene	_	47
24	Cu(CH ₃ CN) ₄ PF ₆	2,6-lutidine	_	100	toluene	_	42
25	Cu(CH ₃ CN) ₄ BF ₄	2-aminopyrin	_	100	toluene	_	36
26	Cu(CH₃CN)₄BF₄	2-methyl-4-	-	100	toluene	_	42
	- (- 3-)+ +	aminopyridine					
27	Cu(CH ₃ CN) ₄ BF ₄	4,4'-di- <i>tert-</i> butyl-2,2'-bipyri dine	-	100	toluene	_	trace
28	Cu(CH ₃ CN) ₄ BF ₄	2-amino-trimethylpyridine	_	100	toluene	_	_
29	Cu(CH ₃ CN) ₄ BF ₄	6-methyl-2pyridinitrile	_	100	toluene	_	47
30	Cu(CH ₃ CN) ₄ BF ₄	2-fluoro-6-methylpyridine	_	100	toluene	_	57
31	Cu(CH ₃ CN) ₄ BF ₄	DMAP	_	100	toluene	_	55
32	Cu(CH ₃ CN) ₄ BF ₄	1,10-pnenanthroline	_	100	toluene	—	trace
33	Cu(CH ₃ CN) ₄ BF ₄	2,9-dimethyl-1,10- pnenanthroline	_	100	toluene	-	_
34	Cu(CH ₃ CN) ₄ BF ₄	_	_	100	toluene	_	55 (52°)
35	Cu(CH ₃ CN) ₄ BF ₄ (50 mol%)	_	_	100	toluene	-	44 ^d
36	Cu(CH ₃ CN) ₄ BF ₄	_	TFA	100	toluene	_	21°
37	Cu(CH ₃ CN) ₄ BF ₄	_	TSoH H ₂ O	100	toluene	_	16°
38	Cu(CH ₃ CN) ₄ BF ₄	_	DABCO	100	toluene	_	—
39	Cu(CH ₃ CN) ₄ BF ₄	-	TMEDA	100	toluene	—	-
40	Cu(CH ₃ CN) ₄ BF ₄	_	TBHP	100	toluene	—	50°
41	Cu(CH ₃ CN) ₄ BF ₄	-	DTBP	100	toluene	_	58°
42	Cu(CH ₃ CN) ₄ BF ₄	-	_	100	toluene	-	52°
43	Cu(CH ₃ CN) ₄ BF ₄	-	_	80	toluene	_	39°
44	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	toluene	_	70°
45	Cu(CH ₃ CN) ₄ BF ₄	_	_	140	toluene	_	71°
46	Cu(CH ₃ CN) ₄ BF ₄	_	_	120	CH₃CN	_	_
47	Cu(CH ₃ CN) ₄ BF ₄	_	_	120	THF	_	_
48	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	dioxane	_	_

49	Cu(CH ₃ CN) ₄ BF ₄	_	_	120	DFM	-	_
50	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	NMP	-	-
51	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	EtOH	-	-
52	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	DCE	-	54°
53	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	DCB	-	83°
54	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	PhCl	-	85°
55	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	PhCF ₃	-	81°
56	Cu(CH ₃ CN) ₄ BF ₄	-	_	120	xylene	-	75°

^a Reaction conditions: **1a** (0.10 mmol), **2a** (0.12 mmol), additives (1.0 equiv.), ligand (1.0 equiv.) and Iridium catalyst (2.5 mol%) or copper salt (1.0 equiv.) in solvent (1.0 mL) were stirred at indicated temperature for 1–12 h under air, isolated yield reported. ^b *m*-Tolueneoxy carbamate was used.^c 60 mol% copper salt was used. ^d 50 mol% copper salt was used.

3 Experimental Details for Ir(III) Catalyzed Amidation Reactions

3.1 General Procedure for the Catalytic Amidation (GP A)

To an oven dried Schlenk tube (10 mL) was added *N*-aryl-7-azaindole **1** (0.1 mmol), hydroxylamines **2** (1.2 equiv.), $[IrCp^*Cl_2]_2$ (2 mg, 2.5 mol%), AgOTf (2.6 mg, 10 mol%) in 1.0 mL of [BMIM]BF₄ under air, the reaction mixture was stirred at room temperature for 1-12 h. The crude reaction mixture was purified through column chromatography using hexane/ethyl acetate as eluent to afford aryl amines.

3.2 Studies on Reuse of Catalytic System

The feasibility of recycling the catalyst system was studied under the optimized reaction condition according to **GP A**. After completion of the reaction, the product was separated by extraction with diethyl ether. The upper layer of diethyl ether contains a product mixture directly used for purification. The remains were subsequently subjected to vacuum to remove the rest of solvents before it was reused in next catalytic run. Purification by flash column chromatography to afford the pure product **3aa** (30.2 mg, 98%), (28.4 mg, 92%), and (27.8 mg, 90%) in three cycles, respectively.

3.3 Characterization Data of the Amidation Products

tert-Butyl (2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3aa was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (30.2 mg, 98%). **R**_f = 0.63; **m.p.** = 128–129 °C; ¹H **NMR** (400 MHz, DMSO-*d*₆): δ = 8.47 (s, 1H), 8.26 (d, *J* = 4.7 Hz, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.64 (dd, *J* = 9.4, 5.7

Hz, 2H), 7.44 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.21 (dd, J = 7.9, 4.7 Hz, 1H), 6.73 (d, J = 3.6 Hz, 1H), 1.26 (s, 9H) ppm; ¹³**C NMR** (101 MHz, DMSO): $\delta = 153.4$, 147.8, 143.3, 134.0, 132.0, 130.5, 129.6, 128.6, 128.2, 126.3, 125.6, 121.2, 117.0, 102.1, 79.5, 28.3 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3083, 1730, 1603, 1503, 1275, 1064, 709; **HRMS** (ESI) m/z: calculated for C₁₈H₁₉N₃O₂ [M+H]⁺ 310.1550, found 310.1541.

tert-Butyl (5-methyl-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ba was prepared according to GP A, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (29.4 mg, 91%). \mathbf{R}_f = 0.56; m.p. = 135–136 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.34 (dd, *J* = 4.7, 1.6 Hz, 1H), 8.00 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.90 (s, 1H), 7.41 (s, 1H), 7.32 (d, *J* = 3.6 Hz, 1H), 7.17 – 7.10 (m, 2H), 6.98 (dd, *J* = 8.0, 1.9 Hz, 1H), 6.67 (d, *J* = 3.6 Hz, 1H), 2.42 (s, 3H), 1.40 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 153.2, 148.2, 143.7, 138.7, 133.8, 129.7, 129.6, 127.3, 126.7, 124.9, 123.7, 121.2, 116.6, 102.2, 80.3, 28.2, 21.4 ppm; IR (KBr): *v*/cm⁻¹ = 3082, 2926, 1722, 1603, 1485, 1393, 1229, 1064, 717; HRMS (ESI) m/z: calculated for C₁₉H₂₂N₃O₂ [M+H]⁺ 324.1707, found 324.1705.

tert-Butyl (4-methyl-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ca was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (29.1 mg, 90%). $\mathbf{R}_f = 0.53$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.40$ (dd, J = 4.7, 1.6 Hz, 1H), 8.05 (dd, J = 7.9, 1.6 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.48 (s, 1H), 7.39 (d, J = 3.6 Hz, 1H), 7.27 (dd, J = 8.4, 2.0 Hz, 1H), 7.20 (dd, J = 7.8,

4.7 Hz, 1H), 7.10 (d, J = 2.1 Hz, 1H), 6.72 (d, J = 3.6 Hz, 1H), 2.40 (s, 3H), 1.44 (s, 9H) ppm; ¹³**C** NMR (101 MHz, CDCl₃): $\delta = 153.5$, 148.1, 143.7, 134.3, 131.4, 129.7, 129.5, 129.2, 128.0, 124.0, 121.3, 126.7, 116.7, 102.3, 80.2, 28.3, 20.7 ppm. IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3085, 2932, 1733, 1643, 1481, 1393, 1229, 1054, 717; HRMS (ESI) m/z: calculated for C₁₉H₂₂N₃O₂ [M+H]⁺ 324.1707, found 324.1705.

