Supporting Information

Chemo-selective Control of Ritter-type Reaction by Coordinatively Unsaturated Inorganic Salt Hydrates

Huifang Lai,^a Jiexin Xu,^a Jin Lin,^a Biling Su,^a Daijun Zha^{a, b, *}

a. Department of Medicinal Chemistry, School of Pharmacy, Fujian

Medical University, Fuzhou 350004, Fujian Province, China

b. Fujian Key Laboratory of Drug Target Discovery and Structural and

Functional Research, Fujian Medical University

*Corresponding author. E-mail address: zhadj@fjmu.edu.cn

Tel: +86 591 22862016, fax: +86 591 22862016.

Table of Contents

General Information	S2
Materials	S2
Experimental Procedures for Substrates	S3
General Procedure for products 2a-2w	S5
Determination of Water Content by Karl Fischer Titration	S5
Chromatographic Conditions	S6
Tables of the Optimization of Reaction Conditions	S9
General Procedure for products 4a-4o	S18
Characterization Data of Products	S23
¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S39

1. General Methods

All reactions were conducted in oven or flame-dried glassware unless otherwise noted. Acetonitrile (CH₃CN) was distilled over calcium hydride (CaH₂) under a nitrogen atmosphere. All reactions were monitored by thin-layer chromatography (TLC), which was performed on percolated aluminum sheets of silica gel 60 (GF254). Chromatography was carried on flash silica gel (300-400 mesh). NMR spectra were recorded on a Bruker IMPACT-II 400, 500 or 600 spectrometers operating at 400 MHz or 600 MHz for ¹H NMR, 101 MHz, 126 MHz or 151 for MHz ¹³C NMR, and 376 MHz for ¹⁹F NMR, respectively. High-resolution mass spectra (HRMS) were obtained using a Bruker FTICRMS 7TSOLARIX spectrometer (ESI). All other reagents were obtained from commercial sources and used without further purification unless indicated otherwise. ESI-MS spectra and HPLC spectra were recorded on a ShimadzuLC-20AP. The water contents were determined by a Karl Fischer titrator (ZDJ-2S, Beijing Xianqu Weifeng Technology Development Co., Ltd.).

2. Materials

Inorganic salt hydrates HCOOLi•2H₂O, LiOAc•2H₂O, Na₂CO₃•10H₂O, NaOAc•3H₂O, NaOAc•H₂O, K₂C₂O₄•H₂O, MgSO₄•7H₂O, MgSO₄•H₂O, Mg(OAc)₂•4H₂O, Mg(OAc)₂•4H₂O, Mg(OAc)₂•H₂O, Mg₃(PO₄)₂•5H₂O, MgCl₂•6H₂O, CaBr•H₂O, Ca(C₂O₄)₂•H₂O, SrCl₂•6H₂O, BaCl₂•2H₂O, and Cu(OAc)₂•H₂O were purchased from Tianjin Xiensi Biochemical Technology Co., Ltd. (Tianjin, China).

LiSO₄•H₂O, Na₂CO₃•H₂O, K₂CO₃•1.5H₂O, MgSO₄•2H₂O, Mg₃(PO₄)₂•4H₂O, CaCl₂•5H₂O, CaSO₄•2H₂O, CaSO₄•H₂O, SrCl₂•5H₂O, and SrOAc•1/2H₂O were purchased from Alfa Aesar Co. Inc (USA).

LiI•3H₂O, LiCl•H₂O, Mg₅(CO₃)₄(OH)₂•5H₂O, CaBr•2H₂O, Ca(OAc)₂•2H₂O, Cu(COOCF₃)₂•H₂O, CuCl₂•2H₂O, Cu(NO₃)₂•3H₂O, CuSO₄•5H₂O, Fe₂(SO₄)₃•H₂O, FeCl₃•6H₂O, Ni(OAc)₂•H₂O, and Mn(OAc)₂•H₂O were purchased from Energy Chemical Co., Ltd. (Shanghai, China).

Na₂SO₄•10H₂O, NaHSO₄•H₂O, Na₂HPO₄•12H₂O, Na₃PO₄•12H₂O, K₃PO₄•3H₂O, BeSO₄•4H₂O, CaCl₂•2H₂O, and FeCl₂•4H₂O were purchased from Aladdin Chemistry Co., Ltd. (Shanghai, China).

K₂HPO₄•3H₂O, KF•2H₂O, MgHPO₄•3H₂O, Ni(OAc)₂•4H₂O, and NiCl₂•6H₂O were purchased from Sinopharm Chemical Reagent Co., Ltd (Beijing, China). CaCl₂•6H₂O, CaSO₄•1/2H₂O, and Ca(HSO₄)•2H₂O were purchased from Acros Organics Co., Ltd. (USA).

Inorganic salt hydrates $Na_2SO_4 \cdot 2H_2O_1^1 Na_2HPO_4 \cdot 8H_2O_2^2 Na_3PO_4 \cdot 8H_2O_3^3$ BeSO_4 \cdot 2H_2O_4^4 MgSO_4 \cdot 6H_2O_5^5 MgSO_4 \cdot 5H_2O_5^5 MgSO_4 \cdot 4H_2O_5^5 MgSO_4 \cdot 3H_2O_5^5 MgCl_2 \cdot 5H_2O_6^6 Cu(NO_3)_2 \cdot 2H_2O_7^7 CuSO_4 \cdot 2H_2O_8^8 and NiCl_2 \cdot 4H_2O^9 were prepared according to the reported literature.

3. General Information for Starting materials

Starting materials **1a-1l** and **1p-1v** were prepared according to our reported procedure and the spectroscopic data were consistent with the reported values.¹⁰ **1m** and **1n** were synthesized as following procedures:

To a mixture of 4-bromo-2-methylisoindolin-1-one (1 mmol), arylboronic acid (1.5 mmol), Cs₂CO₃ (2 mmol) and Pd(PPh₃)₄ (2 mol %) was charged degassed toluene (6 mL) and MeOH (2 mL). The mixture was pumped and refilled with nitrogen three times

and stirred at 80°C for 24 h. After the reaction, 10 mL H₂O was poured into the mixture, which was then extracted three times with 10 mL CH₂Cl₂. The organic layer was separated, dried over Na₂SO₄, concentrated, and purified by silica gel column chromatography (petroleum ether/EtOAc = 3:1) to provide the coupling products.

Compound 1m: white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.79 (m, 1H), 7.61-7.56 (m, 2H), 7.53-7.47 (m, 4H), 7.46-7.41 (m, 1H), 4.47 (s, 2H), 3.22 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.7, 139.4, 137.8, 136.9, 135.7, 133.6, 131.3, 130.0, 129.1, 128.3, 122.0, 51.9, 29.4; **ESI-MS** (ESI+) calcd for C₁₅H₁₄NO [M+H]⁺: 224.10; found: 224.10.

Compound 1n: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.88-7.84 (m, 1H), 7.57-7.51 (m, 1H), 7.51-7.46 (m, 1H), 7.46-7.40 (m, 1H), 7.28-7.24 (m, 1H), 7.11-7.02 (m, 2H), 4.28 (s, 2H), 3.82 (s, 3H), 3.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 139.7, 138.1, 136.9, 135.6, 133.0, 132.0, 130.4, 128.9, 128.2, 128.1, 125.9, 122.4, 51.7, 29.4, 19.9; **ESI**-

MS (ESI+) calcd for $C_{16}H_{16}NO_2$ [M+H]⁺: 254.11; found: 254.10.

Synthesis of 1o

To a Schlenk tube was added cyclohex-1-en-1-ylboronic acid (1 mmol), 4-bromo-2methylisoindolin-1-one (1 mmol), PdXPhosG2 (1% mmol), Pd/C (0.12 mmol) and K_3PO_4 (3 mmol). The tube was purged with nitrogen, then 1,4-dioxane and water (vol: vol = 4:1) were added. The reaction mixture was stirred at 80°C for 4 h, followed by the addition of NH₄HCO₃ in MeOH (1.25 M) (10 equiv.). Following this, the reaction was stirred for 16 h at room temperature. After the reaction was completed, 15 mL H₂O

was poured into the mixture, which was then extracted three times with 15 mL EtOAc. The organic phases were combined and dried over anhydrous Na_2SO_4 . After the removal of the solvent under reduced pressure, the crude mixture was purified by column chromatography on silica gel (petroleum ether /EtOAc = 4:1) to give the **10** as a white solid.

Compound 10: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.53-7.36 (m, 3H), 4.47 (s, 2H), 3.03 (s, 3H), 2.33-2.27 (m, 1H), 2.19-2.12 (m, 1H), 1.81-1.56 (m, 5H), 1.50-1.17 (m, 4H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 168.0, 142.7, 133.4, 132.8, 128.7, 128.6, 127.7, 52.2, 33.2, 29.3, 28.5, 26.0, 25.6; **ESI-MS** (ESI+) calcd for C₁₅H₂₀NO [M+H]⁺:

230.15; found: 230.20.

4. General Procedure for products 2a-2w

Isoindolinone derivatives (1 mmol), Na₂S₂O₈ (2 mmol), MgSO₄·2H₂O (1 mmol), Mn(OAc)₃ (replaced with CuSO₄ in the preparation of *N*-phenylisoindolinone derivatives) (20% mmol), TBAI (20% mmol) and distilled CH₃CN were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N₂ backfill three times, the mixture was stirred at 90°C for 36 h. After the reaction, suction filtration to remove insolubles, then the crude mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 8:1) to give the ketone products **3a-3w**, then hexane/EtOAc = 2:1 to give the amide products **2a-2w**.

5. Determination of Water Content by Karl Fischer Titration

The KF titration was carried out with a Karl Fischer titrator ZDJ-2S from Beijing

Xianqu Weifeng Technology Development Co., Ltd., using the Karl Fischer Reagents (without pyridine, 3-5 mg H₂O/mL), purchased from Sinopharm Chemical Reagent Co., Ltd (Beijing, China). The polarising current for bipotentiometric end-point determination was 28 μ A. The end-point criterion was the drift stabilization (30 g H₂O min⁻¹). The water content was calculated as described by Scaccia,¹¹ and the measurement was corrected for the baseline drift, defined as the residual or penetrating water that the apparatus removes per minute. Samples were analyzed three times each.

5.1 Preparation of Samples

Water or hydrates and distilled CH_3CN (4 mL) were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N₂ backfill three times, the mixture was stirred at 90°C for a certain time.

