Supporting Information

Visible-Light Enabled Photochemical Reduction of 1,2-Dicarbonyl Compounds by Hünig's Base

Yao Zhu,^a Hai-Yang Huang,^a Yong-Qin He,^b Mei Wang,^a Xiao-Yu Wang,^a Xian-Rong Song,^a Zhi-Jie Mao,^a Wan-Fa Tian,^a* Qiang Xiao^a*

[†]Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China.

[‡]School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006 P. R. China.

*E-mail: <u>xiaoqiang@tsinghua.org.cn</u>

*E-mail: <u>tianwanfa@yeah.net</u>

Table of Contents

General information	
General procedure for preparation of substrates	S3
General procedure for synthesis of α-hydroxyesters 2 Gram-scale reaction	84
Mechanistic studies	
References	
Spectrum	S19

General Information

Substrates of α -ketoesters and α -ketoamide were prepared according to the reported literature.¹ CH₃CN, ethanol and THF were extra dry solvent purchased from chemical energy. If no special indicated, other reagents and solvents were used as commercially available without further purification. All the reactions were carried out under argon atmosphere. Column chromatographic purification of products was accomplished using 200-300 mesh silica gel. NMR spectra were measured on a Bruker Avance-400 spectrometer in the solvents indicated; chemical shifts are reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm or CHCl₃ resonance in CDCl₃ as 7.26 ppm, CDCl₃ resonance in the ¹³C spectrum as 77.00 ppm, and DMSO-*d*₆ resonance in the ¹H spectrum as 2.50 ppm and ¹³C spectrum as 39.50 ppm. Coupling constants are reported in Hz with multiplicities denoted as br (broad), s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). HRMS were performed on Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

General procedure for preparation of substrates 1b–1q.

Following a literature procedure,^{1a} a mixture of substituted acetophenone (20.0 mmol) and selenium dioxide (4.4 g, 40 mmol) in dry pyridine (20 mL) was stirred at 100 °C under a nitrogen atmosphere for 15 h, and then removal of pyridine under reduced pressure. Next, the corresponding alcohol (40.0 mmol) in toluene (20 mL) was added to the residue and stirred at 100 °C until the full conversion of the starting material by TLC monitoring. Toluene were removed under vacuum, and the residue was purified on silica chromatography by gradient elution (Ethyl acetate/Petroleum ether) to give the pure α -keto esters.

General procedure for preparation of substrates 1r-1t.

Following a literature procedure,^{1a} a mixture of substituted benzoylformic acid (2.25 g, 15 mmol) and corresponding alcohol (30 mmol) in toluene (20 mL) was stirred at 100 °C until the full conversion of the starting material by TLC monitoring. Toluene were removed under vacuum, and the residue was purified on silica chromatography by gradient elution (Ethyl acetate/Petroleum ether) to give the pure α -keto esters.

General Procedure for synthesis of *a*-hydroxyesters 2.

To a Schlenk tube containing a stirring bar was added α -keto esters **1** (0.20 mmol, 1.0 equiv). Then, *i*-Pr₂EtN (0.60 mmol, 3.0 equiv), H₂O (3.00 mmol, 15.0 equiv), and 2.0 mL CH₃CN were added to the reaction tube via syringe under Ar atmosphere. The reaction mixture was stirred for 6 h at Wattecs Parallel Light Reactor (Purple LED Light source (390–395 nm), 10 W every position) at ambient temperature (the temperature range from 28 °C to 32 °C). Finally, the solvent was removed in vacuum and the residue was purified by column chromatography on silica gel to afford the compound **2**.

Wattecs Parallel Light Reactor (Purple LED Light source, 10 W every position, 390-395 nm)

Gram-scale reaction

Scheme S1. Gram-scale reaction. (Reaction conditions: 10.0 mmol of α -keto esters **1a**, 3.0 equiv *i*-Pr₂EtN, 15.0 equiv H₂O, 100 mL CH₃CN, purple LEDs, 8 h irradiation at ambient temperature).