Methyl 3-((*tert*-butoxycarbonyl)amino)-4-(1H-pyrrolo[2,3-b]pyridin-1-yl)benzoate: 3da was prepared according to GP A, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (25.7 mg, 70%). \mathbf{R}_{f} = 0.43; m.p. = 106–107 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.75 (d, *J* = 2.0 Hz, 1H), 8.42 (dd, *J* = 4.7, 1.7 Hz, 1H), 8.08 (dd, *J* = 7.9, 1.6 Hz, 1H), 8.01 (s, 1H), 7.93 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.42 (d, *J* = 3.6 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.25 (dd, *J* = 7.9, 4.8 Hz, 1H), 6.79 (d, *J* = 3.6 Hz, 1H), 4.01 (s, 3H), 1.49 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 166.4, 153.1, 148.0, 143.7, 133.9, 133.6, 130.0, 129.9, 129.4, 127.3, 125.5, 125.4, 121.6, 117.1, 103.5, 80.7, 52.3, 28.2 ppm; IR (KBr): \tilde{v} /cm⁻¹ = 3072, 2962, 1722, 1603, 1485, 1372, 1229, 1054, 713; HRMS (ESI) m/z: calculated for C₂₀H₂₁N₃O₄ [M+H]⁺ 368.1605, found 368.1596.

tert-Butyl (5-fluoro-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ea was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (26.8 mg, 82%). **R**_f = 0.53; **m.p.** = 124–125 °C; ¹H **NMR** (400 MHz, CDCl₃): δ = 8.39 (dd, *J* = 4.7, 1.6 Hz, 1H), 8.07 (dd, *J* = 7.8, 1.6 Hz, 1H), 8.00

(dd, J = 11.0, 2.8 Hz, 1H), 7.44 (s, 1H), 7.33 (d, J = 3.6 Hz, 1H), 7.23 (ddd, J = 8.1, 5.2, 3.5 Hz, 2H), 6.90 (ddd, J = 8.7, 7.5, 2.9 Hz, 1H), 6.75 (d, J = 3.6 Hz, 1H), 1.47 (s, 9H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta = 162.3$ (d, J = 244.6 Hz), 152.6, 148.2, 143.8, 136.2, 136.1, 129.6 (d, J = 24.4 Hz), 128.9 (d, J = 10.0 Hz), 124.4, 121.2, 116.9, 110.4 (d, J = 23.0 Hz), 109.5 (d, J = 28.0 Hz), 102.7, 81.0, 28.2 ppm. **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3069, 2962, 1732, 1603, 1490, 1234, 1048, 711; **HRMS** (ESI) m/z: calculated for C₁₈H₁₉FN₃O₂ [M+H]⁺ 328.1456, found 328.1452.

tert-Butyl (2-(1H-pyrrolo[2,3-b]pyridin-1-yl)naphthalen-1-yl)carbamate: 3fa was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (25.5 mg, 71%). **R**_f = 0.47; ¹H **NMR** (400 MHz, CDCl₃): δ = 8.54 (s, 1H), 8.36 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.05 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.55 (s, 1H), 7.49 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.20 (dd, *J* = 7.9, 4.7 Hz, 1H), 6.75 (d, *J* = 3.5 Hz, 1H), 1.44 (s, 9H) ppm; ¹³C **NMR** (101 MHz, CDCl₃): δ = 153.3, 143.9, 136.1, 133.4, 132.0, 130.2, 129.9, 129.8, 127.6, 127.3, 126.8, 126.7, 125.5, 121.4, 119.9, 116.9, 102.7, 80.6, 28.3 ppm. **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3068, 2964, 1723, 1613, 1507, 1485, 1229, 1054, 711; **HRMS** (ESI) m/z: calculated for C₂₂H₂₂N₃O₂ [M+H]⁺ 360.1707, found 360.1704.

tert-Butyl (2-(4-chloro-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ga was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (31.2 mg, 91%). **R**_f = 0.62; **m.p.** = 50–51 °C; ¹H NMR (400

MHz, CDCl₃): δ = 8.23 (d, *J* = 5.2 Hz, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.43 (ddd, *J* = 8.4, 7.1, 1.8 Hz, 1H), 7.37 (d, *J* = 3.6 Hz, 1H), 7.35 (s, 1H), 7.25 – 7.22 (m, 1H), 7.21 – 7.16 (m, 2H), 6.80 (d, *J* = 3.6 Hz, 1H), 1.41 (s, 9H) ppm; ¹³**C** NMR (101 MHz, CDCl₃): δ = 153.1, 148.5, 144.0, 136.9, 134.1, 130.2, 129.0, 128.9, 127.6, 124.3, 123.8, 120.6, 117.0, 101.0, 80.6, 28.2 ppm. IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3086, 2988, 1723, 1603, 1507, 1485, 1199, 1054, 833, 711; HRMS (ESI) m/z: calculated for C₁₈H₁₉ClN₃O₂ [M+H]⁺ 344.1160, found 344.1164.

tert-Butyl (2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ha was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (31.2 mg, 92%). **R**_f = 0.62; **m.p.** = 123–124 °C; ¹H **NMR** (400 MHz, CDCl₃): δ = 8.26 (d, *J* = 5.6 Hz, 1H), 8.04 (s, 1H), 7.74 (s, 1H), 7.41 (ddd, *J* = 8.5, 7.3, 1.7 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.22 – 7.14 (m, 2H), 6.77 (d, *J* = 3.6 Hz, 1H), 6.65 (d, *J* = 5.6 Hz, 1H), 4.05 (s, 3H), 1.41 (s, 9H) ppm; ¹³C **NMR** (101 MHz, CDCl₃): δ = 160.4, 153.3, 149.6, 145.7, 133.9, 129.5, 128.4, 127.5, 127.4, 124.2, 123.7, 111.4, 99.8, 98.9, 80.3, 55.7, 28.2 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3082, 1722, 1575, 1485, 1229, 1073, 717; **HRMS** (ESI) m/z: calculated for C₁₉H₂₂N₃O₃ [M+H]⁺ 340.1656, found 340.1654.

tert-Butyl (2-(4-nitro-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ia was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (30.1 mg, 85%). **R**_f = 0.56; **m.p.** = 128–129 °C; ¹H NMR (400

MHz, CDCl₃): δ = 8.54 (d, *J* = 5.3 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 5.3 Hz, 1H), 7.65 (d, *J* = 3.5 Hz, 1H), 7.49 (ddd, *J* = 8.5, 6.8, 2.0 Hz, 1H), 7.40 (d, *J* = 3.5 Hz, 1H), 7.29 – 7.25 (m, 2H), 6.86 (s, 1H), 1.40 (s, 9H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 152.9, 151.3, 146.4, 143.8, 134.6, 134.3, 129.6, 128.2, 127.8, 124.5, 123.8, 114.1, 110.8, 102.6, 80.9, 28.2 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3045, 2935, 1730, 1593, 1494, 1375, 1256, 1083, 717; **HRMS** (ESI) m/z: calculated for C₁₈H₁₈N₄O₄ [M+H]⁺ 355.1401, found 355.1392.

tert-butyl (2-(5-bromo-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ja was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (35.6 mg, 92%). **R**_f = 0.54; **m.p.** = 121–122 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.39 (d, *J* = 2.2 Hz, 1H), 8.17 (d, *J* = 2.1 Hz, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 7.47 (ddd, *J* = 8.6, 7.0, 2.0 Hz, 1H), 7.39 (d, *J* = 3.6 Hz, 1H), 7.28 – 7.21 (m, 3H), 6.69 (d, *J* = 3.6 Hz, 1H), 1.46 (s, 9H); ¹³**C NMR** (101 MHz, CDCl3): δ = 153.1, 146.5, 144.2, 134.2, 131.7, 131.1, 128.9, 128.8, 127.6, 124.3, 123.7, 122.8, 112.7, 102.0, 80.7, 28.2.; **IR** (KBr): *v*/cm⁻¹ = 3056, 2926, 1730, 1485, 1247, 1037, 818, 690; **HRMS** (ESI) m/z: calculated for C₁₈H₁₉BrN₃O₂ [M+H]⁺ 388.0655, found 388.0659.