5.2 Procedure

The baseline drift was at first measured under certain conditions as follows. 30 mL MeOH was added to the titration vessel and pre-titrated to dryness. Then, the dried solvent was kept in the vessel (without sample) for 1 h under stirring and subsequently titrated with a stop-delay time of 60 s. The baseline drift, in μ g H₂O/mL, was calculated from the KF reagent volume added to the working medium to keep the vessel dry during the chosen time and take into account the water equivalent of the reagent.

The Karl Fischer Reagents were calibrated by 10 μ L H₂O and got the F value of Fisher's test solution.

Then, an accurately weighed sample was introduced into the titration vessel and kept vigorously stirring. After reaching the endpoint, took a reading of the water content of samples. The values of water content were based on the average of three runs.

6. Chromatographic Conditions

Analyses were performed with a Shimadzu LC-20AP HPLC instrument equipped with a binary gradient pump, an autosampler, a column oven, and diode-array detection. An Agilent ZORBAX Eclipse Plus C18 column (2.1 mm \times 150 mm, 3.5 µm) was used as

the stationary phase. The composition of mobile phases was acetic acid in water (0.5%, v/v) (A) and methanol (B). The method's base composition of 30% B was initialized and the linear gradient from 30 to 50% of B was applied from 0 to 13 min. From 13 to 15 min, the linear gradient from 50 to 95%. From 15 to 18 min, the composition of B was kept at 95%. The flow rate was 0.2 mL min⁻¹, and the temperature of the column oven was 30°C. The detection wavelength was 254 nm.

References

(1) Donkers, P. A. J., Linnow, K., Pel, L., Steiger, M., Adan, O. C. G. Na₂SO₄·10H₂O dehydration in view of thermal storage. *Chem. Eng. Sci.*, **2015**, *134*, 360-366.

(2) Ghule, A., Bhongale, C., Chang, H. Monitoring dehydration and condensation processes of Na₂HPO₄·12H₂O using thermo-Raman spectroscopy. *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, **2003**, *59*, 1529-1539.

(3) Ghule, A., Murugan, R., Chang, H. Thermo-Raman studies on dehydration of Na₃PO₄·12H₂O. *Thermochim. acta*, **2001**, *371*, 127-135.

(4) Johnson Jr, D. W., Gallagher, P. K. Kinetics of the Thermal Decomposition of BeSO₄. *J. Am. Ceram.*, **1972**, *55*, 232-233.

(5) L. F. Yang, L. D. Dai, H. P. Li, H. Y. Hu, M. L. Hong, X. Y. Zhang. The Phase Transition and Dehydration in Epsomite under High Tempera-ture and High Pressure, *Crystals*, **2020**, *10*, 75-84.

(6) Zhou, H., Zhang, D. Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl₂·6H₂O composites. *Sol Energy*, **2019**, *184*, 202-208.

(7) Morozov, I. V., Znamenkov, K. O., Korenev, Y. M., Shlyakhtin, O. A. Thermal decomposition of Cu(NO₃)₂·3H₂O at reduced pressures. *Thermochim. acta*, **2003**, *403*, 173-179.

(8) Fu, X., Yang, G., Sun, J., Zhou, J. Vibrational spectra of copper sulfate hydrates investigated with low-temperature Raman spectroscopy and Terahertz time domain spectroscopy. *J. Phys. Chem.*, **2012**, *116*, 7314-7318.

(9) Charles, J. N., Deshpande, N. D., Deshpande, D. A. Dehydration of NiCl₂·6H₂O. *Thermochim. acta*, **2001**, *375*, 169-176.

(10) H. Lai, J. Xu, J. Lin, D. Zha, Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. *Org. Biomol. Chem.*, **2021**, *19*, 7621-7626.

(11) S. Scaccia, Water determination in composite PEO-based polymer electrolytes by volumetric Karl Fischer titration method. *Talanta*, **2005**, *67*, 678-681.

(12) Wang, J., Zhang, C., Ye, X. Q., Du, W., Zeng, S., Xu, J. H., Yin, H. An efficient and practical aerobic oxidation of benzylic methylenes by recyclable N-hydroxyimide. *RSC Adv.*, **2021**, *11*, 3003-3011.

7. Optimization Experiments

,

	h	l <mark>gSO₄[∙]nH₂O</mark> <u>CH</u> Na₂ Mn(OA	$ \begin{array}{c} & & \\ & & \\ S_2 Q_{20\%} \\ & \\ & \\ c_{3} \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		
Entry	Oxidant	Equiv.	Conv. (%)	Yield (2a)	Yield (3a)
1	/	/	7	0	0
2	$Na_2S_2O_8$	1	30	5	15
3	$Na_2S_2O_8$	1.5	51	23	17
4	$Na_2S_2O_8$	2	92	68	21
5	$Na_2S_2O_8$	3	100	26	45
6 ^b	$Na_2S_2O_8$	2	9	3	9

Table S1: Screening of Equivalents of Oxidants^a

^aReaction conditions: 2-methylisoindolin-1-one (1 mmol), Na₂S₂O₈, MgSO₄•2H₂O (2 mmol), Mn(OAc)₃ (20% mmol), TBAI (20% mmol) and CH₃CN (4 mL) at 90°C for 36 h under N₂ atmosphere. ^bThe absence of Mn(OAc)₃.

	O ∬N— + CH₃CN + wate ∬H	r source $rac{{ m Na_2S_2O_8}}{{ m Mn}~({ m OAc})_3}^{ m (OAc)_3}}$ TBAI (20	2 equiv.) 20% mmol) % mmol)	$ \begin{array}{c} 0 \\ N \\ HN \\ 2a \end{array} $	O N Ja
Entry	X•nH ₂ O	Water Content $(wt\%) (N = 3)^b$	Conv. (%)	Yield ^c (2a)	Yield (3a)
1	HCOOLi•2H ₂ O	0.819 ± 0.015	1	n.d.	n.d.
2	LiSO ₄ •H ₂ O	0.586 ± 0.014	25	6	17
3	LiI•3H ₂ O	0.593 ± 0.009	50	38	11
4	LiCl•H ₂ O	0.789 ± 0.012	74	7	48
5	LiOAc•2H ₂ O	0.848 ± 0.014	83	18	53
6	Na ₂ SO ₄ •10H ₂ O	0.685 ± 0.011	66	36	27
7	Na ₂ SO ₄ •2H ₂ O	0.575 ± 0.011	55	35	15
8	NaHSO ₄ •H ₂ O	0.432 ± 0.013	69	46	20
9	Na ₂ CO ₃ •10H ₂ O	0.769 ± 0.003	61	n.d.	36
10	Na ₂ CO ₃ •H ₂ O	0.184 ± 0.010	50	13	35
11	NaOAc•3H ₂ O	0.476 ± 0.011	67	13	48
12	NaOAc•H ₂ O	0.134 ± 0.012	53	8	35
13	Na ₂ HPO ₄ •12H ₂ O	0.829±0.019	78	7	53
14	Na ₂ HPO ₄ •8H ₂ O	0.573 ± 0.021	56	33	23
15	Na ₃ PO ₄ •12H ₂ O	0.839 ± 0.003	91	24	51
16	Na ₃ PO ₄ •8H ₂ O	0.725 ± 0.015	77	31	28
17	K ₂ HPO ₄ •3H ₂ O	0.795 ± 0.018	81	n.d.	53
18	$K_3PO_4 \cdot 3H_2O$	0.042 ± 0.015	83	16	49
19	$K_2C_2O_4$ • H_2O	0.795 ± 0.014	33	n.d.	25
20	KF•2H ₂ O	0.823 ± 0.016	78	15	45
21	K ₂ CO ₃ •1.5H ₂ O	0.440 ± 0.014	85	18	48

Table S2: Screening of Water Sources^a

22	BeSO ₄ •4H ₂ O	0.548 ± 0.011	77	11	32
23	BeSO ₄ •2H ₂ O	0.222 ± 0.013	68	22	16
24	MgSO ₄ •7H ₂ O	0.625 ± 0.010	96	46	41
25	MgSO ₄ •6H ₂ O	0.506 ± 0.009	95	52	37
26	MgSO ₄ •5H ₂ O	0.479 ± 0.008	95	55	32
27	MgSO ₄ •4H ₂ O	0.441 ± 0.010	93	62	29
28	MgSO ₄ •3H ₂ O	0.306 ± 0.016	93	67	24
29	MgSO ₄ •2H ₂ O	0.219 ± 0.013	92	68	21
30	MgSO ₄ •H ₂ O	0.152 ± 0.010	57	33	18
31	Mg(OAc) ₂ •4H ₂ O	0.779 ± 0.012	65	n.d.	43
32	Mg(OAc) ₂ •H ₂ O	0.268 ± 0.009	65	8	36
33	MgHPO ₄ •3H ₂ O	0.222 ± 0.013	100	18	42
34	$Mg_3(PO_4)_2 \bullet 5H_2O$	0.158 ± 0.014	90	14	18
35	$Mg_3(PO_4)_2$ •4 H_2O	0.105 ± 0.022	74	16	15
36	Mg5(CO3)4(OH)2• 5H2O	0.177 ± 0.010	80	n.d.	21
37	MgCl ₂ •6H ₂ O	0.403 ± 0.011	77	23	26
38	MgCl ₂ •5H ₂ O	0.189 ± 0.015	71	32	30
39	CaCl ₂ •6H ₂ O	0.602 ± 0.011	56	n.d.	35
40	CaCl ₂ •5H ₂ O	0.338 ± 0.017	37	n.d.	25
41	CaCl ₂ •2H ₂ O	0.295 ± 0.012	31	n.d.	19
42	CaBr•2H ₂ O	0.587 ± 0.017	94	55	7
43	CaBr•H ₂ O	0.548 ± 0.011	80	50	n.d.
44	CaSO ₄ •2H ₂ O	0.288 ± 0.018	65	n.d.	37
45	CaSO ₄ •H ₂ O	0.189 ± 0.019	69	39	26
46	CaSO ₄ •1/2H ₂ O	0.115 ± 0.011	65	39	24
47	Ca(HSO ₄)•2H ₂ O	0.200 ± 0.010	73	7	26