Characterization data for products

Methyl 2-hydroxy-2-phenylacetate 2a^{1a}

According to the general procedure, **2a** (white solid, 27.9 mg, mp: 50–51 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.32 (m, 5H), 5.18 (d, *J* = 5.2 Hz, 1H), 3.76 (s, 3H), 3.49 (d, *J* = 5.2 Hz, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 174.1, 138.2, 128.6 (2C), 128.5, 126.6 (2C), 72.9, 53.0. MS: m/z: [M]⁺, 166.0.

Methyl 2-hydroxy-2-(p-tolyl)acetate 2b^{1a}

According to the general procedure, **2b** (white solid, 31.6 mg, mp: 51–52 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 15:1) in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.6 Hz, 2H), 5.14 (d, *J* = 5.2 Hz, 1H), 3.75 (s, 3H), 3.47 (d, *J* =

5.6 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 138.3, 135.3, 129.3 (2C), 126.5 (2C), 72.7, 52.9, 21.1. MS: m/z: [M]⁺, 180.0.

Methyl 2-hydroxy-2-(4-methoxyphenyl)acetate $2c^{1a}$

According to the general procedure, **2c** (yellow oil, 33.9 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.13 (d, *J* = 5.6 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 3.48 (d, *J* =

5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 159.7, 130.4, 127.9 (2C), 114.0 (2C), 72.4, 55.2, 52.9. MS: m/z: [M]⁺, 196.0.

Methyl 2-hydroxy-2-(4-(methylthio)phenyl)acetate 2d²

According to the general procedure, **2d** (white solid, 34.2 mg, mp: 54–55 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 81% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.34 (d, *J* = 8.4

Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.07 (d, J = 5.2 Hz, 1H), 5.11 (d, J = 5.2 Hz, 1H), 3.60 (s, 3H), 2.46 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.0, 137.8, 136.2, 127.3 (2C), 125.7 (2C), 71.9, 51.8, 14.6. MS: m/z: [M]⁺, 212.0.

Methyl 2-(4-fluorophenyl)-2-hydroxyacetate 2e^{1a}

According to the general procedure, 2e (white solid, 32.9 mg, mp: 45–46 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 5:1) in 90% yield. ¹H NMR (400 MHz, CDCl₃) & 7.41-7.38 (m, 2H), 7.05 (t, J = 8.8 Hz, 2H), 5.17 (s, 1H), 3.76 (s, 3H), 3.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 162.7 (d, ¹*J*_{C-F} = 245.4 Hz), 134.0, 128.3 (d, ³*J*_{C-F} = 8.2 Hz, 2C), 115.5 (d, ²*J*_{C-F} =

21.5 Hz, 2C), 72.1, 53.1. ¹⁹F NMR (376 MHz, CDCl₃): -113.52. MS: m/z: [M]⁺, 184.0.

Methyl 2-(4-chlorophenyl)-2-hydroxyacetate 2f^{1a}

According to the general procedure, 2c (white solid, 36.3 mg, mp: 56–57 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.33 (m, 4H), 5.16 (d, J = 5.2 Hz, 1H), 3.77 (s, 3H), 3.54 (d, J = 5.2 Hz, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 173.7, 136.6, 134.4, 128.8 (2C), 127.9 (2C), 72.2, 53.2. MS: m/z: [M]⁺, 200.0.

Methyl 2-(4-bromophenyl)-2-hydroxyacetate 2g^{1a}

According to the general procedure, 2g (white solid, 38.7 mg, mp: 55–56 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.15 (d, J = 5.2 Hz, 1H), 3.77 (s, 3H), 3.54 (d, J =

5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 137.1, 131.7 (2C), 128.2 (2C), 122.5, 72.2, 53.2. MS: m/z: [M]⁺, 244.0.

Methyl 2-hydroxy-2-(4-iodophenyl)acetate 2h³

According to the general procedure, **2h** (yellow oil, 48.4 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 15:1) in 83% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.72 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.18 (d, J = 5.2 Hz, 1H), 5.13 (d, J = 5.2 Hz, 1H),

3.60 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.6, 139.4, 137.0 (2C), 128.9 (2C), 94.1, 71.8, 51.9. MS: m/z: [M]⁺, 292.0.