tert-Butyl (2-(3-formyl-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3ka was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure productas a white solid (25.3 mg, 75%). **R**_f = 0.56; ¹H **NMR** (400 MHz, CDCl₃): δ = 10.09 (s, 1H), 8.69 (dd, *J* = 7.9, 1.7 Hz, 1H), 8.45 (dd, *J* = 4.7, 1.7 Hz, 1H), 8.09 – 7.95 (m, 2H), 7.89 (d, *J* = 9.1 Hz, 1H), 7.54 – 7.46 (m, 1H), 7.43 – 7.34 (m, 2H), 7.33 – 7.28

11

(m, 1H), 1.38 (s, 9H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 186.1, 154.1, 148.7, 144.9, 141.5, 134.4, 130.9, 130.6, 129.4, 128.1, 126.1, 125.8, 119.0, 117.8, 117.6, 79.9, 27.0 ppm. **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3053, 2936, 2723, 1730, 1717, 1485, 1247, 1037, 715; **HRMS** (ESI) m/z: calculated for C₁₉H₂₀N₃O₃ [M+H]⁺ 338.1499, found 338.1493.

tert-Butyl (2-(3-chloro-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3la was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (27.1 mg, 79%). **R**_f = 0.46; **m.p.** = 126–127 °C; ¹H **NMR** (400 MHz, CDCl₃): δ = 8.35 (dd, *J* = 4.7, 1.6 Hz, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 8.01 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.60 (s, 1H), 7.41 (td, *J* = 8.3, 7.8, 1.7 Hz, 1H), 7.35 (d, *J* = 3.6 Hz, 1H), 7.20 – 7.12 (m, 2H), 6.69 (d, *J* = 3.6 Hz, 1H), 1.40 (s, 9H) ppm; ¹³C **NMR** (101 MHz, CDCl₃): δ = 153.2, 148.1, 143.7, 134.1, 129.7, 129.7, 129.5, 128.4, 127.5, 124.2, 123.7, 121.3, 116.7, 102.5, 80.4, 28.2 ppm. **IR** (KBr): *i*/cm⁻¹ = 3045, 2926, 1717, 1593, 1485, 1289, 1087, 834, 698; **HRMS** (ESI) m/z: calculated for C₁₈H₁₉ClN₃O₂ [M+H]⁺ 344.1160, found 344.1163.

tert-Butyl (2-(1H-pyrazolo[3,4-b]pyridin-1-yl)phenyl)carbamate: 3ma was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (28.2 mg, 91%). **R**_f = 0.56; ¹H **NMR** (400 MHz, CDCl₃): δ = 8.66 (dd, *J* = 4.5, 1.6 Hz, 1H), 8.37 (s, 1H), 8.34 (s, 1H), 8.22 (dd, *J* = 8.1, 1.6 Hz, 2H), 7.72 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.44 (ddd, *J* = 8.6, 7.4, 1.6 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.24 (td, *J* = 7.7, 1.4 Hz, 1H), 1.47 (s, 9H) ppm; ¹³C **NMR** (101 MHz, CDCl₃): δ = 152.8, 150.7, 149.8, 134.7, 133.1, 130.7, 128.5, 127.3, 126.2, 123.2, 122.1, 117.9, 116.3, 80.4, 28.3 ppm. **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3042, 2967, 1737, 1608, 1487, 1297, 1088, 734; **HRMS** (ESI) m/z: calculated for C₁₇H₁₉N₄O₂ [M+H]⁺ 311.1503, found 311.1509.

Di*-tert*-butyl (2-(1H-pyrazolo[3,4-b]pyridin-1-yl)-1,3-phenylene)dicarbamate: **3ma**' was prepared according to **GP A**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (31.9 mg, 75%). **R**_f = 0.46; ¹H NMR (400 MHz, CDCl₃): δ = 8.66 (dd, *J* = 4.6, 1.6 Hz, 1H), 8.45 (s, 1H), 8.27 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.92 – 7.77 (m, 2H), 7.46 (t, *J* = 8.3 Hz, 1H), 7.34 (dd, *J* = 8.1, 4.5 Hz, 1H), 6.86 (s, 2H), 1.39 (s, 18H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 152.5, 151.0, 150.4, 136.4, 135.3, 131.2, 129.8, 118.9, 118.2, 117.4, 116.0, 80.6, 28.2. IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3073, 2969, 1737, 1604, 1500, 1297, 1120, 730; HRMS (ESI) m/z: calculated for C₂₂H₂₈N₅O₄ [M+H]⁺ 426.2136, found 426.2139.

Butyl (2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)carbamate: 3af was prepared according to GP A, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (27.2 mg, 88%). \mathbf{R}_f = 0.39; ¹H NMR (400 MHz, CDCl₃): δ = 8.36 (dd, *J* = 4.7, 1.6 Hz, 1H), 8.07 – 8.00 (m, 2H), 7.86 (s, 1H), 7.43 (td, *J* = 8.2, 7.7, 1.8 Hz, 1H), 7.35 (d, *J* = 3.6 Hz, 1H), 7.26 (s, 1H), 7.22 (dd, *J* = 7.3, 1.3 Hz, 1H), 7.17 (dd, *J* = 7.9, 4.8 Hz, 1H), 6.70 (d, *J* = 3.6 Hz, 1H), 4.05 (t, *J* = 6.7 Hz, 2H), 1.58 – 1.49 (m, 2H), 1.33 – 1.28 (m, 2H), 0.88 (d, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 154.2, 148.0, 143.7, 133.7, 129.9, 129.6, 128.5, 127.4, 124.6, 124.0, 121.4, 116.8, 102.7, 65.1, 30.9, 29.7, 19.0, 13.6; IR (KBr): *ν*/cm⁻¹ = 3033, 2989, 1730, 1604, 1500, 1465, 1297, 1375, 1089, 731; HRMS (ESI) m/z: calculated for C₁₈H₂₀N₃O₂ [M+H]⁺ 310.1550, found 310.1555.

N-(2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)acetamide: 3ag was prepared according to GP A, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (20.8 mg, 83%). \mathbf{R}_f = 0.42; m.p. = 126–127 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.11 (s, 1H), 8.27 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.04 – 7.81 (m, 2H), 7.36 (ddd, *J* = 8.4, 6.5, 2.3 Hz, 1H), 7.30 (d, *J* = 3.6 Hz, 1H), 7.23 – 7.17 (m, 2H), 7.11 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.63 (d, *J* = 3.6 Hz, 1H), 1.85 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 168.6, 147.8, 143.1, 132.9, 130.9, 130.2, 130.0, 128.1, 127.1, 126.1, 125.7, 121.7, 116.8, 102.9, 24.2; IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3083, 2917, 1730, 1593, 1475, 1375, 1256, 1083, 726; HRMS (ESI) m/z: calculated for C₁₅H₁₃N₃O [M+H]⁺ 252.1132, found 252.1124.

4 Experimental Details for Copper Enabled Aroyloxylation Reactions

4.1 General Procedure for the Aroyloxylation Reactions (GP B)

To a solution of *N*-aryl-7-azaindole **1** (0.1 mmol) in chlorobenzene (1.0 mL), $Cu(Me_3CN)_4BF_4$ (19 mg, 60 mol%) was added aroyloxylation **2** and stirred vigorously at 120 °C for 12 h. After completion of the reaction, the mixture was filtered through a short celite pad and concentrated under vacuum. The residual was purified through column chromatography using hexane/ethylacetate as eluent to give oxygenation products.

4.2 Characterization Data of the Aroyloxylation Products

(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4aa was prepared according to GP **B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (26.7 mg, 85%). **R**_f = 0.43; **m.p.** = 90–91 °C; ¹H **NMR** (600 MHz, MeOD): δ = 8.13 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.93 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.64 (dq, *J* = 8.0, 1.6 Hz, 3H), 7.61 – 7.57 (m, 1H), 7.50 (dddd, *J* = 7.5, 6.1, 4.9, 1.4 Hz, 3H), 7.42 (d, *J* = 3.6 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.08 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.57 (d, *J* = 3.6 Hz, 1H) ppm; ¹³C **NMR** (151 MHz, MeOD): δ = 164.2, 147.4, 146.7, 142.5, 133.4, 130.7, 129.5, 129.5, 129.3, 129.0, 128.6, 128.5, 128.1, 126.7, 123.7, 121.3, 116.3, 101.4 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 2548, 2177, 1738, 1619, 1510, 1256, 1219, 1046, 749; **HRMS** (ESI) m/z: calculated for C₂₀H₁₄N₂O₂ [M+H]⁺ 315.1128, found 315.1119.