48	Ca(OAc) ₂ •H ₂ O	0.214 ± 0.011	50	n.d.	29
49	$Ca(C_2O_4)_2 \cdot 2H_2O$	0.109 ± 0.016	38	n.d.	19
50	SrCl ₂ •6H ₂ O	0.796 ± 0.009	70	24	36
51	SrCl ₂ •5H ₂ O	0.303 ± 0.008	59	25	19
52	SrOAc•1/2H ₂ O	0.638 ± 0.022	64	8	44
53	BaCl ₂ •2H ₂ O	0.767 ± 0.012	56	n.d.	38
54	Cu(COOCF ₃) ₂ •H ₂ O	0.012 ± 0	66	26	18
55	CuCl ₂ •2H ₂ O	0.664 ± 0.011	73	35	26
56	Cu(NO ₃) ₂ •3H ₂ O	0.839 ± 0.010	75	21	42
57	Cu(NO ₃) ₂ •2H ₂ O	0.678 ± 0.020	73	26	40
58	$CuSO_4 \bullet 5H_2O$	0.647 ± 0.019	84	35	39
59	CuSO ₄ •2H ₂ O	0.415 ± 0.007	66	40	21
60	Cu(OAc) ₂ •H ₂ O	0.580 ± 0.012	51	6	26
61	Fe ₂ (SO ₄) ₃ •H ₂ O	0.588 ± 0.017	67	26	31
62	FeCl ₃ •6H ₂ O	0.598 ± 0.013	39	n.d.	17
63	FeCl ₂ •4H ₂ O	0.516 ± 0.021	31	13	15
64	Ni(OAc) ₂ •4H ₂ O	0.645 ± 0.014	69	16	24
65	Ni(OAc) ₂ •H ₂ O	0.422 ± 0.021	52	n.d.	48
66	NiCl ₂ •6H ₂ O	0.732 ± 0.016	65	17	19
67	NiCl ₂ •4H ₂ O	0.662 ± 0.012	50	25	22
68	Mn(OAc) ₂ •H ₂ O	0.758 ± 0.049	99	7	54

^aReaction conditions: 2-methylisoindolin-1-one (1 mmol), Na₂S₂O₈ (2 mmol), water source (2 mmol, take MgSO₄•7H₂O as example, 2/7 mmol was weighed), Mn(OAc)₃ (20% mmol), TBAI (20% mmol) and CH₃CN (4 mL) at 90°C for 36 h under N₂ atmosphere. ^bThe water contents were measured at 12 hours. ^cYield detected by HPLC based on three runs of each reaction.

Figure S1. The water content of $MgSO_4$ hydrates as a function of time.

Figure S2. HPLC spectra of the use of 1 equivalent of MgSO₄•2H₂O (A); HPLC spectra of the use of 8 equivalents of free-water (B).

O H	+ CH ₃ CN + MgSO ₄ ·2H ₂ O	Oxidants (2 equiv.) (20% mmol) Mn (OAc) ₃ TBAI (20% mmol)		
Entry	Oxidants	Conv. (%)	Yield ^b (2a)	Yield (3a)
1	/	11	n.d.	n.d.
2	$Na_2S_2O_8$	92	68	21
3	$K_2S_2O_8$	55	19	34
4	$(NH_4)_2S_2O_8$	61	26	30
5	^t BuOO ^t Bu	100	n.d.	69
6	TBHP	82	n.d.	54
7	DDQ	43	n.d.	n.d.
8	I_2	0	n.d.	n.d.
9	Ce(NH ₄) ₂ (NO ₃) ₆	65	48	16
10	KMnO ₄	99	n.d.	86
11	m-CPBA	34	15	n.d.

Table S3: Screening of Oxidants^a

^aReaction conditions: 2-methylisoindolin-1-one (1 mmol), Oxidants (2 mmol), $Mn(OAc)_3$ (20% mmol), TBAI (20% mmol), MgSO₄•2H₂O (1 mmol) and CH₃CN (4 mL) at 90°C for 36 h under N₂ atmosphere. ^bYield detected by HPLC based on three runs of each reaction.

O H	+ CH ₃ CN + MgSO	4[•] 2H₂O	(2 equiv.) (20% mmol))% mmol) H 2a	$ \begin{array}{c} 0 \\ N_{-} + \\ 3a \end{array} $
Entry	PTCs	Conv. (%)	Yield ^b (2a)	Yield (3a)
1	/	40	11	10
2	TBAI	92	68	21
3	TBAB	100	0	84
4	TBAC	91	18	49
5	TBAF	92	22	41
6	TEAB	99	n.d.	69
7	TEAI	40	8	22
8	18-crown-6	82	n.d.	52
9	TBAHS	42	n.d.	35
10	TEBAC	47	n.d.	37
11	TPPB	100	18	71
12	PTMA	92	53	15
13	BTAI	96	57	36

Table S4: Screening of PTCs^a

^aReaction conditions: 2-methylisoindolin-1-one (1 mmol), Na₂S₂O₈ (2 mmol), Mn(OAc)₃ (20% mmol), PTCs (20% mmol), MgSO₄•2H₂O (1 mmol) and CH₃CN (4 mL) at 90°C for 36 h under N₂ atmosphere. ^bYield detected by HPLC based on three runs of each reaction. TBAI: Tetrabutylammonium Iodide; TBAB: Tetrabutylammonium Bromide; TBAC: Tetrabutylammonium Chloride; TBAF: Tetrabutylammonium Fluoride; TEAB: Tetraethylammonium Bromide; TEAI: Tetraethylammonium Iodide; TBAHS: Tetrabutylammonium Hydrogen Sulfate; TEBAC: Benzyltriethylammonium Chloride; TPPB: Tetraphenylphosphonium Bromide; PTMA: Phenyltrimethylammonium Iodide. BTAI: Benzyltriethylammonium Iodide.

	⁺ CH ₃ CN ⁺ MgSO4 ^{•2H} 2O	Na ₂ S ₂ O ₈ (2 equiv.) TBAI (20% mmol) Additives (20% mmol)		S Sp
Entry	Additives	Conv. (%)	Yield ^b (2p)	Yield (3p)
1	/	21	6	11
2	Mn(OAc) ₃	79	37	31
3	CuBr	95	61	23
4	AgNO ₃	100	44	49
5	$Cu(OAc)_2$	81	32	35
6	CuI	55	20	29
7	AgOTf	78	36	18
8	$Mn(OAc)_2$	47	23	15
9	Fe(OAc) ₂	47	17	21
10	Cu(CN) ₄ Ph ₄ PF ₆	39	n.d.	22
11	CuBr ₂	68	31	32
12	FeCl ₃	26	n.d.	11
13	CuSO ₄	100	65	23
14	(CF ₃ SO ₂) ₃ Sc	48	14	18
15	CuCN	100	42	38

T٤	ıb	le	S5	5:	S	creenin	g ()f	A	da	lit	tives	for	N	-p]	henv	lis	oin	do	olina	one ^a
	•~		\sim -	••	\sim .		<u> </u>							÷ •				~ ~ ~ ~			

^aReaction conditions: 2-phenylisoindolin-1-one (1 mmol), $Na_2S_2O_8$ (2 mmol), Additives (20% mmol), TBAI (20% mmol), $MgSO_4$ •2H₂O (1 mmol) and CH₃CN (4 mL) at 90°C for 36 h under N₂ atmosphere. ^bYield detected by HPLC based on three runs of each reaction.

8. Gram-scale preparation of 4a-4o

8.1 Synthesis of 4a

1,1-diphenylpropan-2-one (10 mmol), MgSO₄•2H₂O (10 mmol), Na₂S₂O₈ (20 mmol), Cu(OTf₃)₂ (1 mmol) and distilled CH₃CN (30 mL) were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N₂ backfill three times, the mixture was stirred at 90°C overnight. After the reaction was completed, suction filtration to remove insolubles, then the crude mixture was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) to give pure product **4a** (1.55 g, 58%).

8.2 Synthesis of 4b-4f

A deoxygenated solution of CAN (2.3 equiv.) in acetonitrile (30 mL) was added dropwise to a solution of substrates (1 equiv.), sodium azide (1.5 equiv.) and

MgSO₄•2H₂O (1 equiv.) in acetonitrile (20 mL) stirred at 0°C under N₂ atmosphere. After the reaction was completed, the solvent was removed and the residue diluted with water (40 mL) and extracted with ethyl acetate (3×40 mL). The combined organic extract was washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel, using petroleum ether-EtOAc (8:1-2:1) as eluent to give pure product **4b-4f**.

8.3 Synthesis of 4g

Naphthalen-2-ol (10 mmol), 4-nitrobenzaldehyde (10 mmol), MgSO₄·2H₂O (10 mmol), Ce(SO₄)₂ (10 mmol) and distilled CH₃CN (40 mL) were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N₂ backfill three times, the mixture was stirred at 85°C for 16 h. After the reaction was completed, 50 mL H₂O was poured into the mixture, which was then extracted three times with 50 mL EtOAc. The organic phases were combined and dried over anhydrous Na₂SO₄. After the removal of the solvent under reduced pressure, the crude mixture was purified by column chromatography on silica gel (petroleum ether /EtOAc = 2:1) to give the **4g** as a white solid (1.58 g, 47%).

8.4 Synthesis of 4h and 4i

N-heteroaryl aldehydes (10 mmol), MgSO4•2H₂O (10 mmol), K₂S₂O₈ (10 mmol), Cu(OTf)₂ (2 mmol), and distilled CH₃CN (40 mL) were added to a 75 mL reaction tube. Then the reaction mixture was stirred at 90°C for 6 h. Upon completion, the resulting mixture was diluted with CH₂Cl₂ (50 mL) and filtered through Celite. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel using petroleum ether-EtOAc (10:1-6:1) as eluent to give pure product **4h** (1.15 g, 70% yield) and **4i** (1.34 g, 61% yield).

8.5 Synthesis of 4j

$$\overset{O}{\longleftarrow} \overset{O}{\longleftarrow} \overset{H}{\longleftarrow} \overset{H}{\longleftarrow} \overset{H}{\longleftarrow} \overset{O}{\longleftarrow} \overset{O}{\longleftarrow} \overset{H}{\longleftarrow} \overset{H}{\longleftarrow} \overset{H}{\longleftarrow} \overset{O}{\longleftarrow} \overset{H}{\longleftarrow} \overset{H}{\longrightarrow} \overset{H}{\overset{H}{\longrightarrow} \overset{H}{\overset}{\overset{H}{\overset}{\overset{H}{\overset}{\overset{H}{\overset}{\overset}{\overset{H}{\overset}{\overset{H}{\overset}{\overset{H}{\overset}{\overset{H$$

An oven-dried 75 mL Schlenk tube containing a magnetic stir bar was charged with isobutyl benzoate (10 mmol), MgSO₄•2H₂O (10 mmol), HIO₃ (20 mmol), NHPI (4 mmol), and distilled CH₃CN (40 mL). The Schlenk tube was purged with N₂ and sealed with a screw cap. The reaction mixture was stirred at 80°C for 24 h. After the reaction, suction filtration to remove insolubles, then the crude mixture was purified by flash column chromatography on silica gel (petroleum ether /EtOAc = 7:3) gave the product **4j** as a white solid (1.67 g, 71% yield).