Methyl 2-hydroxy-2-(4-(trifluoromethyl)phenyl)acetate 2i⁴

According to the general procedure, 2i (white oil, 32.8 mg, mp: 149–150 °C)

was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 5.25 (d, *J* = 4.8 Hz, 1H), 3.78 (s, 3H), 3.61 (d, *J* = 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 141.9, 130.5 (q, ${}^{2}J_{C-F}$ = 32.3 Hz, 2C), 126.9 (2C), 125.5 (q, ${}^{3}J_{C-F}$ = 3.2 Hz, 2C), 123.9 (q, ${}^{1}J_{C-F}$ = 270.7 Hz), 72.2, 53.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.64. MS: m/z: [M]⁺, 234.0.

Methyl 2-hydroxy-2-(4-(trifluoromethoxy)phenyl)acetate 2j

According to the general procedure, **2j** (yellow oil, 28.7 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 40:1) in 85% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.54 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 6.24 (d, J = 5.2 Hz, 1H), 5.23 (d, J = 5.6 Hz, 1H), 3.62 (s,

3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.6, 147.9, 139.0, 128.6 (2C), 120.8 (2C), 120.0 (q, ¹*J*_{*C*-*F*} = 254.6 Hz), 71.6, 51.9. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -56.86. HRMS (ESI-TOF) m/z: [M + H - H₂O]⁺, calcd for C₁₀H₈F₃O₃⁺: 233.0420; found: 233.0410.

Ethyl 2-(4-cyanophenyl)-2-hydroxyacetate 2k⁵

According to the general procedure, **2k** (yellow solid, 28.3 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 4:1) in 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 5.16 (s, 1H), 4.25–4.08 (m, 2H), 3.69 (s, 1H), 1.67 (t,

J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 143.3, 132.2 (2C), 127.1 (2C), 118.5, 112.1, 72.1, 62.8, 13.9. MS: m/z: [M]⁺, 191.1.

Ethyl 4-(2-ethoxy-1-hydroxy-2-oxoethyl)benzoate 2l

According to the general procedure, **2l** (white solid, 25.9 mg, mp: 55–56 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 4:1) in 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 5.15 (d, *J* = 4.8 Hz, 1H), 4.22–4.09 (m, 2H), 3.85

(s, 3H), 3.59 (d, J = 5.2 Hz, 1H), 1.15 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 166.7, 143.2, 130,1, 129.8 (2C), 126.5 (2C), 72.4, 62.5, 51.2, 14.0. HRMS (ESI-TOF) m/z: [M + H - H₂O]⁺, calcd for C₁₂H₁₃O₄⁺: 221.0808; found: 221.0815.

Dimethyl 2,3-bis(4-acetylphenyl)-2,3-dihydroxysuccinate 2m'

According to the general procedure, 2m' (*meso* + *dl*: white solid, 32.7 mg, mp: 67–68 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 1:1) in 79% yield. ¹H NMR (400 MHz, CDCl₃) (peaks are

reported for the mixture of both the *meso* and *dl* isomers) δ 7.86 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 5H), 7.21 (d, *J* = 8.4 Hz, 4H), 5.38 (s, 2H), 5.22 (s, 0.5 H), 3.84 (s, 1.5H), 3.79 (s, 6H), 1.60 (s, 6H), 1.28 (s, 1.5H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 166.3, 152.4, 152.0, 128.0, 127.5, 127.3, 127.1, 126.9, 77.2, 76.9, 51.9, 51.8, 24.8, 24.5. HRMS (ESI-TOF) m/z: [M – H₂O + H]⁺ calcd for C₂₂H₂₁O⁺, 397.1282; found, 397.1280.