15

4ba

5-Methyl-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4ba was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (21.3 mg, 65%). **R**_f = 0.34; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.36 (t, *J* = 3.6 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.79 (d, *J* = 7.7 Hz, 2H), 7.61 – 7.50 (m, 2H), 7.36 (d, *J* = 7.0 Hz, 4H), 7.32 (s, 1H), 7.13 – 7.04 (m, 1H), 6.55 (d, *J* = 3.4 Hz, 1H), 2.53 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.7, 148.2, 145.9, 143.7, 139.4, 133.4, 129.9, 129.2, 128.9, 128.9, 128.4, 128.3, 128.0, 127.5, 124.4, 120.6, 116.4, 101.3, 21.3 ppm ; **IR** (KBr): *v*/cm⁻¹ = 3069, 1700, 1530, 1329, 1212, 1066, 755; **HRMS** (ESI) m/z: calculated for C₂₁H₁₆N₂O₂ [M+H]⁺ 329.1285, found 329.1283.

4-Methyl-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4ca was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (18.0 mg, 55%). **R**_f = 0.35; **m.p.** = 94–95 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.36 (d, *J* = 4.7 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.79 (d, *J* = 7.7 Hz, 2H), 7.58 – 7.47 (m, 2H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.38 – 7.34 (m, 4H), 7.10 (t, *J* = 6.1 Hz, 1H), 6.56 (d, *J* = 3.7 Hz, 1H), 2.52 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.8, 148.1, 143.9, 143.7, 136.7, 133.4, 130.3, 129.9, 129.6, 129.2, 129.2, 129.0, 128.9, 128.3, 123.6, 120.7, 116.4, 101.4, 21.0 ppm; **IR** (KBr): *i*/cm⁻¹ = 3075, 1715, 1625, 1500, 1250, 1096, 725; **HRMS** (ESI) m/z: calculated for C₂₁H₁₆N₂O₂ [M+H]⁺ 329.1285, found 329.1281.

4-Methoxy-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4da was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (18.2 mg, 53%). **R**_f = 0.43; **m.p.** = 91–92 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.36 (dd, *J* = 4.6, 1.8 Hz, 1H), 7.91 (dt, *J* = 7.8, 1.7 Hz, 1H), 7.79 (dt, *J* = 8.5, 1.6 Hz, 2H), 7.52 (td, *J* = 7.4, 1.6 Hz, 1H), 7.42 (dd, *J* = 9.1, 1.6 Hz, 1H), 7.39 – 7.31 (m, 3H), 7.23 (dd, *J* = 3.1, 1.6 Hz, 1H), 7.09 (dq, *J* = 8.8, 2.9 Hz, 2H), 6.56 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.91 (d, *J* = 1.7 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 165.1, 157.8, 148.1, 143.9, 139.7, 133.5, 131.3, 130.0, 129.1, 129.1, 128.4, 124.6, 120.8, 116.6, 114.4, 113.9, 101.7, 55.9 ppm; **IR** (KBr): *ν*/cm⁻¹ = 2540, 2177, 1988, 1738, 1617, 1514, 1254, 1212, 1048, 747; **HRMS** (ESI) m/z: calculated for C₂₁H₁₆N₂O₃ [M+H]⁺ 345.1234, found 345.1229.

5-Fluoro-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4ea was prepared according to **GP B,** The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (25.9 mg, 78%). **R**_f = 0.46; **m.p.** = 105–106 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.33 (dd, *J* = 4.7, 1.7 Hz, 1H), 7.91 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.77 – 7.72 (m, 2H), 7.65 (dd, *J* = 8.8, 5.7 Hz, 1H), 7.57 – 7.49 (m, 1H), 7.36 – 7.30 (m, 4H), 7.21 (ddd, *J* = 8.9, 7.7, 2.8 Hz, 1H), 7.09 (dd, *J* = 7.8, 4.7 Hz, 1H), 6.56 (d, *J* = 3.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.1, 161.9 (d, *J* = 247.8 Hz), 148.1, 147.1, 147.0, 143.8, 133.7, 130.0, 129.7, 129.6, 129.0 (d, *J* = 2.9 Hz), 128.4, 127.0, 120.6, 116.6, 113.7 (d, *J* = 22.3 Hz), 111.9 (d, *J* = 25.5 Hz), 101.7 ppm; ¹⁹**F NMR** (37 MHz, CDCl₃): δ = -62.32 ppm; **IR** (KBr): *i*/cm⁻¹ = 3057, 2936, 1747, 1514, 1436, 1255, 1117, 1040, 764, 695;

HRMS (ESI) m/z: calculated for $C_{20}H_{13}FN_2O_2$ [M+H]⁺ 333.1034, found 333.1028.

5-Bromo-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4fa was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a white solid (29.0 mg, 74%). **R**_f = 0.52; **m.p.** = 84–85 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.33 (dd, *J* = 4.7, 1.5 Hz, 1H), 7.91 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.64 – 7.52 (m, 3H), 7.38 – 7.32 (m, 3H), 7.10 (ddd, *J* = 7.8, 4.7, 1.0 Hz, 1H), 6.57 (dd, *J* = 3.6, 1.0 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.1, 147.9, 146.5, 143.8, 133.7, 130.0, 129.9, 129.8, 129.7, 129.1, 128.7, 128.4, 128.3, 127.4, 121.4, 120.7, 116.8, 102.0 ppm; **IR** (KBr): *ν*/cm⁻¹ = 2935, 1740, 1503, 1238, 1047, 836, 700; **HRMS** (ESI) m/z: calculated for C₂₀H₁₄BrN₂O₂ [M+H]⁺ 393.0233, found 393.0238.

2-(4-Chloro-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4ga was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (22.6 mg, 65%). **R**_f = 0.42; **m.p.** = 123–124 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.22 (d, *J* = 5.1 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 2H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.54 (dq, *J* = 15.0, 7.6 Hz, 4H), 7.44 – 7.34 (m, 3H), 7.12 (d, *J* = 5.1 Hz, 1H), 6.68 (d, *J* = 3.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.5, 148.6, 146.1, 144.1, 136.1, 133.6, 130.3, 130.0, 129.7, 129.2, 128.7, 128.6, 128.4, 126.8, 124.1, 120.0, 116.7, 100.1 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 2955, 1730, 1500, 1238, 1045, 852, 710; **HRMS** (ESI) m/z: calculated for C₂₀H₁₃ClN₂O₂ [M+H]⁺ 349.0739, found 349.0736.

2-(4-Methoxy-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4ha was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (19.6 mg, 57%). **R**_{*t*} = 0.38; **m.p.** = 88–89 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.26 (t, *J* = 4.1 Hz, 1H), 7.86 (d, *J* = 7.3 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.59 – 7.47 (m, 4H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 3.5 Hz, 1H), 6.67 (d, *J* = 3.4 Hz, 1H), 6.58 (t, *J* = 4.3 Hz, 1H), 4.02 (d, *J* = 2.9 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.5, 159.8, 149.7, 146.1, 145.7, 133.4, 130.8, 130.0, 128.9, 128.8, 128.7, 128.3, 126.8, 126.7, 124.0, 110.9, 98.9, 98.5, 55.5 ppm; **IR** (KBr): *i*/cm⁻¹ = 2548, 2177, 2039, 1970, 1212, 1075, 755; **HRMS** (ESI) m/z: calculated for C₂₁H₁₆N₂O₃ [M+H]⁺ 345.1234, found 345.1226.

2-(4-Nitro-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4ia was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (17.3 mg, 48%). **R**_f= 0.35; **m.p.** = 122–123 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.51 (d, *J* = 5.3 Hz, 1H), 7.91 (d, *J* = 5.3 Hz, 1H), 7.80 (d, *J* = 7.7 Hz, 2H), 7.71 (d, *J* = 3.7 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.65 – 7.61 (m, 1H), 7.59 – 7.52 (m, 3H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 3.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.3, 151.3, 146.2, 145.9, 143.6, 134.1, 133.8, 129.9, 129.8, 129.7, 128.7, 128.5, 128.4, 126.9, 124.2, 113.5, 110.5, 101.7 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3073, 2916, 1721, 1593, 1494, 1255, 1073, 726; **HRMS** (ESI) m/z: calculated for C₂₀H₁₃N₃O₄ [M+H]⁺ 360.0979, found 360.0972.