8.6 Synthesis of 4k

An oven-dried 75 mL Schlenk tube containing a magnetic stir bar was charged with adamantine (10 mmol), MgSO₄•2H₂O (10 mmol), HIO₃ (12 mmol), NHPI (2 mmol), and distilled CH₃CN (40 mL). The Schlenk tube was purged with N₂ and sealed with a screw cap. The reaction mixture was stirred at 80°C for 24 h. After the reaction, suction filtration to remove insolubles, then the crude mixture was purified by flash column chromatography on silica gel (petroleum ether /EtOAc = 6:4 then MeOH) gave the

product 4k as a white solid (1.45 g, 58% yield).

8.7 Synthesis of 4l and 4m

Alkenes (10 mmol), MgSO₄•2H₂O (10 mmol), F-TEDA-BF₄ (20 mmol), and distilled CH₃CN (40 mL) were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N₂ backfill three times, the mixture was stirred at 90°C for 24 h. 50 mL H₂O was poured into the mixture, which was then extracted three times with 50 mL EtOAc. The organic phases were combined and dried over anhydrous Na₂SO₄. After the removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using petroleum ether-EtOAc (8:1-4:1) as eluent to give pure product **4I** (1.12 g, 58% yield) and **4m** (1.37 g, 53% yield).

8.8 Synthesis of 4n and 4o

Diphenylmethane or 1,2,3,4-tetrahydronaphthalene (10 mmol), MgSO₄•2H₂O or H₂O (10 mmol), benzonitrile (200 mmol), DDQ (1.2 mmol), and distilled 1,2-dichloroethane (30 mL) were introduced into a Schlenk tube. After evacuation and N₂ backfill three times, the mixture was stirred at 90°C for 24 h. 50 mL H₂O was poured into the mixture, which was then extracted three times with 50 mL dichloromethane. The organic phases were combined and dried over anhydrous Na₂SO₄. After the removal of the solvent

under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether /EtOAc = 50:1) to give the ketone products **4n-1** and **4o-1**, then petroleum ether /EtOAc = 4:1 to give the amide products as a white solid (1.12 g, 39% yield for **4n** and 0.89 g, 35% yield for **4o**).

9. Characterization Data of Products

Compound 2a: pale yellow solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.61 (d, *J* = 9.2 Hz, 1H), 7.71-7.66 (m, 1H), 7.66-7.60 (m, 1H), 7.58-7.51 (m, 2H), 6.33 (d, *J* = 9.2 Hz, 1H), 2.88 (s, 3H), 1.96 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 167.7, 142.5, 132.1, 131.7, 129.4,

123.0, 122.9, 65.1, 26.5, 23.3; **HRMS** (ESI+) calcd for $C_{11}H_{13}N_2O_2$ [M+H]⁺: 205.0899; found: 205.0898.

Compound 3a: white solid; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.20-8.06 (m, 4H), 3.64 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.5, 133.9, 132.2, 123.2, 23.9; **HRMS (ESI+)** calcd for C₉H₈NO₂ [M+H]⁺: 162.0477; found: 162.0502.

Compound 2b: white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.5 Hz, 1H), 7.59-7.54 (m, 1H), 7.52-7.45 (m, 2H), 6.68 (d, J =9.9 Hz, 1H), 5.90-5.83 (m, 1H), 4.46-4.36 (m, 1H), 2.12 (s, 3H), 1.43 (d, J = 6.9 Hz, 3H), 1.38 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 167.7, 143.1, 132.2, 132.1, 129.4, 123.0, 122.8, 62.6, 44.3, 23.4, 20.9, 20.4; HRMS (ESI+) calcd for C₁₃H₁₇N₂O₂ [M+H]⁺: 233.1212; found: 233.1201.

Compound 3b: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.87-7.78 (m, 2H), 7.75-7.67 (m, 2H), 4.55 (q, *J* = 6.8 Hz, 1H), 1.54-1.46 (m, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.4, 133.7, 132.1, 123.0, 43.0, 20.1; **HRMS (ESI+)** calcd for C₁₁H₁₂NO₂ [M+H]⁺: 190.0790; found:

190.0852.

Compound 2c: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.62 (d, *J* = 8.6 Hz, 1H), 7.78-7.61 (m, 2H), 7.58-7.51 (m, 2H), 6.43-6.38 (m, 1H), 3.66-3.57 (m, 1H), 3.11-3.02 (m, 1H), 1.94 (s, 3H), 1.61-1.49 (m, 2H), 1.33-1.18 (m, 2H), 0.88 (td, *J* = 7.3, 2.0

Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 167.6, 142.8, 132.1, 131.8, 129.4, 123.1, 63.1, 39.1, 30.1, 30.0, 20.1, 20.0, 13.6; HRMS (ESI+) calcd for C₁₄H₁₉N₂O₂ [M+H]⁺: 247.1368; found: 247.1370.

Compound 3c: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.88-7.84 (m, 2H), 7.74-7.71 (m, 2H), 3.71 (t, *J* = 12.8 Hz, 2H), 1.73-1.64 (m, 2H), 1.45-1.35 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.5, 133.8, 132.2, 123.1, 37.8, 30.6,

20.1, 13.6; **HRMS (ESI+)** calcd for C₁₂H₁₄NO₂ [M+H]⁺: 204.0946; found: 204.0969.

Compound 2d: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.62 (d, *J* = 9.3 Hz, 1H), 7.70-7.67 (m, 1H), 7.67-7.64 (m, 1H), 7.59-7.52 (m, 2H), 6.41 (d, *J* = 9.3 Hz, 1H), 3.70-3.60 (m, 1H), 3.13-3.04 (m, 1H), 1.95 (s, 3H), 1.57-1.42 (m, 3H), 0.89 (dd, *J* =

6.3, 1.7 Hz, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.0, 166.7, 143.7, 132.6, 132.4, 129.7, 123.8, 122.9, 63.2, 37.8, 37.0, 25.8, 23.1, 23.0, 22.6; HRMS (ESI+) calcd for C₁₅H₂₁N₂O₂ [M+H]⁺: 261.1525; found: 261.1527.

Compound 3d: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.83 (m, 2H), 7.78-7.68 (m, 2H), 3.79-3.67 (m, 2H), 1.71-1.52 (m, 3H), 1.06-0.93 (m, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.4, 133.8, 132.2, 123.1, 37.3, 36.5, 25.9, 22.4; **HRMS (ESI+)**

calcd for C₁₃H₁₆NO₂ [M+H]⁺: 218.1103; found: 218.1135.

Compound 2e: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.70-7.65 (m, 1H), 7.58-7.52 (m, 1H), 7.48-7.43 (m, 2H), 6.67 (d, *J* = 9.8 Hz, 1H), 6.02 (d, *J* = 10.3 Hz, 1H), 4.05-3.93 (m, 1H), 2.13 (s, 3H), 1.97-1.61 (m,7H), 1.47-1.32 (m, 2H), 1.29-1.13 (m, 1H);

¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.3, 166.9, 144.3, 132.5, 129.6, 123.5, 122.8, 63.0,
52.2, 31.3, 30.5, 26.2, 26.1, 25.6, 23.3; HRMS (ESI+) calcd for C₁₆H₂₁N₂O₂ [M+H]⁺:
273.1525; found: 273.1527.

Compound 3e: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83-7.77 (m, 2H), 7.71-7.67 (m, 2H), 4.15-4.06 (m, 1H), 2.28-2.14 (m, 2H), 1.95-1.81 (m, 2H), 1.79-1.64 (m, 3H), 1.46-1.20 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.5, 133.7, 132.1, 123.0, 50.9,

29.9, 26.0, 25.1; **HRMS (ESI+)** calcd for $C_{14}H_{16}NO_2$ [M+H]⁺: 230.1103; found: 230.1135.

Compound 2f: white solid; ¹H **NMR** (400 MHz, DMSO-*d*₆) δ 8.64 (d, *J* = 9.2 Hz, 1H), 7.75 (d, *J* = 7.4 Hz, 1H), 7.69-7.63 (m, 1H), 7.61-7.56 (m, 1H), 7.53 (d, *J* = 7.1 Hz, 1H), 7.35-7.22 (m, 5H), 6.35 (d, *J* = 9.2 Hz, 1H), 4.77 (d, *J* = 15.3 Hz, 1H), 4.33 (d, *J* = 15.3 Hz, 1H), 1.84 (s, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ

171.0, 167.6, 142.8, 137.1, 132.3, 131.7, 129.5, 128.6, 128.4, 127.6, 123.3, 123.2, 63.6, 43.9, 23.2; **HRMS (ESI+)** calcd for C₁₇H₁₇N₂O₂ [M+H]⁺: 281.1212; found: 281.1220.

Compound 3f: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.86-7.80 (m, 2H), 7.73-7.67 (m, 2H), 7.45-7.40 (m, 2H), 7.33-7.22 (m, 3H), 4.84 (s, 2H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 168.2, 137.1, 135.0, 132.0, 129.0, 127.9, 127.8, 123.7, 41.3; **HRMS**

(ESI+) calcd for $C_{15}H_{11}NO_2Na [M+Na]^+$: 260.0790; found: 260.0752.

Compound 2g: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.54 (d, J = 9.1 Hz, 1H), 7.48-7.45 (m, 1H), 7.44-7.35 (m, 2H), 6.25 (d, J = 9.1 Hz, 1H), 2.84 (s, 3H), 2.38 (s, 3H), 1.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 167.8, 143.0, 142.9, 130.2, 129.2, 123.5,

122.7, 65.0, 26.5, 23.3, 21.8; **HRMS (ESI+)** calcd for C₁₂H₁₅N₂O₂ [M+H]⁺: 219.1055; found: 219.1050.