Methyl 2-(3-chlorophenyl)-2-hydroxyacetate **2n**⁶

According to the general procedure, **2n** (yellow solid, 27.8 mg, mp: 48–49 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 15:1) in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (brs, 1H), 7.31 (brs, 3H), 5.16 (d, *J* = 4.8 Hz, 1H), 3.78 (s, 3H), 3.58 (d, *J* = 5.2

Hz, 1H) .¹³C NMR (100 MHz, CDCl₃) δ 173.5, 140.0, 134.5, 129.8, 128.6, 126.7, 124.7, 72.1, 53.3. MS: m/z: [M]⁺, 200.0.

Methyl 2-(2-chlorophenyl)-2-hydroxyacetate 20⁴

According to the general procedure, **20** (yellow oil, 34.3 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 12:1) in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.39 (m, 2H), 7.29–7.27 (m, 2H), 5.58 (d, *J* = 5.2 Hz, 1H), 3.77 (s, 3H), 3.65 (d, *J* = 4.8 Hz, 1H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \ \delta \ 173.7, \ 136.0, \ 133.5, \ 129.9, \ 129.8, \ 128.8, \ 127.1, \ 70.3, \ 53.1. \ \text{MS:} \ \text{m/z:} \ [\text{M}]^+, \ 200.0.$

Methyl 2-(3,4-dimethoxyphenyl)-2-hydroxyacetate 2p⁶

According to the general procedure, **2p** (yellow oil, 38.5 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 2:1) in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.97–6.94 (m, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 5.13 (d, *J* = 5.6 Hz, 1H), 3.88 (d, *J* = 4.0 Hz, 6H), 3.76 (s, 3H),

3.55 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 149.1, 149.0, 130.6, 119.1, 110.8, 109.3, 72.6, 55.8 (2C), 52.9. MS: m/z: [M]⁺, 226.1.

Methyl 2-hydroxy-2-(6-methoxynaphthalen-2-yl)acetate 2q

According to the general procedure, **2q** (white solid, 40.9 mg, mp: 117–118 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 8:1) in 83% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.84–7.78 (m, 3H), 7.50–7.47 (m, 1H), 7.30 (d, *J* = 2.4 Hz, 1H), 7.18–7.15 (m, 1H), 6.14 (d, *J* = 4.4 Hz, 1H), 5.27 (d, *J* = 4.8 Hz, 1H),

3.87 (s, 3H), 3.61 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.1, 157.4, 134.7, 133.9, 129.4, 128.0, 126.8, 125.4, 125.1, 118.8, 105.8, 72.5, 55.2, 51.7. HRMS (ESI-TOF) m/z: [M + H - H₂O]⁺, calcd for

C₁₄H₁₃O₃⁺: 229.0859; found: 229.0855.

Methyl 2-hydroxy-2-(naphthalen-1-yl)acetate $2r^7$

According to the general procedure, $2\mathbf{r}$ (white solid, 39.0 mg, mp: 77–78 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 1H), 7.89–7.84 (m, 2H), 7.56–7.43 (m, 4H), 5.80 (d, J = 4.0 Hz, 1H), 3.71 (s, 3H), 3.64 (d, J = 4.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 134.0, 133.9,

130.9, 129.4, 128.8, 126.6, 125.9 (2C), 125.2, 123.6, 71.4, 53.0. MS: m/z: [M]⁺, 216.1.

Methyl 2-(benzo[b]thiophen-2-yl)-2-hydroxyacetate 2t

According to the general procedure, **2t** (yellow oil, 25.7 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 58% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 7.2 Hz, 1H), 7.82–7.80 (m, 1H), 7.41 (brs, 1H), 7.38–7.32 (m, 2H), 6.61 (d, *J* = 5.2 Hz, 1H),

5.55 (d, J = 5.2 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.7, 143.6, 139.0, 138.9, 124.4 (2C), 123.6, 122.4, 121.7, 69.0, 52.1. HRMS (ESI-TOF) m/z: [M + H - H₂O]⁺, calcd for C₁₁H₉O₂S⁺: 205.0318; found: 205.0310.