2-(5-Bromo-1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl benzoate: 4ja was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (28.3 mg, 72%). **R**_f= 0.33; **m.p.** = 130–131 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.35 (s, 1H), 8.02 (s, 1H), 7.80 (d, *J* = 7.7 Hz, 2H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 14.0 Hz, 3H), 7.49 (d, *J* = 8.6 Hz, 1H), 7.39 (d, *J* = 7.5 Hz, 3H), 6.50 (d, *J* = 3.5 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.5, 146.4, 146.2, 144.2, 133.7, 131.0, 130.6, 130.3, 130.0, 129.2, 128.7, 128.4, 126.8, 125.5, 124.1, 122.3, 112.5, 101.1 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3073, 1722, 1585, 1485, 1238, 1064, 709; **HRMS** (ESI) m/z: calculated for C₂₀H₁₃BrN₂O₂ [M+H]⁺ 393.0233, found 393.0226.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 4-methylbenzoate: 4ah was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (26.6 mg, 81%). **R**_f = 0.63; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.36 (d, *J* = 4.6 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.51 (d, *J* = 19.2 Hz, 4H), 7.34 (dd, *J* = 14.7, 5.5 Hz, 2H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.09 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.55 (d, *J* = 3.6 Hz, 1H), 2.30 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.7, 148.2, 145.9, 143.7, 139.4, 133.4, 129.9, 129.2, 128.9, 128.8, 128.4, 128.3, 128.0, 127.5, 124.4, 120.6, 116.4, 101.3, 21.3 ppm; I**R** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3073, 1710, 1619, 1485, 1234, 1084, 723; **HRMS** (ESI) m/z: calculated for C₂₁H₁₇N₂O₂ [M+H]⁺ 329.1285, found 329.1286.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 4-ethylbenzoate: 4ai was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (28.4 mg, 83%). **R**_f = 0.63; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.37 (d, *J* = 4.7 Hz, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.72 (t, *J* = 7.9 Hz, 3H), 7.53 (dq, *J* = 14.3, 7.6 Hz, 3H), 7.38 (d, *J* = 3.7 Hz, 1H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.11 (dd, *J* = 8.3, 4.8 Hz, 1H), 6.56 (d, *J* = 3.7 Hz, 1H), 2.69 (q, *J* = 7.7 Hz, 2H), 1.26 (t, *J* = 7.7 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.6, 150.5, 148.1, 146.2, 143.7, 130.7, 130.2, 129.1, 128.9, 128.8, 128.7, 127.9, 126.6, 126.3, 124.1, 120.7, 116.5, 101.5, 29.0, 15.1 ppm; **HRMS** (ESI) m/z: calculated for C₂₂H₁₈N₂O₂ [M+H]⁺ 343.1441, found 343.1434.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 4-(*tert***-butyl)benzoate: 4aj** was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (32.5 mg, 88%). **R**_f = 0.64; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.38 (d, *J* = 4.7 Hz, 1H), 7.94 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.53 (h, *J* = 8.9, 8.3 Hz, 3H), 7.38 (d, *J* = 8.8 Hz, 3H), 7.12 (dd, *J* = 8.2, 4.4 Hz, 1H), 6.58 (q, *J* = 2.7 Hz, 1H), 1.35 (s, 9H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.6, 157.3, 148.1, 146.2, 143.7, 130.7, 130.9, 129.9, 129.2, 128.9, 128.8, 126.6, 126.1, 125.4, 124.1, 120.7, 116.5, 101.5, 35.1, 31.1 ppm; **IR** (KBr): \tilde{v} /cm⁻¹ = 3073, 1722, 1580, 1490, 1245, 1068, 715; **HRMS** (ESI) m/z: calculated for C₂₄H₂₂N₂O₂ [M+H]⁺ 371.1754, found 371.1746.

21

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl[1,1'-biphenyl]-4-carboxylate: 4ak was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (27.3 mg, 70%). \mathbf{R}_{f} = 0.38; **m.p.** = 99–100 °C; ¹H **NMR** (400 MHz, CDCl₃): δ = 8.32 (d, *J* = 4.6 Hz, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 2H), 7.51 (d, *J* = 7.3 Hz, 4H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.39 – 7.32 (m, 2H), 7.04 (dd, *J* = 8.1, 4.5 Hz, 1H), 6.52 (d, *J* = 3.5 Hz, 1H) ppm; ¹³C **NMR** (101 MHz, CDCl₃): δ = 164.4, 148.1, 146.2, 146.1, 143.8, 139.8, 130.7, 130.5, 129.1, 129.0, 128.9, 128.8, 128.6, 128.3, 127.6, 127.3, 127.0, 126.7, 124.1, 120.7, 116.6, 101.6 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 2380, 2075, 2010, 1850, 1200, 735; **HRMS** (ESI) m/z: calculated for C₂₆H₁₈N₂O₂ [M+H]⁺ 391.1441, found 391.1437.

4ak

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 4-(trifluoromethyl)benzoate: 4al was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a white solid (25.9 mg, 68%). **R**_f = 0.52; **m.p.** = 103–104 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.32 (dd, *J* = 4.7, 1.6 Hz, 1H), 7.92 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.70 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.57 – 7.49 (m, 3H), 7.37 (d, *J* = 3.6 Hz, 1H), 7.09 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.59 (d, *J* = 3.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 163.3, 148.0, 145.9, 143.8, 134.7 (q, *J* = 32.5 Hz), 132.1, 130.6, 130.3, 129.1, 128.9, 128.9, 128.7, 127.1, 125.3 (d, *J* = 3.6 Hz), 123.8, 123.4 (d, *J* = 271.1 Hz), 120.7, 116.6, 101.8 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃): δ = -63.18 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3074, 1764, 1531, 1333, 1272, 1212, 1135, 1066,

859, 755; **HRMS** (ESI) m/z: calculated for $C_{21}H_{13}F_3N_2O_2$ [M+H]⁺ 383.1002, found 383.0995.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 4-ethoxybenzoate: 4am was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (29.4 mg, 82%). **R**_f = 0.58; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.36 (d, *J* = 4.2 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.51 (h, *J* = 7.9 Hz, 3H), 7.37 (d, *J* = 3.8 Hz, 1H), 7.09 (dt, *J* = 7.5, 3.1 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.55 (d, *J* = 3.7 Hz, 1H), 4.07 (q, *J* = 7.4 Hz, 2H), 1.44 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.3, 163.2, 148.1, 146.3, 143.7, 132.1, 130.7, 129.2, 128.9, 128.8, 128.7, 126.5, 124.1, 120.9, 120.7, 116.5, 114.0, 101.4, 63.7, 14.6 ppm; **HRMS** (ESI) m/z: calculated for C₂₂H₁₈N₂O₃ [M+H]⁺ 359.1390, found 359.1383.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 4-fluorobenzoate: 4an was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (20.9 mg, 63%). **R**_f= 0.45; **m.p.** = 128–129 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.34 (dd, *J* = 4.9, 1.6 Hz, 1H), 7.92 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.85 – 7.74 (m, 2H), 7.69 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.60 – 7.47 (m, 3H), 7.36 (d, *J* = 3.6 Hz, 1H), 7.09 (dd, *J* = 7.8, 4.7 Hz, 1H), 7.01 (t, *J* = 8.6 Hz, 2H), 6.57 (d, *J* = 3.6 Hz, 1H) ppm; ¹³**C NMR** (151 MHz, CDCl₃): δ = 165.9 (d, *J* = 261.3 Hz), 163.5, 148.0, 146.1, 143.7, 132.5 (d, *J* = 9.7 Hz), 130.7, 129.0 (d, *J* = 25.0 Hz), 129.0, 128.7, 126.8, 125.1 (d, *J* = 2.3 Hz), 124.0, 120.7, 116.5, 115.6, 115.5, 101.6 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃): δ = -100.32

ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3048, 1754, 1608, 1513, 1427, 1247, 1220, 1135, 1057, 747; **HRMS** (ESI) m/z: calculated for C₂₀H₁₃FN₂O₂ [M+H]⁺ 333.1034, found 333.1028.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 4-bromobenzoate: 4ao was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (26.7 mg, 68%). **R**_f= 0.48; **m.p.** = 118–119 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.28 (d, *J* = 4.6 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.53 – 7.45 (m, 3H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 3.4 Hz, 1H), 7.05 (dd, *J* = 8.2, 4.7 Hz, 1H), 6.53 (d, *J* = 3.5 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ = 163.8, 148.0, 146.0, 143.8, 131.7, 131.4, 130.6, 129.7, 129.2, 129.0, 128.9, 128.7, 127.8, 126.9, 123.9, 120.7, 116.6, 101.7 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3069, 1710, 1080, 1475, 1200, 1075, 831, 715; **HRMS** (ESI) m/z: calculated for C₂₀H₁₃BrN₂O₂ [M+H]⁺ 393.0233, found 393.0239.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 3-methylbenzoate: 4ap was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 5% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (22.1 mg, 67%). **R**_f = 0.62; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.40 (d, *J* = 4.6 Hz, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 20.2 Hz, 4H), 7.42 – 7.34 (m, 2H), 7.25 (t, *J* = 7.9 Hz, 1H), 7.14 (dd, *J* = 8.2, 4.5 Hz, 1H), 6.59 (d, *J* = 3.8 Hz, 1H), 2.34 (s, 3H) ppm; ¹³**C NMR** (151 MHz, CDCl₃): δ = 164.7, 148.1, 146.3, 143.7, 138.1, 134.2, 130.7, 130.5, 129.2, 128.9, 128.9, 128.8, 128.7, 128.2, 127.1, 126.7,124.0, 120.7, 116.5, 101.6, 21.1 ppm. **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3075,

24

1705, 1625, 1500, 1247, 1112, 719; **HRMS** (ESI) m/z: calculated for $C_{21}H_{16}N_2O_2$ [M+H]⁺ 329.1285, found 329.1281.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 2-methylbenzoate: 4aq was prepared according to **GP B,** The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (20.4 mg, 62%). **R**_f = 0.54; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.37 (dd, *J* = 4.7, 1.6 Hz, 1H), 7.94 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.70 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.59 – 7.47 (m, 4H), 7.40 – 7.34 (m, 2H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.10 (td, *J* = 7.9, 5.7 Hz, 2H), 6.58 (d, *J* = 3.6 Hz, 1H), 2.45 (s, 3H) ppm; ¹³**C NMR** (151 MHz, CDCl₃): δ = 165.0, 148.2, 146.4, 143.7, 141.2, 132.6, 131.6, 130.8, 130.9, 129.2, 129.0, 128.9, 128.8, 127.8, 126.7, 125.6, 124.1, 120.7, 116.5, 101.5, 21.5 ppm. **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3082, 1715, 1620, 1505, 1238, 1096, 720; **HRMS** (ESI) m/z: calculated for C₂₁H₁₆N₂O₂ [M+H]⁺ 329.1285, found 329.1279.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 2-methoxybenzoate: 4ar was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a white solid (25.8 mg, 75%). **R**_f = 0.41; **m.p.** = 101–102 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.32 (dd, *J* = 4.7, 1.6 Hz, 1H), 7.90 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.64 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.46 – 7.40 (m, 1H), 7.40 – 7.34 (m, 2H), 7.29 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.07 (dd, *J* = 7.8, 4.7 Hz, 1H), 6.90 – 6.82 (m, 1H), 6.75 (td, *J* = 7.5, 1.0 Hz, 1H), 6.53 (d, *J* = 3.7 Hz, 1H), 3.73 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 163.6, 153.6, 159.8, 148.2, 146.3, 143.7, 134.3, 132.0, 130.8, 129.4, 128.9, 128.8, 126.6, 124.3, 120.7, 119.9, 118.2, 116.5, 111.9, 101.3, 55.8 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 2514, 2177, 2005, 1212, 1040, 738, 670; **HRMS** (ESI) m/z: calculated for C₂₁H₁₆N₂O₃

[M+H]⁺ 345.1234, found 345.1229.

(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 2-nitrobenzoate: 4as was prepared according to GP B, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow oil (20.5 mg, 57%). \mathbf{R}_f = 0.63; ¹H NMR (400 MHz, CDCl₃): δ = 8.34 (d, *J* = 4.7 Hz, 1H), 7.98 (t, *J* = 9.6 Hz, 2H), 7.70 – 7.64 (m, 1H), 7.64 – 7.55 (m, 3H), 7.50 (dt, *J* = 14.6, 7.5 Hz, 2H), 7.40 (d, *J* = 3.8 Hz, 1H), 7.13 (d, *J* = 6.6 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 3.8 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 163.4, 148.0, 147.3, 145.6, 143.9, 133.1, 131.7, 130.7, 129.3, 129.2, 129.0, 128.8, 128.9, 127.4, 127.1, 124.1, 123.5, 120.7, 116.6, 101.7 ppm; IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3085, 2900, 1735, 1615, 1567, 1500, 1345, 1258, 1085, 735; HRMS (ESI) m/z: calculated for C₂₀H₁₃N₃O₄ [M+H]⁺ 360.0979, found 360.0978.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenyl 1-naphthoate: 4at was prepared according to **GP B**, The crude reaction mixture was purified by column chromatography using 10% ethyl acetate in hexane and afforded the analytically pure product as a yellow solid (26.2 mg, 72%). **R**_f = 0.49; **m.p.** = 150–151 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.83 – 8.67 (m, 1H), 8.38 (d, *J* = 4.7 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.90 – 7.83 (m, 1H), 7.77 (d, *J* = 7.3 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.65 – 7.57 (m, 2H), 7.56 – 7.52 (m, 3H), 7.43 (d, *J* = 3.6 Hz, 1H), 7.35 – 7.28 (m, 1H), 7.11 (dd, *J* = 7.9, 4.7 Hz, 1H), 6.56 (d, *J* = 3.8 Hz, 1H) ppm; ¹³**C NMR** (151 MHz, CDCl₃): δ = 165.0, 148.2, 146.5, 143.8, 134.1, 133.7, 131.4, 131.0, 131.0, 129.2, 129.1, 129.0, 128.9, 128.5, 128.0, 126.9, 126.3, 125.5, 125.1, 124.3, 124.2, 120.7, 116.5, 101.6 ppm; **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 2385, 2168, 2014, 1970, 1212, 738; **HRMS** (ESI) m/z: calculated for C₂₄H₁₆N₂O₂ [M+H]⁺ 365.1285, found 365.1278.

26

5 Experimental Details for the Difluoroboron Complexes

5.1 General Procedure for the Synthesis of Difluoroboron Complexes (GP C)

To a solution of heteroarene **5** (1.0 mmol) in chlorobenzene (1.0 mL), $Cu(Me_3CN)_4BF_4$ (31.5 mg, 1.0 equiv.) was added benzoyloxycarbamate **2a** and stirred vigorously at 140 °C for 12 h. After completion of the reaction, the mixture was filtered through a short celite pad and concentrated under vacuum. The residual was purified through column chromatography using hexane/ethylacetate as eluent to give the BF_2 complexes.

5.2 Characterization Data of the Difluoroboron Complexes

6,6-Difluoro-6H-6λ⁴,7λ⁴-**benzo[e]pyrido[1,2-c][1,3,2]oxazaborinine: 6aa** was prepared according to **GP C**, the crude reaction mixture was purified by column chromatography using 30% ethyl acetate in hexane to afford the pure product as a white solid (18.2 mg, 83%). ¹H **NMR** (400 MHz, DMSO-d₆): δ = 8.79 (d, *J* = 5.8 Hz, 1H), 8.64 (d, *J* = 8.4 Hz, 1H), 8.52 (t, *J* = 8.0 Hz, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 7.89 (t, *J* = 6.9 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.15 (q, *J* = 7.8 Hz, 2H) ppm; ¹³C **NMR** (101 MHz, DMSO): δ = 155.3, 149.1, 144.5, 141.5, 134.9, 127.0, 125.1, 122.0, 121.2, 120.1, 116.6 ppm.