Compound 3g: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.73-7.69 (m, 1H), 7.65-7.62 (m, 1H), 7.51-7.46 (m, 1H), 3.18-3.14 (m, 3H), 2.50 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.7, 168.5, 145.1, 134.4, 132.6, 129.6, 123.7, 123.1, 23.9, 22.0; **HRMS (ESI+)** calcd

for C₁₀H₁₀NO₂ [M+H]⁺: 176.0633; found: 176.0656.

223.0802.

Compound 3h: white solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.94-7.90 (m, 1H), 7.77-7.73 (m, 1H), 7.63-7.59 (m, 1H), 3.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5 (d, *J*_{C-F} = 22.4 Hz), 167.0 (d, *J*_{C-F} = 2.83 Hz), 165.0, 135.1 (d, *J*_{C-F} = 9.57 Hz), 128.0 (d, *J*_{C-F} =

2.83 Hz), 125.5 (d, $J_{C-F} = 9.39$ Hz), 120.8, 120.7, 111.1 (d, $J_{C-F} = 2.83$ Hz), 24.2; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -103.5 – -103.6 (m); HRMS (ESI+) calcd for C₉H₇FNO₂ [M+H]⁺: 180.0383; found: 180.0405.

Compound 2i: white solid; ¹**H NM**R (400 MHz, CDCl₃) δ 7.76-7.68 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 1H), 6.46 (d, *J* = 9.7 Hz, 1H), 6.23-6.20 (m, 1H), 3.03 (s, 3H), 2.20 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 166.3, 141.2, 135.3, 133.4, 125.9, 124.5, 123.7,

64.9, 26.6, 23.2; **HRMS (ESI+)** calcd for C₁₁H₁₂BrN₂O₂ [M+H]⁺: 283.0004; found: 283.0004.

Compound 3i: white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.93 (m, 1H), 7.87-7.73 (m, 1H), 7.72-7.69 (m, 1H), 3.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 166.4, 138.7, 134.8, 134.4,

129.8, 122.2, 118.4, 24.2; **HRMS (ESI+)** calcd for C₉H₇BrNO₂ [M+H]⁺: 239.9582; found: 239.9604.

123.8, 119.7, 106.0, 64.7, 55.5, 26.7, 23.3; **HRMS (ESI+)** calcd for C₁₂H₁₅N₂O₃ [M+H]⁺: 235.1004; found: 235.1022.

Compound 3j: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.74-7.71 (m, 1H), 7.31-7.30 (m, 1H), 7.14-7.11 (m, 1H), 3.90 (s, 3H), 3.14 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.3, 164.6, 134.8, 124.8, 124.1, 119.5, 108.1, 56.1, 23.9; **HRMS (ESI+)** calcd for

C₁₀H₁₀NO₃ [M+H]⁺: 192.0582; found: 192.0615.

Compound 2k: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.72 (d, J = 8.9 Hz, 1H), 8.51-8.45 (m, 1H), 8.34 (d, J = 2.1 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 6.45 (d, J = 8.9 Hz, 1H), 2.93 (s, 3H), 1.97 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.1, 164.8, 149.9, 149.1, 134.1, 127.5, 125.5, 117.7, 65.2, 27.0, 23.1; **HRMS (ESI+)** calcd for $C_{11}H_{12}N_3O_4$ [M+H]⁺: 250.0750; found: 250.0772.

Compound 21: pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.66 (m, 1H), 7.62-7.58 (m, 1H), 7.39-7.33 (m, 1H), 6.43 (d, *J* = 9.8 Hz, 1H), 6.27 (d, J = 9.9 Hz, 1H), 2.99 (s, 3H), 2.19 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) & 171.0, 166.1, 140.9, 135.6, 134.6, 131.3, 122.1, 117.9, 65.3, 26.5, 23.1; **HRMS (ESI+)** calcd for C₁₁H₁₂BrN₂O₂ [M+H]⁺: 283.0004;

found: 283.0008.

Compound 31: white solid; ¹Η NMR (400 MHz, CDCl₃) δ 7.83-7.77 (m, 2H), 7.57-7.50 (m, 1H), 3.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 167.1, 136.9, 133.9, 130.7, 128.8, 126.6, 124.6, 24.2; HRMS (ESI+) calcd for C₉H₇BrNO₂ [M+H]⁺: 239.9582; found: 239.9601.

Compound 2m: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.13 (d, J = 9.4 Hz, 1H), 7.72-7.68 (m, 1H), 7.67-7.60 (m, 2H), 7.48-7.44 (m, 2H), 7.43-7.34 (m, 3H), 6.70 (d, J = 9.4 Hz, 1H), 2.86 (s, 3H), 1.38(s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.4, 166.4, 140.4, 138.1, 138.0, 133.6, 132.7, 130.3, 128.7, 128.6, 128.0, 122.0, 64.7, 26.6, 22.3;

HRMS (ESI+) calcd for $C_{17}H_{16}N_2O_2Na$ [M+Na]⁺: 303.1212; found: 303.1246.

Compound 3m: white solid; ¹H NMR (400 MHz, CDCl₃) & 7.89-7.86 (m, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.68-7.65 (m, 1H), 7.60-7.56 (m, 2H),7.52-7.47 (m, 3H), 3.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 168.0, 141.0, 136.2, 135.9, 133.7, 133.4, 129.4, 128.7, 128.1, 127.6, 122.1, 23.9; HRMS (ESI+) calcd for C₁₅H₁₂NO₂ [M+H]⁺: 238.0790;

found: 238.0822.

Compound 2n: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.01 (d, *J* = 9.6 Hz, 1H, major), 7.96 (d, *J* = 9.6 Hz, 0.1H, minor), 7.68-7.54 (m, 4H, major), 7.52-7.48 (m, 0.5H, minor), 7.48-7.43 (m, 1.1H, major 1H, minor 0.1H), 7.42-7.38 (m, 1H, major), 6.99-

6.95 (m, 0.1H, minor), 6.84 (d, *J* = 8.8 Hz, 1H, major), 6.36-6.32 (m, 0.1H, minor), 6.30-6.22 (m, 1H, major), 3.69 (s, 0.3H, minor), 3.67 (s, 3H, major), 2.79 (s, 3.3H, major 3H, minor 0.3H), 1.38 (s, 3H, major), 1.28 (s, 0.3H, minor); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.2, 170.2, 166.9, 166.6, 156.4, 156.2, 143.8, 141.8, 138.8, 138.2, 133.9, 133.6, 133.5, 132.7, 132.6, 132.5, 130.1, 129.8, 129.4, 123.9, 123.0, 122.4, 121.9, 120.5, 114.3, 65.0, 64.9, 55.9, 26.8, 26.5, 23.2, 22.3; **HRMS (ESI+)** calcd for C₁₈H₁₉N₂O₃ [M+H]⁺: 311.1317; found: 311.1320.

Compound 3n: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.84-7.79 (m, 1H), 7.76-7.65 (m, 1H), 7.61-7.56 (m, 1H), 7.45-7.38 (m, 1H), 7.25-7.20 (m, 1H), 7.07-6.97 (m, 2H), 3.74 (s, 3H), 3.10 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.5, 156.8, 136.8, 136.4, 133.3, 132.7, 130.6, 130.2, 125.7, 121.9, 120.4, 110.8, 55.5, 23.8;

HRMS (ESI+) calcd for C₁₆H₁₄NO₃ [M+H]⁺: 268.0895; found: 268.0923.

Compound 20: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.54 (d, *J* = 10.8 Hz, 1H), 7.55-7.41 (m, 3H), 6.39 (d, *J* = 10.5 Hz, 1H), 2.82 (s, 3H), 2.58-2.49 (m, 1H), 1.89 (s, 3H), 1.80-1.63 (m, 5H), 1.51-1.16 (m, 5H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 170.3, 166.9, 144.0, 140.5, 132.7, 130.1, 129.7, 120.5, 64.1, 34.2, 33.0, 27.0, 26.3, 26.0,

23.6, 22.9, 14.0; **HRMS (ESI+)** calcd for C₁₇H₂₂N₂O₂Na [M+Na]⁺: 309.1681; found: 309.1643.

Compound 2p: white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.4 Hz, 1H), 7.75-7.69 (m, 2H), 7.69-7.65 (m, 1H), 7.62-7.56 (m, 2H), 7.48-7.41 (m, 2H), 7.31-7.22 (m, 2H), 5.81 (d, J = 10.2 Hz, 1H), 2.02 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.4, 166.2, 143.7, 137.1, 133.4, 132.0, 130.0, 129.1, 125.4, 123.7, 123.5, 123.0, 64.4, 23.0; **HRMS (ESI+)** calcd for $C_{16}H_{15}N_2O_2$ [M+H]⁺: 267.1055; found: 267.1058.

0 Ю 3p

Compound 3p: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 7.96-7.91 (m, 2H), 7.90-7.86 (m, 2H), 7.53-7.47 (m, 2H), 7.44-7.38 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 134.4, 131.8, 131.7, 129.1, 128.1, 126.6, 123.8; HRMS (ESI+) calcd for

C₁₄H₁₀NO₂ [M+H]⁺: 224.0633; found: 224.0777.

Compound 2q: white solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.72 (d, J = 9.5 Hz, 1H), 7.80 (d, J = 7.4 Hz, 1H), 7.75-7.69 (m, 1H), 7.65-7.59 (m, 1H), 7.59-7.54 (m, 3H), 7.32-7.28 (m, 2H), 7.08 (d, J=9.4 Hz, 1H), 2.95-2.87 (m, 1H), 1.81 (s, 3H),

1.23 (d, J = 6.9 Hz, 6H); ¹³C NMR (101 MHz, DMSO- d_6) δ 171.1, 166.5, 146.0, 143.5, 134.4, 133.5, 131.7, 130.1, 127.0, 123.6, 123.5, 123.4, 64.6, 33.4, 24.3, 24.2, 23.0; **HRMS (ESI+)** calcd for C₁₉H₂₁N₂O₂ [M+H]⁺: 309.1525; found: 309.1524.

Compound 3q: white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.96 (m, 2H), 7.84-7.79 (m, 2H), 7.41-7.35 (m, 4H), 3.05-2.94 (m, 1H), 1.31 (d, J = 6.8 Hz, 6H); ¹³C NMR (101) MHz, CDCl₃) δ 167.4, 148.9, 134.3, 131.8, 129.2, 127.2,

126.4, 123.7, 33.9, 23.9; **HRMS (ESI+)** calcd for $C_{17}H_{16}NO_2 [M+H]^+$: 266.1103; found: 266.1125.