Methyl 2-hydroxy-2-(1H-indol-3-yl)acetate $2u^8$

According to the general procedure, **2u** (yellow oil, 31.1 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 3:1) in 76% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.06 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.37–7.32 (m, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 5.71 (d, *J* = 5.2 Hz, 1H), 5.37 (d, *J* = 5.2 Hz, 1H), 3.60 (s, 3H). ¹³C NMR (100

MHz, DMSO-*d*₆) δ 173.6, 136.2, 125.5, 124.0, 121.2, 119.3, 118.8, 113.4, 111.5, 66.6, 51.5. MS: m/z: [M]⁺, 205.0.

Ethyl 2-hydroxy-2-phenylacetate $2v^9$

According to the general procedure, 2v (yellow oil, 28.5 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 15:1) in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.30 (m, 5H), 5.16 (d, *J* = 5.6 Hz, 1H), 4.29–4.16 (m, 2H), 3.54 (d, *J* = 5.6 Hz, 1H), 1.22 (t, *J* = 6.8 Hz,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 138.4, 128.5 (2C), 128.3, 126.5 (2C), 72.9, 62.2, 14.0. MS: m/z: [M]⁺, 180.0.

Isopropyl 2-hydroxy-2-phenylacetate $2w^9$

According to the general procedure, **2w** (white solid, 21.3 mg, mp: 34–35 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 20:1) in 55% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.41–7.27 (m, 5H), 5.97 (s, 1H), 5.07 (d, *J* = 5.2 Hz, 1H), 4.93–4.86 (m, 1H),

1.18 (d, J = 6.0 Hz, 3H), 1.06 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 172.1, 139.7, 128.2 (2C), 127.8, 126.5 (2C), 72.5, 67.8, 21.5, 21.3. MS: m/z: [M]⁺, 194.0.

Benzyl 2-hydroxy-2-phenylacetate $2x^9$

According to the general procedure, $2\mathbf{x}$ (white solid, 40.9 mg, mp: 88–89 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 20:1) in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 6.8 Hz, 2H), 7.35–7.30 (m, 6H), 7.20 (d, J = 2.4 Hz, 2H), 5.23 (d, J = 12.4

Hz, 2H), 5.12 (d, J = 12.4 Hz, 1H), 3.53 (d, J = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 138.1, 134.9, 128.5 (5C), 128.4, 127.9 (2C), 126.5 (2C), 72.9, 67.6. MS: m/z: [M]⁺, 242.0.

3,3,5-Trimethylcyclohexyl 2-hydroxy-2-phenylacetate 2y^{1a}

According to the general procedure, **2y**, a mixture of diastereomers (yellow oil, 48.6 mg), was isolated by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.30 (m, 5H), 5.11 (d, *J* = 4.8 Hz, 1H), 4.99–4.91 (m, 1H), 3.53 (d, *J* =

5.6 Hz, 1H), 2.04–2.01 (m, 0.5H), 1.75–1.68 (m, 2H), 1.51–1.47 (m, 0.5H), 1.33–1.12 (m, 2H), 0.98–0.89 (m, 9H), 0.84–0.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 138.6, 128.4 (2C), 128.2, 126.4 (2C), 73.5, 72.9, 47.3, 43.3, 40.1, 39.7, 32.9, 32.8, 32.3, 27.0, 26.9. 25.4, 25.4, 22.2, 22.1. MS: m/z: [M]⁺, 276.2.

2-Hydroxy-1,2-diphenylethan-1-one 2aa¹⁰

According to the general procedure, **2aa** (white solid, 32.8 mg, mp: 120–121 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 20:1) in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.33–7.26

(m, 5H), 5.96 (d, J = 6.0 Hz, 1H), 4.59 (d, J = 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 139.0, 133.9, 133.5, 129.9, 129.1 (4C), 128.6 (2C), 128.5, 127.7, 76.2. MS: m/z: [M]⁺, 212.0.