S28

6,6-Difluoro-3-methyl-6H-6λ⁴,7λ⁴-benzo[e]pyrido[1,2-c][1,3,2]oxazaborinine: 6ba was prepared according to **GP C**, the crude reaction mixture was purified by column chromatography using 30% ethyl acetate in hexane and afforded the analytically pure product as a white solid (17.5 mg, 75%). ¹**H NMR** (400 MHz, CDCl₃): δ = 8.72 (d, *J* = 5.9 Hz, 1H), 8.18 (td, *J* = 7.9, 7.3, 1.7 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.57 (t, *J* = 6.7 Hz, 1H), 7.05 (s, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 2.44 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 150.7, 146.3, 142.0, 141.2, 135.7, 125.1, 122.3, 122.1, 121.1, 120.1, 113.9, 21.8 ppm.

3-Bromo-6,6-difluoro-6H-6λ⁴,7λ⁴-benzo[e]pyrido[1,2-c][1,3,2]oxazaborinine: 6ca was prepared according to **GP C**, the crude reaction mixture was purified by column chromatography using 30% ethyl acetate in hexane and afforded the analytically pure product as a white solid (20.5 mg, 69%). ¹H NMR (400 MHz, CDCl₃): δ = 8.70 (d, *J* = 5.9 Hz, 1H), 8.20 (t, *J* = 8.0 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.6 Hz, 1H), 7.61 (t, *J* = 6.8 Hz, 1H), 7.37 (s, 1H), 7.17 (d, *J* = 8.6 Hz, 1H)ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 156.5, 149.7, 142.5, 141.4, 128.8, 126.3, 124.1, 124.0, 123.2, 120.4, 115.0 ppm.

3-Chloro-6,6-difluoro-6H-6λ4,7λ4-benzo[e]pyrido[1,2-c][1,3,2]oxazaborinine:

6da was prepared according to **GP C**, the crude reaction mixture was purified by column chromatography using 30% ethyl acetate in hexane and afforded the analytically pure product as a white solid (18.2 mg, 72%). ¹**H NMR** (600 MHz, CDCl₃): $\delta = 8.70$ (d, J = 5.9 Hz, 1H), 8.27 - 8.16 (m, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.62 (t, J = 6.8 Hz, 1H), 7.20 (d, J = 2.1 Hz, 1H), 7.03 (dd, J = 8.6, 2.1 Hz, 1H) ppm; ¹³**C NMR** (151 MHz, CDCl₃): $\delta = 156.6$, 149.6, 142.5, 141.4, 140.5, 126.3, 123.2, 121.4, 120.9, 120.4, 114.7 ppm.

4,4-Difluoro-4H-5-oxa-3aλ⁴**-aza-4**λ⁴**-borapyrene: 6ea** was prepared according to **GP C**, the crude reaction mixture was purified by column chromatography using 30% ethyl acetate in hexane and afforded the analytically pure product as a white solid (18.5 mg, 76%). ¹**H NMR** (400 MHz, CDCl₃): δ = 9.07 (d, *J* = 5.6 Hz, 1H), 8.67 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.94 (dd, *J* = 8.0, 5.7 Hz, 1H), 7.87 (t, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 9.0 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 153.9, 141.0, 140.7, 139.3, 134.5, 133.1, 130.9, 126.8, 123.4, 121.6, 119.0, 116.7, 112.4 ppm.

6 Experimental Details for the Product Derivation

Compound **3aa** (37.1 mg, 0.12 mmol) was dissolved in dichloromethane (2 mL) and cooled to 0 °C. TFA (0.2 mL) was added via syringe and the resulting solution was stirred for 1 h. The reaction mixture was diluted with dichloromethane and washed with NaHCO₃, water and brine. The organic layer was evaporated and the crude product purified by column chromatography on silica to give the compound **7** as a brown solid (32.8 mg, 87%).

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)aniline (7): ¹**H NMR** (400 MHz, CDCl₃): δ = 8.41 (d, J = 4.7 Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 3.7 Hz, 1H), 7.29 (dd, J = 16.7, 7.9 Hz, 2H), 7.18 (t, J = 6.5 Hz, 1H), 6.95 (q, J = 7.7 Hz, 2H), 6.72 (d, J = 3.4 Hz, 1H), 3.98 (s, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 147.7, 143.7, 142.9, 129.6, 129.4, 129.1, 128.4, 124.9, 121.1, 119.1, 117.4, 116.4, 101.7 ppm.

To a solution of **4aa** (31.4 mg, 0.1 mmol) in TFA (1.5 mL), MeOH (0.5 mL), and H₂O (0.5 mL), LiOH·H₂O (8.0 mg, 2.0 equiv.) was added. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the reaction mixture was extracted with ethyl acetate (10 mL X 2 times) and brine, evaporated and the residue was purified by column chromatography with (15% EtOAc/hexane) to give the compound **8** as a brown solid.

2-(1H-Pyrrolo[2,3-b]pyridin-1-yl)phenol (8): (19.7 mg, 94%). **m.p.** = 95–97 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.16 (d, *J* = 4.8 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 3.8 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.14 (t, *J* = 6.3 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 6.98 (t, *J* = 7.8 Hz, 1H), 6.66 (d, *J* = 3.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ = 149.9, 147.1, 142.0, 130.8, 129.0, 128.4, 128.0, 124.7, 122.4, 121.5, 121.2, 116.4, 103.4 ppm. **IR** (KBr): $\tilde{\nu}$ /cm⁻¹ = 3183, 2935, 1730, 1503, 1230, 1047, 827, 690; **HRMS** (ESI) m/z: calculated for C₁₃H₁₀N₂O [M+H]⁺ 211.0866, found 211.0861.

To a solution of amino 7-azaindole **3aa** (0.1 mmol) in DCE (1.0 mL), $Cu(Me_3CN)_4BF_4$ (31.5 mg, 1.0 equiv.), DBU (30.4 mg, 2.0 equiv.) and **9a** (30.1 mg, 1.2 equiv.) were added under O₂, the reaction was stirred at 140 °C for 12 h. After completion of the reaction, the mixture was filtered through a short celite pad and concentrated under vacuum. The residual was purified through column chromatography using hexane/ethyl acetate as eluent to give the compound **10a** as a yellow solid (18.3 mg, 62%).

6-Phenylpyrido[3',2':4,5]pyrrolo[1,2-a]quinoxaline (10a): ¹**H NMR** (400 MHz, CDCl₃): δ = 9.90 (d, *J* = 8.3 Hz, 1H), 8.70 (dd, *J* = 4.5, 1.6 Hz, 1H), 8.20 (dd, *J* = 8.1, 1.7 Hz, 1H), 8.07 - 8.02 (m, 2H), 8.01 (d, *J* = 2.0 Hz, 1H), 7.71 - 7.63 (m, 1H), 7.58

(dd, J = 5.1, 1.9 Hz, 3H), 7.47 (t, J = 7.6 Hz, 1H), 7.37 (dd, J = 8.0, 4.5 Hz, 1H), 7.12 (s, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta = 155.7$, 145.5, 144.9, 137.9, 135.7, 130.5, 130.1, 129.7, 129.0, 128.8, 128.6, 128.2, 128.1, 124.8, 121.2, 118.6, 117.6, 99.2 ppm.

To a solution of amino 7-azaindole **3aa** (0.1 mmol) in DCE (1.0 mL), [Cp*RhCl₂] (3.1 mg, 5.0 mol%.), AgNTf₂(7.8 mg, 20 mol%), Zn(OTf)₂(10.7 mg, 0.5 equiv.), HOAc (12.1 mg, 2.0 equiv.), and **9b** (22.3 mg, 1.2 equiv.) were added the reaction was stirred at 100 °C for 18 h. After completion of the reaction, the mixture was filtered through a short celite pad and concentrated under vacuum. The residual was purified through column chromatography using hexane/ethyl acetate as eluent to give the compound **10b** as a yellow solid (15.7 mg, 43%).