Compound 2r: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) 8.73-8.64 (m, 1.8H, major 1H, minor 0.8H), 8.07-7.87 (m, 0.8H, minor), 7.81-7.75 (m, 1.8H, major 1H, minor 0.8H), 7.74-7.66 (m, 2H, major), 7.71-7.66 (m, 1.6H, minor), 7.58-7.51 (m, 3H, major), 7.51-7.46 (m, 2.6H, major 1H, minor

1.6H), 7.26-7.12 (m, 0.8H, minor), 7.12-7.03 (m, 3.6H, major 2H, minor 1.6H), 3.95-3.90 (m, 2.4 H, minor), 3.85 (s, 3H, major), 1.88 (s, 2.4 H, minor), 1.86 (s, 3H, major); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.8, 170.7, 166.5, 157.3, 142.2, 142.0, 133.8, 132.9, 132.7, 131.7, 129.9, 129.8, 128.8, 124.1, 123.6, 123.6, 123.4, 123.1, 114.2, 110.6, 64.4, 64.3, 56.6, 55.4, 23.3; **HRMS (ESI+)** calcd for C₁₇H₁₇N₂O₃ [M+H]⁺: 297.1161; found: 297.1157.

Compound 3r: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.97-7.92 (m, 2H), 7.81-7.60 (m, 2H), 7.37-7.32 (m, 2H), 7.04-7.00 (m, 2H), 3.85 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.6, 159.3, 134.3, 131.8, 128.0, 124.3, 123.7, 114.5, 55.5;

HRMS (ESI+) calcd forC₁₅H₁₂NO₃ [M+H]⁺: 254.0739; found: 254.0761.

Compound 2s: white solid; ¹**H NMR** (400 MHz, DMSO*d*₆) δ 8.78 (d, *J* = 9.2 Hz, 1H), 8.02-7.97 (m, 2H), 7.88-7.81 (m, 3H), 7.77-7.71 (m, 1H), 7.66-7.56 (m, 2H), 7.21 (d, *J* = 9.4 Hz, 1H), 3.84 (s, 3H), 1.80 (s, 3H); ¹³**C NMR**

(101 MHz, DMSO-*d*₆) δ 171.2, 166.8, 166.4, 143.3, 141.2, 134.1, 131.2, 130.4, 130.3, 125.9, 123.8, 123.7, 121.8, 64.3, 52.6, 22.9; HRMS (ESI+) calcd for C₁₈H₁₆N₂O₄Na [M+Na]⁺: 347.1110; found: 347.1084.

Compound 3s: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.20-8.16 (m, 2H), 7.99-7.95 (m, 2H), 7.84-7.79 (m, 2H), 7.61-7.58 (m, 2H), 3.95 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.8, 166.3, 135.9, 134.7, 131.6, 130.4, 129.3, 125.9, 123.9, 52.3; **HRMS** (ESI+) calcd for C₁₆H₁₂NO₄ [M+H]⁺: 282.0688; found: 282.0721.

Compound 2t: pale yellow solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.81 (d, *J* = 9.6 Hz, 1H), 7.94-7.90 (m, 4H), 7.88-7.84 (m, 1H), 7.80-7.75 (m, 1H), 7.68-7.59 (m, 2H), 7.23 (d, *J* = 9.5 Hz, 1H), 1.84 (s, 3H); ¹³C NMR (101 MHz,

DMSO-*d*₆) δ 170.7, 166.8, 143.6, 141.3, 134.1, 133.4, 131.2, 130.2, 123.8, 123.7, 121.9, 119.3, 106.9, 64.2, 23.0; **HRMS (ESI+)** calcd for C₁₇H₁₄N₃O₂ [M+H]⁺: 292.1008; found: 292.1012.

Compound 3t: pale yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.01-7.96 (m, 2H), 7.86-7.83 (m, 2H), 7.82-7.79 (m, 2H), 7.70-7.67 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.5, 135.9, 134.9, 132.9, 131.4, 126.5, 124.1, 118.3, 111.3;

HRMS (ESI+) calcd for C₁₅H₈N₂O₂Na [M+Na]⁺: 271.0586; found: 271.0528.

Compound 2u: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.74 (d, *J* = 9.5 Hz, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 7.76-7.70 (m, 1H), 7.68-7.62 (m, 3H), 7.62-7.57 (m, 1H), 7.32-7.25 (m, 2H), 7.10 (d, *J* = 9.5 Hz, 1H), 1.80 (s, 3H); ¹³**C NMR** (101

MHz, DMSO-*d*₆) δ 170.5, 166.3, 159.9 (d, *J*_{C-F} = 243.21 Hz), 143.7, 133.4, 133.3 (d, *J*_{C-F} = 3.03 Hz), 131.9, 130.0, 125.6 (d, *J*_{C-F} = 8.08 Hz), 123.7, 123.5, 116.0, 115.8, 64.8, 23.0; ¹⁹**F** NMR (376 MHz, CDCl₃) δ -117.05 – -117.12 (m); **HRMS (ESI+)** calcd for C₁₆H₁₄FN₂O₂ [M+H]⁺: 285.0961; found: 285.1006.

Compound 3u: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.99-7.94 (m, 2H), 7.83-7.78 (m, 2H), 7.51-7.39 (m, 2H), 7.23-7.17 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.2, 161.9 (d, $J_{C-F} = 249.07 \text{ Hz}$), 134.5, 131.6, 128.4, 127.6 (d, $J_{C-F} = 3.13 \text{ Hz}$), 123.8, 116.1 (d, $J_{C-F} = 22.93 \text{ Hz}$); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.88 - -112.99 (m); **HRMS** (ESI+) calcd for C₁₄H₉FNO₂ [M+H]⁺: 242.0539; found: 242.0561.

Compound 2v: white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.81 (m, 1H), 7.70-7.65 (m, 1H), 7.62-7.56 (m, 4H), 7.55-7.50 (m, 2H), 7.23 (d, J = 10.1 Hz, 1H), 6.02 (d, J =10.1 Hz, 1H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

170.6, 166.5, 142.0, 135.2, 133.2, 132.0, 131.3, 130.0, 123.7, 123.2, 123.1, 118.4, 63.8, 23.2; **HRMS (ESI+)** calcd for C₁₆H₁₄BrN₂O₂ [M+H]⁺: 345.0160; found: 345.0145.

Compound 3v: white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.97-7.93 (m, 2H), 7.82-7.77 (m, 2H), 7.64-7.61 (m, 2H), 7.37-7.32 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.9, 134.6, 132.3, 131.6, 130.8, 128.0, 123.9, 121.8; **HRMS**

(ESI+) calcd for C₁₄H₈BrNO₂Na [M+Na]⁺: 323.9738; found: 323.9680.

Compound 2w: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 12.35 (s, 1H), 8.71 (d, J = 9.4 Hz, 1H), 7.81-7.76 (m, 1H), 7.73-7.68 (m, 1H), 7.63-7.53 (m, 4H), 7.33-7.28 (m, 2H), 7.09 (d, J = 9.3 Hz, 1H), 3.41

(t, J = 7.6 Hz, 1H), 2.02-1.88 (m, 1H), 1.79 (s, 3H), 1.72-1.59 (m, 1H), 0.83 (t, J = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, DMSO- d_6) δ 175.9, 171.9, 167.0, 143.2, 137.3, 135.2, 133.7, 131.3, 130.2, 128.6, 123.8, 123.6, 123.5, 64.9, 52.6, 26.4, 22.8, 12.3; **HRMS** (ESI+) calcd for C₂₀H₁₉N₂O₄ [M-H]⁺: 351.1423; found: 351.1391.

Compound 3w: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 12.43 (s, 1H), 7.95-7.91 (m, 2H), 7.89-7.85 (m, 2H), 7.43-7.34 (m, 4H), 3.47 (t, J = 7.6 Hz,

1H), 2.02-1.91 (m, 1H), 1.73-1.62 (m, 1H), 0.83 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 175.1, 167.5, 140.0, 135.2, 132.0, 131.0, 128.7, 127.8, 123.9, 52.7, 26.6, 12.6; HRMS (ESI+) calcd for C₁₈H₁₄NO₄ [M-H]⁺: 308.1001; found: 308.1035.

Compound 4a: white solid; ¹**H NMR** (400 MHz, MeOD) δ 7.39-7.34 (m, 4H), 7.34-7.24 (m, 6H), 2.04 (s, 3H), 1.99 (s, 3H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 202.3, 170.7, 141.0, 128.6, 128.3, 127.7, 72.8, 25.8, 23.0; **HRMS (ESI+)** calcd for C₁₇H₁₆NO₂ [M-H]⁺: 266.1259; found:

266.1213.

Compound 4b: white solid; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.81 (d, J = 8.7 Hz, 1H), 7.36-7.30 (m, 4H), 7.30-7.21 (m, 6H), 6.11 (d, J = 8.7 Hz, 1H), 1.93 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.2, 141.5, 128.7, 127.5, 127.4, 57.0, 23.3; **HRMS (ESI+)** calcd for

 $C_{15}H_{14}NO [M-H]^+: 224.1154; found: 224.1109.$

Compound 4c: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 (d, J = 8.7 Hz, 1H), 7.20-7.12 (m, 3H), 7.11-7.06 (m, 1H), 4.96 (t, J = 7.4Hz, 1H), 2.85-2.60 (m, 2H), 1.93-1.80 (m, 5H), 1.78-1.60 (m, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 168.9, 138.1, 137.5, 129.1, 128.7, 127.1, 126.3, 46.7, 30.4, 29.3, 23.2, 20.4; HRMS (ESI+) calcd for C₁₂H₁₆NO [M+H]⁺: 190.1154; found: 190.1183.

Compound 4d: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 (d, NH J = 8.3 Hz, 1H), 7.31-7.08 (m, 4H), 5.26 (dd, J = 8.0, 16.0 Hz, 1H), 2.96-2.88 (m, 1H), 2.83-2.74 (m, 1H), 2.41-2.32 (m, 1H), 1.87 (s, 3H), 1.74-1.69 (m, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 169.4, 144.6, 143.3, 127.8, 126.8, 124.9, 124.4, 54.0, 33.5, 30.2, 23.1; HRMS (ESI+) calcd for C₁₁H₁₄NO [M+H]⁺: 176.0997; found: 176.1033.