2-Hydroxy-1,2-bis(4-methoxyphenyl)ethan-1-one **2ab**¹⁰

According to the general procedure, **2ab** (white solid, 50.4 mg, mp: 107–108 °C) was obtained by column chromatography with the eluting

(petroleum ether/ethyl acetate = 5:1) in 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 6.86–6.83 (m, 4H), 5.85 (d, *J* = 6.0 Hz, 1H), 4.64 (d, *J* = 6.0 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 163.9, 159.5, 131.7, 131.5 (2C), 128.9 (2C), 126.1, 114.4 (2C), 113.8 (2C)., 75.1, 55.4, 55.1. MS: m/z: [M]⁺, 272.0.

1,2-Bis(4-bromophenyl)-2-hydroxyethan-1-one **2ac**¹⁰

According to the general procedure, **2ac** (white solid, 51.8 mg, mp: 100–101 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 70% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.00 (d, *J* = 7.6 Hz, 2H), 7.58–7.45 (m, 4H), 7.38 (d, *J* = 8.0 Hz, 2H), 6.20 (d, *J* = 5.6 Hz, 1H), 6.10 (d, *J* = 6.0 Hz, 1H). ¹³C

NMR (100 MHz, DMSO-*d*₆) δ 198.8, 139.2, 134.6, 133.3, 131.4 (2C), 129.4 (2C), 128.9 (2C), 128.6 (2C), 120.9, 74.9. MS: m/z: [M]⁺, 370.0.

1,2-Di(furan-2-yl)-2-hydroxyethan-1-one 2ad¹¹

According to the general procedure, **2ad** (yellow solid, 21.3 mg, mp: 111–112 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 15:1) in 55% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.01 (s, 1H), 7.60 (s, 1H), 7.53 (d, *J* = 3.6 Hz, 1H), 6.71–6.70 (m, 1H), 6.42 (s, 2H), 6.14 (d, *J* = 6.4 Hz, 1H), 5.80 (d, *J* = 6.0 Hz, 1H). ¹³C

NMR (100 MHz, DMSO-*d*₆) δ 184.9, 152.4, 149.6, 148.3, 143.0, 120.4, 112.5, 110.7, 108.5, 69.5. MS: m/z: [M]⁺, 192.0.

2-Hydroxy-1,2-di(thiophen-2-yl)ethan-1-one 2ae¹¹

According to the general procedure, **2ae** (yellow solid, 23.5 mg, mp: 100–101 °C) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 15:1) in 52% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.15 (d, *J* = 3.6 Hz, 1H), 8.04 (d, *J* = 5.2 Hz, 1H), 7.47 (d, *J* = 5.2 Hz, 1H), 7.24 (t, *J* = 4.8 Hz, 1H), 7.11 (d, *J* = 3.2 Hz, 1H), 6.98-6.96 (m,

1H), 6.57 (d, J = 4.8 Hz, 1H), 6.11 (d, J = 4.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 191.1, 143.0, 140.1, 135.7, 134.6, 128.6, 126.8, 126.3, 125.9, 72.6. MS: m/z: [M]⁺, 224.0.

2-Hydroxy-1-(4-methoxyphenyl)-2-phenylethan-1-one 2af¹²

According to the general procedure, **2af** (white solid, 34.6 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 4:1) in 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.8 Hz, 2H), 7.45–7.19 (m, 4H), 6.79 (d, *J* = 8.8 Hz, 2H), 5.82 (d, *J* = 6.0 Hz, 1H), 4.60 (d, J = 6.0 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 191.7, 164.0, 139.5, 132.0 (2C), 129.1 (2C), 128.7, 127.7 (2C), 126.1, 113.9 (2C), 75.8, 55.5. MS: m/z: [M]⁺, 242.1.

2-Hydroxy-1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)ethan-1-one 2ag¹³

According to the general procedure, **2ag** (white solid, 45.9 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 4:1) in 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 5.88 (s, 1H), 4.65 (s, 1H), 3.76 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 196.4, 164.4, 143.3, 131.6 (2C), 130.5 (q, ${}^{2}J_{C-F} = 32.3$ Hz), 128.0 (2C), 126.0 (q, ${}^{3}J_{C-F} = 3.7$ Hz, 2C), 128.5, 123.8 (q, ${}^{1}J_{C-F} = 270.5$ Hz), 114.1 (2C), 75.0, 55.5. 19 F NMR (376 MHz, CDCl₃): δ -62.69. MS: m/z: [M]⁺, 310.1.