Diethyl pyrido[3',2':4,5]pyrrolo[1,2-a]quinoxaline-6,6(5H)-dicarboxylate (10b): ¹H NMR (400 MHz, CDCl₃): δ = 9.15 (dd, *J* = 5.9, 3.6 Hz, 1H), 8.56 – 8.40 (m, 1H), 8.01 (d, *J* = 9.2 Hz, 1H), 7.21 (dd, *J* = 7.8, 4.7 Hz, 1H), 7.11 (s, 2H), 7.01 – 6.94 (m, 1H), 6.87 (s, 1H), 5.12 (s, 1H), 4.35 (q, *J* = 7.1 Hz, 4H), 1.32 (t, *J* = 7.2 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 167.3, 146.9, 143.5, 132.3, 129.9, 129.0, 125.3, 124.8, 121.5, 121.1, 118.9, 117.2, 115.7, 100.2, 66.4, 63.1, 14.1 ppm; HRMS (ESI) m/z: calculated for C₂₀H₂₀N₃O₄ [M+H]⁺ 366.1448, found 366.1452.

33

7 Mechanistic Investigation Experiments

(a) Radical Trapping Experiment

1 equiv. of TEMPO (TEMPO = 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) was added to the reaction mixture of **1a** and **2a**, the reaction was not inhibited in each case. While the generation of hydroxylation product **4aa**' resulted in a dramatically reduced yield of **4aa** with copper. The yields was not further decreased in the presence of 2.0 equiv. of TEMPO.

(b) Isotopic Effect Experiments

Procedure for parallel experiment between 1a and 1a-d₅:

Two sets of parallel reactions of **1a** and **1a**- d_5 (0.1 mmol) were subjected under both standard conditions. The reaction was allowed to afford **3aa** (91%) or **3aa**- d_4 (88%), **4aa** (67%) or **4aa**- d_4 (23%), The kinetic isotope effect ($k_{\rm H}/k_{\rm D}$) value was determined as 1.02 and 2.90, respectively.

Procedure for competition experiment between 1a and 1a-d₅:

To a solution of benzoyloxycarbamate **2a** (28.4 mg, 1.2 equiv.) was added 0.1 mmol of **1a** and 0.1 mmol **1a**- d_5 under standard conditions, resulting in a mixture of **4aa** and **4aa**- d_4 (23.4 mg), **3aa** and **3aa**- d_4 (30.3 mg). The ratios of both products (**3aa**:**3aa**- d_4 =1.2) and (**4aa**:**4aa**- d_4 =4) were determined by ¹H NMR spectroscopy.

(c) H/D Exchange Experiment:

1a was subjected to each reaction conditions followed by addition of D_2O , 24% deuterium incorporation was observed by ¹H NMR analysis under iridium catalysis, whereas no deuterium incorporation was observed under copper system.

Under Iridium Catalysis

1a and **2a** were employed in each reaction conditions, subsequently D_2O was added to the reaction mixture. Under iridium catalysis, no **1a** was recovered and the reaction proceed with full conversion. Under copper system, large H/D scrambling was observed in the presence of **2a**.

Under Copper System 7.125 8.37 -6.58 OBz D/H 30% D F18.0 0.88-0.76-0.88^J 2.86-3.94-9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 (fl (ppm)) 8.44 8.43 8.43 <7.83 <7.81 7.607.577.577.577.427.407.217.197.197.197.19C6.69 \$.04 H/D D/ 16% D 0.94-] F78.0 -26.0 -89.1 3.00H -80. 14-

l 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 fl (ppm)

1a and **2u** were employed under standard conditions, the corresponding product was obtained in 63% yield.

(e)

2a was subjected in the standard conditions, no **2a** was observed and it underwent decomposed after 5 h. However, only trace amount of benzoic acid was detected.

(f)

1a was subjected in the standard reaction condition for 12 h, then **2a** was added and the reaction mixture was stirred at 120 °C for 12 h, **4aa** was not detected.

2a was subjected in the standard reaction condition for 12 h, then **1a** was added and the reaction mixture was stirred at 120 °C for 12 h, **4aa** was obtained in 75% yield.

C10 C11 C9 N1 F1 C8 **B1** C7 F2 C1 C6 01 C5 C2 C4 C3

8 X-Ray Crystal Data of Compound 6aa

Figure S1 Crystal structure and packing mode 6aa

Identification code	1
Empirical formula	$C_{11}H_8BF_2NO$
Formula weight	218.99
Temperature/K	273(2)
Crystal system	monoclinic
Space group	P 2 ₁ /c
a/Å	7.4288(4)
b/Å	15.5325(8)
c/Å	8.9822(4)
α/°	90
β/°	108.6544(16)
γ/°	90
Volume/Å ³	981.988
Z	4
Z'	0
R-factor	6.34
ρ _{calc} g/cm³	1.481
F(000)	448
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	2.623 to 27.533
Index ranges	$-9 \le h \le 9$, $-20 \le k \le 20$, $-11 \le l \le 11$
Reflections number	29116
Reflns/restraints/parameters	2263/0/146
S	0.998

Table S2 Crystal data and structure refinement
--

Atom	Atom	Length/Å	Atom	Atom	Length/Å
B1	F1	1.383	C5	H5	0.93
B1	F2	1.377	C5	C6	1.401
B1	N1	1.588	C6	C7	1.461
B1	01	1.417	C7	C8	1.392
C1	C2	1.393	C7	N1	1.358
C1	C6	1.398	C8	H8	0.93
C1	01	1.349	C8	C9	1.366
C2	H2	0.93	C9	H9	0.93
C2	C3	1.357	C9	C10	1.381
C3	H3	0.93	C10	H10	0.93
C3	C4	1.379	C10	C11	1.361
C4	H4	0.93	C11	H11	0.93
C4	C5	1.373	C11	N1	1.353

Table S3 Bond lengths [Å].

Table S4 Bond angles [°].

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
F2	B1	F1	109.18(16)	C1	C6	C7	120.28(15)
F2	B1	01	109.55(18)	C5	C6	C7	121.86(17)
F1	B1	01	112.81(19)	N1	C7	C8	118.33(16)
F2	B1	N1	108.10(17)	N1	C7	C6	117.67(15)
F1	B1	N1	105.97(17)	C8	C7	C6	123.98(16)
01	B1	N1	111.07(15)	C9	C8	C7	120.9(2)
01	C1	C2	117.67(18)	C8	C9	C10	119.7(2)
01	C1	C6	121.88(16)	C11	C10	C9	118.50(18)
C2	C1	C6	120.36(18)	N1	C11	C10	122.04(19)
C3	C2	C1	120.2(2)	C11	N1	C7	120.55(16)
C2	C3	C4	120.7(2)	C11	N1	B1	117.57(15)
C5	C4	C3	119.8(2)	C7	N1	B1	121.73(15)
C4	C5	C6	121.0(2)	C1	01	B1	122.61(15)
C1	C6	C5	117.84(17)				

9 References and Notes

[S1] G. Qian, X. Hong, B. Liu, H. Mao, B. Xu, Rhodium-Catalyzed Regioselective C– H Chlorination of 7-Azaindoles Using 1,2-Dichloroethane, *Org. Lett.* **2014**, *16*, 5294– 5297.

[S2] J. Jinwon, L. Changseok, S. Huiyeong, H. Sungwoo, NiH-Catalyzed Proximal-Selective Hydroamination of Unactivated Alkenes. *J. Am. Chem. Soc.* **2020**, *142*, 20470–20480.

[S3] C. S. Beshara, A. Hall, R. L. Jenkins, K. L. Jones, T. C. Jones, N. M. Killeen, P.
H. Taylor, S. P. Thomas, N. C. O. Tomkinson, A general method for the alphaacyloxylation of carbonyl compounds, *Org. Lett.* **2005**, *7*, 5729–5732.

ò fl (ppm)

ò 90 180 100 9 fl (ppm) 160 150 130 120

100 9 fl (ppm) ò 170 160 150 140 130 120

fl (ppm)

fl (ppm)

fl (ppm)

fl (ppm)

) 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

fl (ppm)

59

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

88.23 88.20 88.20 88.20 88.20 88.20 88.20 88.20 88.20 86.20 86.20 10.23 86.20 10.23 86.20 10.23 86.50 10.23

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

170 160 150 140 130 ò fl (ppm)

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 fl (ppm)

100 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

7166.82 7165.13 7165.13 7165.13 7165.13 7165.13 7153.50 7123.55 7123.55 7123.55 7123.55 7123.55 7123.55 7123.55 7125.51 7125.51 7125.51 7125.55 7155.55 715

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

S81

86

190 180 170 160 150 140 130 120 110 100 90 fl (ppm) -10 ò