24.7; **HRMS (ESI+)** calcd for $C_{12}H_{20}NO [M+H]^+$: 194.1467; found: 194.1496.

Compound 4f: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 7.65 (d, J =7.4 Hz, 1H), 3.50-3.38 (m, 1H), 1.72 (s, 3H), 1.70-1.58 (m, 4H), 1.55-1.46 (m, 1H), 1.26-1.13 (m, 2H), 1.11-1.00 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) 4f δ 169.4, 48.4, 33.1, 25.5, 24.8, 23.4; HRMS (ESI+) calcd for C₈H₁₅NONa [M+Na]⁺: 164.1154; found: 164.1098.

Compound 4g: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.12 (s, 1H), 8.57 (d, *J* = 7.7 Hz, 1H), 8.15-8.10 (m, 2H), 7.84-7.76 (m, 3H), 7.41-7.35 (m, 3H), 7.30-7.25 (m, 1H), 7.23-7.20 (m, 1H), 7.18-7.14 (m, 1H), 2.01 (s, 3H); ¹³**C NMR** (101 MHz, MeOD) δ 171.8, 153.4, 150.1, 146.6, 132.5, 130.0, 129.0,

128.5, 126.9, 126.7, 122.8, 122.6, 122.0, 117.7, 117.5, 48.8, 21.3; **HRMS (ESI+)** calcd for C₁₉H₁₇N₂O₄ [M+H]⁺: 337.1110; found: 337.1132.

Compound 4h: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.61 (s, 1H), 8.70-8.68 (m, 1H), 8.14-8.10 (m, 1H), 8.08-8.03 (m, 1H), 7.72-7.67 (m, 1H), 2.38 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃)

δ 172.0, 162.9, 148.4, 148.1, 137.8, 127.6, 123.2, 25.4; **HRMS (ESI+)** calcd for $C_8H_9N_2O_2$ [M+H]⁺: 165.0586; found: 165.0614.

Compound 4i: white solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.18 (s, 1H), 8.29-8.24 (m, 1H), 8.23-8.16 (m, 1H), 7.69-7.58 (m, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2,

161.4, 158.4, 152.4, 137.8, 127.8, 127.4, 125.1, 122.5, 25.5; HRMS (ESI+) calcd for

 $C_{10}H_8N_2O_2SNa [M+Na]^+$: 243.0306; found: 243.0255.

Compound 4j: white solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.01-7.99 (m, 1H), 7.99-7.97 (m, 1H), 7.70-7.64 (m, 2H), 7.57-7.52 (m, 2H), 4.36 (s, 2H), 1.78 (s, 3H), 1.31 (s, 6H); 4j ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 166.5, 133.17, 130.0, 129.6, 128.5, 69.6, 53.7, 24.4, 24.1; **HRMS (ESI+)** calcd for C₁₃H₁₈NO₃ [M+H]⁺: 236.1208; found: 236.1234.

Compound 4k: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 7.35 (s, 2H), 2.11-2.08 (m, 2H), 2.07-2.02 (m, 2H), 1.85-1.72 (m, 8H), 1.70 (s, 6H), 1.48-1.44 (m, 2H); ^{13}C NMR (101 MHz, CDCl₃) δ 169.5, 53.0, 44.8, 40.4, 35.2, 29.8, 24.5; HRMS (ESI+) calcd for

C₁₄H₂₃N₂O₂ [M+H]⁺: 251.1681; found: 251.1713.

Compound 41: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.31 (d, J = 8.7 Hz, 1H), 7.29-7.25 (m, 1H), 7.24-7.20 (m, 2H), 7.18-7.14 (m, 1H), 5.46-5.15 (m, 2H), 3.26-3.10 (m, 1H), 3.09-2.98 (m, 1H), 1.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 139.9, 138.8, 128.3, 127.4, 125.1, 123.9, 95.0 (d, $J_{C-F} = 181.90$ Hz), 56.8 (d, $J_{C-F} = 16.87$ Hz), 37.9 (d, $J_{C-F} = 22.32$ Hz), 23.3; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -193.30 - -193.47 (m); HRMS (ESI+) calcd for C₁₁H₁₃FNO [M+H]⁺: 194.0903; found: 194.0931.

Compound 4m: white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.73 (d, J = 9.3 Hz, 1H, major), 8.61 (d, J = 9.3 Hz, 0.2H, minor), 7.41-7.17 (m, 12H, major 10H, minor 2H), 5.84-5.57 (m, 1.2H,

major 1H, minor 0.2H), 5.37-5.15 (m, 1.2H, major 1H, minor

0.2H), 1.82 (s, 3H, major), 1.74 (s, 0.6H, minor); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 138.4, 136.7 (d, *J*_{C-F} = 20.40 Hz), 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.3, 125.7, 125.6, 125.5, 95.3 (d, $J_{C-F} = 21.51$ Hz), 58.0 (d, $J_{C-F} = 21.21$ Hz), 57.1 (d,
$J_{C-F} = 21.01 \text{ Hz}$, 23.4, 23.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -190.4 - 190.6 (m, major), -193.9 - -194.1 (m, minor); HRMS (ESI+) calcd for C₁₆H₁₇FNO [M+H]⁺: 258.1216; found: 258.1247.

Compound 4n: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.28 (d, *J* = 8.8 Hz, 1H), 7.95-7.90 (m, 2H), 7.56-7.50 (m, 1H), 7.49-7.43 (m, 2H), 7.40-7.31 (m, 8H), 7.29-7.33 (m, 2H), 6.40 (d, *J* = 8.8 Hz, 1H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 166.4, 142.8, 134.8, 131.8, 128.8, 128.7, 128.1, 128.0, 127.5, 56.8; **HRMS (ESI+)** calcd for C₂₀H₁₈NO [M+H]⁺: 288.1310; found: 288.1352.

Compound 4n-1: white solid; ¹H NMR (600 MHz, CDCl₃) δ 7.82-7.80 (m, 2H), 7.80-7.78 (m, 2H), 7.60-7.56 (m, 2H), 7.50-7.46 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 196.8, 137.7, 132.5, 130.2, 128.3; **ESI-MS** (ESI+) calcd for C₁₃H₁₀O [M+H]⁺: 183.07; found:

183.20.12

Compound 40: white solid; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.77 (d, *J* = 6.4 Hz, 1H), 7.93-7.88 (m, 2H), 7.54-7.48 (m, 1H), 7.47-7.41 (m, 2H), 7.20-7.08 (m, 4H), 5.29-5.20 (m, 1H), 2.84-2.69 (m, 2H), 2.03-1.90 (m, 2H), 1.87-1.69 (m, 2H); ¹³**C NMR**

(101 MHz, DMSO-*d*₆) δ 166.4, 138.2, 137.7, 135.0, 131.6, 129.2, 128.7, 128.2, 127.9, 127.1, 126.3, 47.7, 30.4, 29.4, 21.0; **HRMS (ESI+)** calcd for C₁₇H₁₇NONa [M+Na]⁺: 274.1310; found: 274.1252.

Compound 40-1: pale yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.06-7.98 (m, 1H), 7.47-7.44 (m, 1H), 7.31-7.27 (m, 1H), 7.25-7.22 (m, 1H), 2.98-2.94(m, 2H), 2.67-2.63 (m, 2H), 2.16-2.10 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 144.6, 133.5, 132.7, 128.9, 127.2, 126.7, 39.2, 29.8, 23.4; ESI-MS (ESI+) calcd for $C_{10}H_{10}O$ [M+H]⁺: 147.07; found: 147.05.¹²

10. ¹H, ¹³C, and ¹⁹F NMR Spectra of Products

Figure S3. ¹H NMR spectrum of compound 2a (400 MHz, solvent: DMSO-*d*₆)

Figure S4. ¹³C NMR spectrum of compound 2a (126 MHz, solvent: CDCl₃)

Figure S5. ¹H NMR spectrum of compound **3a** (400 MHz, solvent: DMSO-*d*₆)

Figure S6. ¹³C NMR spectrum of compound 3a (101 MHz, solvent: CDCl₃)

Figure S7. ¹H NMR spectrum of compound 2b (400 MHz, solvent: CDCl₃)

Figure S8. ¹³C NMR spectrum of compound 2b (126 MHz, solvent: CDCl₃)

Figure S9. ¹H NMR spectrum of compound 3b (400 MHz, solvent: CDCl₃)

Figure S10. ¹³C NMR spectrum of compound 3b (101 MHz, solvent: CDCl₃)

Figure S11. ¹H NMR spectrum of compound 2c (400 MHz, solvent: DMSO-*d*₆)

Figure S12. ¹³C NMR spectrum of compound 2c (101 MHz, solvent: CDCl₃)

Figure S13. ¹H NMR spectrum of compound 3c (400 MHz, solvent: CDCl₃)

Figure S14. ¹³C NMR spectrum of compound 3c (101 MHz, solvent: CDCl₃)

Figure S15. ¹H NMR spectrum of compound 2d (400 MHz, solvent: DMSO-*d*₆)

Figure S16. ¹³C NMR spectrum of compound 2d (101 MHz, solvent: DMSO-*d*₆)

Figure S17. ¹H NMR spectrum of compound 3d (400 MHz, solvent: CDCl₃)

Figure S18. ¹³C NMR spectrum of compound 3d (101 MHz, solvent: CDCl₃)

Figure S19. ¹H NMR spectrum of compound 2e (400 MHz, solvent: CDCl₃)

Figure S20. ¹³C NMR spectrum of compound 2e (101 MHz, solvent: DMSO-*d*₆)

Figure S21. ¹H NMR spectrum of compound 3e (400 MHz, solvent: CDCl₃)

Figure S22. ¹³C NMR spectrum of compound 3e (101 MHz, solvent: CDCl₃)

Figure S23. ¹H NMR spectrum of compound 2f (400 MHz, solvent: DMSO-*d*₆)

Figure S24. ¹³C NMR spectrum of compound 2f (126 MHz, solvent: CDCl₃)

Figure S25. ¹H NMR spectrum of compound 3f (400 MHz, solvent: CDCl₃)

Figure S26. ¹³C NMR spectrum of compound 3f (101 MHz, solvent: DMSO-*d*₆)

Figure S27. ¹H NMR spectrum of compound 2g (400 MHz, solvent: DMSO-*d*₆)

Figure S28. ¹³C NMR spectrum of compound 2g (101 MHz, solvent: CDCl₃)