1-Hydroxy-1-phenylpropan-2-one **2ah**¹²

According to the general procedure, **2ah** (white oil, 18.0 mg) was obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 10:1) in 60% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.40–7.28 (m, 5H), 6.04 (d, *J* = 4.4 Hz, 1H), 5.05 (d, *J* = 4.4 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 208.7, 139.4, 128.4 (2C), 127.8, 126.6 (2C), 79.2,

25.0. MS: m/z: [M]⁺, 150.0.

Mechanistic studies

Determination the absorbtion of 1a at visible-light region

Figure S1. UV-vis spectra of *i*-Pr₂NEt, 1a, and mixture of 1a with *i*-Pr₂NEt in CH₃CN.

According to the above UV-vis spectra (Figure S1), the absorption of **1a** stretched to visible light region (~ 400 nm) and *i*-Pr₂NEt did not show any aborsorbtion in visible light region. However, the mixture of **1a** and *i*-Pr₂NEt showed slight blue shift. So, we deduced that a complexation between the two compounds may occur.

Norrish-Yang photocyclization experiment

Scheme S2. Norrish-Yang photocyclization experiment.

Substrate **1ai** (71.2 mg, 0.4 mmol, 1.0 equiv), H₂O (108 mg, 6.0 mmol, 15.0 equiv) were added to reaction tube. Then the solvent CH₃CN (4.0 mL) was added under Ar atmosphere. The reaction mixture was stirred under purple LED irradiation for 6.0 h. The volatile materials were then evaporated under vacuum and the residue was further purified by flash column chromatography with the eluent of petroleum ether/ethyl acetate (10:1) to afford the cyclization product **2ai** (yellow oil, 25.8 mg) in 36% yield. **2ai**¹⁴: ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, *J* = 7.6 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H), 7,20 (d, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 4.04 (s,1H), 3.79 (d, *J* = 14.0 Hz, 1H), 3.75 (s, 3H), 3.36 (d, *J* = 13.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 145.3, 142.9, 130.0, 127.7, 123.4, 121.1, 78.1, 53.1, 45.6. MS: m/z: [M]⁺, 178.0.

Deuterium labelling experiments

Figure S2. ¹H NMR spectra of 2a and D-2a.

Determination the presence of alkenylamine S1.

To determine the formation of alkenylamine in the reaction, a control experiment of standard reaction without H₂O was performed. After the reaction was finished, a GC-MS analysis of the crude mixture was performed. Indeed, a peak corresponding to the alkenylamine **S1** was found (see Figure S3, m/z: 127.00 corresponds to the molecular ion peak, m/z: 112.00 corresponds to the fragment peak that loses a methyl group, m/z: 84.00 corresponds to the fragment peak that loses an isopropyl group, and m/z: 70.00 corresponds to the fragment peak that loses a methyl group and an isopropyl group).

Figure S3. GC spectrum of crude mixture and MS analysis of alkenylamine S1.

Another plausible reaction mechanism

Scheme S3. A plausible reaction mechanism.