Figure S29. ¹H NMR spectrum of compound 3g (400 MHz, solvent: CDCl₃)

Figure S30. ¹³C NMR spectrum of compound 3g (101 MHz, solvent: CDCl₃)

Figure S31. ¹H NMR spectrum of compound 2h (400 MHz, solvent: DMSO-*d*₆)

Figure S32. ¹³C NMR spectrum of compound 2h (126 MHz, solvent: CDCl₃)

Figure S33. ¹⁹F NMR spectrum of compound 2h (376 MHz, solvent: DMSO-*d*₆)

Figure S34. ¹H NMR spectrum of compound **3h** (400 MHz, solvent: DMSO-*d*₆)

Figure S35. ¹³C NMR spectrum of compound **3h** (101 MHz, solvent: CDCl₃)

Figure S36. ¹⁹F NMR spectrum of compound **3h** (376 MHz, solvent: DMSO-*d*₆)

Figure S37. ¹H NMR spectrum of compound 2i (400 MHz, solvent: CDCl₃)

Figure S38. ¹³C NMR spectrum of compound 2i (101 MHz, solvent: CDCl₃)

Figure S39. ¹H NMR spectrum of compound 3i (400 MHz, solvent: CDCl₃)

Figure S40. ¹³C NMR spectrum of compound 3i (101 MHz, solvent: CDCl₃)

Figure S42. ¹³C NMR spectrum of compound 2j (101 MHz, solvent: CDCl₃)

Figure S43. ¹H NMR spectrum of compound 3j (400 MHz, solvent: CDCl₃)

Figure S44. ¹³C NMR spectrum of compound 3j (101 MHz, solvent: CDCl₃)

Figure S45. ¹H NMR spectrum of compound 2k (400 MHz, solvent: DMSO-*d*₆)

Figure S46. ¹³C NMR spectrum of compound 2k (101 MHz, solvent: DMSO-*d*₆)

Figure S47. ¹H NMR spectrum of compound 2l (400 MHz, solvent: CDCl₃)

Figure S48. ¹³C NMR spectrum of compound 2l (126 MHz, solvent: CDCl₃)

Figure S49. ¹H NMR spectrum of compound 3l (400 MHz, solvent: CDCl₃)

Figure S50. ¹³C NMR spectrum of compound 3l (101 MHz, solvent: CDCl₃)

— 2.8f

- 1.36

Figure S51. ¹H NMR spectrum of compound 2m (400 MHz, solvent: DMSO-*d*₆)

Figure S52. ¹³C NMR spectrum of compound 2m (101 MHz, solvent: DMSO-*d*₆)

Figure S53. ¹H NMR spectrum of compound **3m** (400 MHz, solvent: CDCl₃)

Figure S54. ¹³C NMR spectrum of compound 3m (101 MHz, solvent: CDCl₃)

Figure S55. ¹H NMR spectrum of compound 2n (400 MHz, solvent: DMSO- d_6) d.r. = 10:1

Figure S56. ¹³C NMR spectrum of compound 2n (101 MHz, solvent: DMSO-*d*₆)

Figure S58. ¹³C NMR spectrum of compound 3n (101 MHz, solvent: CDCl₃)

Figure S60. ¹³C NMR spectrum of compound 20 (101 MHz, solvent: DMSO-*d*₆)

Figure S61. ¹H NMR spectrum of compound 2p (400 MHz, solvent: CDCl₃)

Figure S62. ¹³C NMR spectrum of compound 2p (101 MHz, solvent: DMSO-*d*₆)

「12:55] 12

Figure S63. ¹H NMR spectrum of compound **3p** (400 MHz, solvent: DMSO-*d*₆)

Figure S64. ¹³C NMR spectrum of compound **3p** (101 MHz, solvent: CDCl₃)

Figure S65. ¹H NMR spectrum of compound 2q (400 MHz, solvent: DMSO-*d*₆)

Figure S66. ¹³C NMR spectrum of compound 2q (101 MHz, solvent: DMSO-*d*₆)

Figure S67. ¹H NMR spectrum of compound 3q (400 MHz, solvent: CDCl₃)

Figure S68. ¹³C NMR spectrum of compound 3q (101 MHz, solvent: CDCl₃)

Figure S69. ¹H NMR spectrum of compound 2r (400 MHz, solvent: DMSO- d_6) d.r. = 5:4

Figure S70. ¹³C NMR spectrum of compound 2r (101 MHz, solvent: CDCl₃)

Figure S71. ¹H NMR spectrum of compound **3r** (400 MHz, solvent: CDCl₃)

Figure S72. ¹³C NMR spectrum of compound **3r** (101 MHz, solvent: CDCl₃)

Figure S74. ¹³C NMR spectrum of compound 2s (101 MHz, solvent: DMSO-*d*₆)

Figure S75. ¹H NMR spectrum of compound 3s (400 MHz, solvent: CDCl₃)

Figure S76. ¹³C NMR spectrum of compound 3s (101 MHz, solvent: CDCl₃)

Figure S77. ¹H NMR spectrum of compound 2t (400 MHz, solvent: DMSO-*d*₆)

Figure S78. ¹³C NMR spectrum of compound 2t (101 MHz, solvent: DMSO-*d*₆)

Figure S79. ¹H NMR spectrum of compound 3t (400 MHz, solvent: CDCl₃)

Figure S80. ¹³C NMR spectrum of compound 3t (101 MHz, solvent: CDCl₃)

Figure S82. ¹³C NMR spectrum of compound 2u (101 MHz, solvent: DMSO-*d*₆)

Figure S83. ¹⁹F NMR spectrum of compound 2u (376 MHz, solvent: CDCl₃)

Figure S84. ¹H NMR spectrum of compound 3u (400 MHz, solvent: CDCl₃)

Figure S85. ¹³C NMR spectrum of compound 3u (101 MHz, solvent: CDCl₃)

Figure S86. ¹⁹F NMR spectrum of compound **3u** (376 MHz, solvent: CDCl₃)

Figure S87. ¹H NMR spectrum of compound 2v (400 MHz, solvent: CDCl₃)

Figure S88. ¹³C NMR spectrum of compound 2v (101 MHz, solvent: CDCl₃)

7.35 7.64 7.64 7.63 7.61 7.61 7.35 7.35 7.35

Figure S89. ¹H NMR spectrum of compound 3v (400 MHz, solvent: CDCl₃)

Figure S90. ¹³C NMR spectrum of compound **3v** (101 MHz, solvent: CDCl₃)

Figure S92. ¹³C NMR spectrum of compound 2w (101 MHz, solvent: DMSO-*d*₆)

Figure S93. ¹H NMR spectrum of compound **3w** (400 MHz, solvent: DMSO-*d*₆)

Figure S94. ¹³C NMR spectrum of compound **3w** (101 MHz, solvent: DMSO-*d*₆)

Figure S96. ¹³C NMR spectrum of compound 4a (101 MHz, solvent: DMSO-*d*₆)

Figure S97. ¹H NMR spectrum of compound 4b (400 MHz, solvent: DMSO-*d*₆)

Figure S98. ¹³C NMR spectrum of compound 4b (101 MHz, solvent: CDCl₃)

Figure S99. ¹H NMR spectrum of compound 4c (400 MHz, solvent: DMSO-*d*₆)

Figure S100. ¹³C NMR spectrum of compound 4c (101 MHz, solvent: DMSO-*d*₆)

Figure S101. ¹H NMR spectrum of compound 4d (400 MHz, solvent: DMSO-*d*₆)

Figure S102. ¹³C NMR spectrum of compound 4d (101 MHz, solvent: DMSO-*d*₆)

Figure S103. ¹H NMR spectrum of compound 4e (400 MHz, solvent: DMSO-*d*₆)

Figure S104. ¹³C NMR spectrum of compound 4e (101 MHz, solvent: CDCl₃)

Figure S105. ¹H NMR spectrum of compound 4f (400 MHz, solvent: DMSO-*d*₆)

Figure S106. ¹³C NMR spectrum of compound 4f (101 MHz, solvent: CDCl₃)

Figure S108. ¹³C NMR spectrum of compound 4g (101 MHz, solvent: MeOD)

Figure S109. ¹H NMR spectrum of compound 4h (400 MHz, solvent: DMSO-*d*₆)

Figure S110. ¹³C NMR spectrum of compound 4h (101 MHz, solvent: CDCl₃)

Figure S111. ¹H NMR spectrum of compound 4i (400 MHz, solvent: DMSO-*d*₆)

Figure S112. ¹³C NMR spectrum of compound 4i (101 MHz, solvent: CDCl₃)

Figure S113. ¹H NMR spectrum of compound 4j (400 MHz, solvent: DMSO-*d*₆)

Figure S114. ¹³C NMR spectrum of compound 4j (101 MHz, solvent: CDCl₃)

Figure S115. ¹H NMR spectrum of compound 4k (400 MHz, solvent: DMSO-*d*₆)

Figure S116. ¹³C NMR spectrum of compound 4k (101 MHz, solvent: CDCl₃)

Figure S117. ¹H NMR spectrum of compound 4I (400 MHz, solvent: DMSO-*d*₆)

Figure S118. ¹³C NMR spectrum of compound 4l (101 MHz, solvent: CDCl₃)

Figure S119. ¹⁹F NMR spectrum of compound **4**I (376 MHz, solvent: DMSO-*d*₆)

Figure S120. ¹H NMR spectrum of compound 4m (400 MHz, solvent: DMSO- d_6) d.r. = 5:1

Figure S121. ¹³C NMR spectrum of compound 4m (101 MHz, solvent: CDCl₃)

Figure S122. ¹⁹F NMR spectrum of compound 4m (376 MHz, solvent: CDCl₃)

lhf-519 single_pulse

Figure S123. ¹H NMR spectrum of compound 4n (400 MHz, solvent: DMSO-*d*₆)

Figure S124. ¹³C NMR spectrum of compound 4n (101 MHz, solvent: DMSO-*d*₆)

Figure S126. ¹³C NMR spectrum of compound 4n-1 (151 MHz, solvent: CDCl₃)

Figure S127. ¹H NMR spectrum of compound 40 (400 MHz, solvent: DMSO-*d*₆)

Figure S128. ¹³C NMR spectrum of compound 40 (101 MHz, solvent: DMSO-*d*₆)

Figure S130. ¹³C NMR spectrum of compound 40-1 (151 MHz, solvent: CDCl₃)