References

- (a) Gao, Y.; Zhang, X.; Laishram, R. D.; Chen, J.; Li, K.; Zhang, K.; Zeng, G.; Fan, B. Cobalt-Catalyzed Transfer Hydrogenation of α-Ketoesters and N-Cyclicsulfonylimides Using H2O as Hydrogen Source. *Adv. Synth. Catal.* **2019**, *361*, 3991-3997; (b) Montalban, A. G.; Boman, E.; Chang, C. D.; Ceide, S. C.; Dahl, R.; Dalesandro, D.; Delaet, N. G.; Erb, E.; Ernst, J. T.; Gibbs, A.; Kahl, J.; Kessler, L.; Kucharski, J.; Lum, C.; Lundström, J.; Miller, S.; Nakanishi, H.; Roberts, E.; Saiah, E.; Sullivan, R.; Urban, J.; Wang, Z.; Larson, C. J. Optimization of alpha-ketoamide based p38 inhibitors through modifications to the region that binds to the allosteric site. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4819-4824; (c) Mamillapalli, N. C.; Sekar, G. Enantioselective Synthesis of α-Hydroxy Amides and β-Amino Alcohols from α-Keto Amides. *Chem. Eur. J.* **2015**, *21*, 18584-18588.
- 2. Sugaya, M.; Yamamoto, T.; Shinozaki, H. Palladium catalyzed synthesis of mandelate derivatives from arylboronic acids and glyoxylate hemiacetals. *Tetrahedron Lett.* **2017**, *58*, 2495-2497.
- 3. Alamsetti, S. K.; Sekar, G. Chiral cobalt-catalyzed enantioselective aerobic oxidation of α-hydroxy esters. *Chem. Commun.* **2010**, *46*, 7235-7237.
- 4. Gao, S.; Tang, W.; Zhang, M.; Wang, C.; Xiao, J. Ru-MACHO-Catalyzed Highly Chemoselective Hydrogenation of α-Keto Esters to 1,2-Diols or α-Hydroxy Esters. *Synlett* **2016**, *27*, 1748-1752.
- Chiba, S.; Zhang, L.; Ang, G. Y.; Hui, B. W.-Q. Generation of Iminyl Copper Species from α-Azido Carbonyl Compounds and Their Catalytic C–C Bond Cleavage under an Oxygen Atmosphere. Org. Lett. 2010, 12, 2052-2055.
- Liu, Y.; Liu, S.; Li, D.; Zhang, N.; Peng, L.; Ao, J.; Song, C. E.; Lan, Y.; Yan, H. Kinetic Resolution of Allylic Alcohol with Chiral BINOL-Based Alkoxides: A Combination of Experimental and Theoretical Studies. *J. Am. Chem. Soc.* 2019, 141, 1150-1159.
- Borowiecki, P.; Wińska, P.; Bretner, M.; Gizińska, M.; Koronkiewicz, M.; Staniszewska, M. Synthesis of novel proxyphylline derivatives with dual Anti-Candida albicans and anticancer activity. *Eur. J. Med. Chem.* 2018, 150, 307-333.
- 8. Pi, C.; Yin, X.; Cui, X.; Ma, Y.; Wu, Y. Directed C3-Alkoxymethylation of Indole via Three-Component Cascade Reaction. *Org. Lett.* **2019**, *21*, 2081-2084.
- Enders, D.; Stöckel, B. A.; Rembiak, A. Enantio- and chemoselective Brønsted-acid/Mg(nBu)2 catalysed reduction of α-keto esters with catecholborane. *Chem. Commun.* 2014, *50*, 4489-4491.
- Monreal-Leyva, I.; Attema, B. R.; Bae, N.; Cao, H.; Palencia, H. Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions. *Eur. J. Chem.* 2019, *10*, 1-6.

- Yu, Y.; Lin, C.; Li, B.; Zhao, P.; Zhang, S. Dendrimer-like core cross-linked micelle stabilized ultra-small gold nanoclusters as a robust catalyst for aerobic oxidation of α-hydroxy ketones in water. *Green Chem.* 2016, 18, 3647-3655.
- Shen, G.; Liu, H.; Chen, J.; He, Z.; Zhou, Y.; Wang, L.; Luo, Y.; Su, Z.; Fan, B. Zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source. *Org. Biomol. Chem.* 2021, *19*, 3601-3610.
- Ma, L.; Yu, Y.; Xin, L.; Zhu, L.; Xia, J.; Ou, P.; Huang, X. Visible Light Enabled Formal Cross Silyl Benzoin Reaction as an Access to α-Hydroxyketones. *Adv. Synth. Catal.* 2021, 363, 2573-2577.
- Zheng, J.; Dong, X.; Yoon, T. P. Divergent Photocatalytic Reactions of α-Ketoesters under Triplet Sensitization and Photoredox Conditions. *Org. Lett.* 2020, 22, 6520-6525.

Spectrum

-1 ò . 130

0 -210 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

