Regioselective Umpolung Addition of Dicyanobenzene to

α,β-Unsaturated Alkenes Enabled by Electrochemical

Reduction

Sheng Zhang^{*},^{1,2} Wenchao Gao,² Jianxue Shi,² Jingjing Li,² Fengyi Li,¹ Yating Liang,¹ Xuan Zhan,¹ Man-Bo Li^{*1}

¹ Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China.

² College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, P. R. China.

Email: shengzhang@ahu.edu.cn; mbli@ahu.edu.cn;

Supporting Information

Table of Contents

Part I Experimental Section	S2
1. General information	S2
2. Optimization of reaction conditions	S2-S8
3. General procedure for umpolung addition	\$9-\$10
4. Procedure for gram scale reaction	S10
5. X-ray crystallographic data of 5y, 5z	S11-S19
6. Control experiments	S20
7. Cyclic voltammetric experiments	S21-S22
8. Experimental data for products	S23-S41
9. References	S42
10.NMR spectra	S43-S115

1. General Information

¹H NMR and ¹³C NMR were recorded on a Bruker 400 MHz spectrometer (¹H NMR: 400MHz, ¹³C NMR: 100MHz). The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz respectively. ¹H NMR spectra were referenced to the solvent residual peak (TMS, δ 0 ppm) and ¹³C{1H} NMR spectra were referenced to the solvent residual peak (CDCl₃, δ 77.0 ppm). High Resolution mass spectra were obtained using AB Sciex TripleTOF[®] 5600+ mass spectrometer. All solvents were purified and dried according to the standard procedures unless otherwise noted. Commercially substrates were purchased and used directly. α , β -Unsaturated esters¹ and enones² were prepared according to the literature procedures.

Undivided cell CN COOMe 20mA, 5h, DMSO electrolyte (0.1 M) COOMe 50 °C, graphite anode 2a 1a 3a additives (20 mol%) para/ortho Electrolyte Cathode Additives Entry Solvent Yield (%)^b p/o^{c} 1 DMSO ⁿBu₄NOAc 4/1 Ni none 83 2 DMSO ⁿBu₄NOAc Zn none 80 5/1 3 DMSO ⁿBu₄NOAc Ρt 81 6/1 none 4 DMSO ⁿBu₄NClO₄ Ρt 48 29/1 none 5 DMSO ⁿBu₄NPF₆ Ρt 10/1none 46 6 DMSO ⁿBu₄NOTf 47 14/1 Pt none 7 DMSO ^{*n*}Bu₄NBr Ρt none trace n.d. 8 DMSO ⁿBu₄NClO₄ 70 Ρt NH₄OAc 12/1 9 DMSO ⁿBu₄NClO₄ NaOAc 78 15/1 Pt 10^d DMSO ⁿBu₄NClO₄ Ρt NaOAc 83 6/1 11^e DMSO ⁿBu₄NClO₄ NaOAc Pt 71 13/1 ⁿBu₄NClO₄ NaOAc 73 10/112 DMA Ρt 13 CH₃CN ⁿBu₄NClO₄ Ρt NaOAc n.d. trace 14 $CH_3CN/DCE(3/7)$ ⁿBu₄NClO₄ Ρt NaOAc trace n.d.

2. Optimization of reaction conditions

Table S1. Optimization of 'E-pinacol coupling'a

^{*a*} Reaction conditions: **1a** (1 mmol), **2a** (2 mmol), electrolyte (1 mmol), additives (0.2 mmol), graphite rod anode (0.6*10 cm), metal plate cathode (1.5*1.5 cm), 20 mA, 5h (3.7 F/mol), 50 °C. ^{*b*} Isolated yield. ^{*c*} Ratio of *para*- and *ortho*-isomers was determined by ¹H NMR. ^{*d*} 0.5 mmol NaOAc was used. ^{*e*} 1 mol 2a was used in the reaction.

Initially, various cathodes were screened using ${}^{n}Bu_{4}NOAc$ as electrolyte (Entries 1-3). It was found that platinum cathode was the optimal one in terms of reaction selectivity (*para/ortho* = 6/1) (Entry 3), although nickel cathode gave the product **3a** with slightly higher yield (Entry 1). Subsequently, electrolytes were examined to access better regioselectivity (Entries 4-7). To our delight, ${}^{n}Bu_{4}NCIO_{4}$ led to a significant increase of regioselectivity (29/1) albeit with low yield (Entry 4). However, halide electrolyte failed to afford the desired adduct (Entry 7). To access right balance for reaction efficiency and selectivity, 20 mol% acetate additives were introduced to the reaction, which was reported as a robust additive for the type of the photochemical reaction (Entries 8-10). Upon treatment with NaOAc, the product **3a** was observed in 78% yield with 15/1 (p/o) regioselectivity (Entry 9). Increasing the amount of NaOAc, led to deteriorated regioselectivity (6/1) (Entry 10). Reducing amount of substrate 2a to 1 mmol led to slightly lower yield (71 %) and regioselectivity (13/1) (Entry 11). Varying reaction solvent resulted in lower reaction efficiency and regioselectivity (Entry 12-14). Acetonitrile and the mixed solvent of acetonitrile and DCM failed to give the desired product. Presumably, these two solvents are less liable to oxidation than the substrate **2a**, and the anodic oxidation of substrate **2a** led to side reaction.

Entry 1 regioselectivity

Entry 2 regioselectivity

Entry 3 regioselectivity

Entry 4 regioselectivity

Entry 6 regioselectivity

Entry 9 regioselectivity

Entry 11 regioselectivity

3. General procedure for umpolung addition

Fig. S1 Electrolysis setup (graphite rod: diameter 0.6 cm, length 10 cm; platinum plate: 1.5 cm *1.5 cm)

Condition I (3a as example)

An undivided cell was equipped with a magnet stirrer, platinum plate (1.8 *1.5 cm²), graphite rod (0.6*10 cm), as cathode and anode, respectively (the electrolysis setup is shown in Fig. S1). The substrate 1,4-dicyanobenzene **1a** (128 mg, 1 mmol), methyl cinnamate **2a** (324 mg, 2 mmol), NaOAc (16 mg, 0.2 mmol) and ^{*n*}Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent DMSO (10 mL). The resulting mixture was allowed to stir and electrolyze at constant current condition (20 mA, $J = 8.9 \text{ mA} \cdot \text{cm}^{-2}$) at 50 °C for 5 hours. Then the reaction mixture was poured into water (150 mL) and extracted with ethyl acetate (50 mL*3). The combined organic phase was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 10/1-6/1) on silica gel to afford the desired product **3a** (207 mg) in 78 % yield.

Condition II (5w as example)

An undivided cell was equipped with a magnet stirrer, platinum plate (1.8 *1.5 cm²), graphite rod (0.6*10 cm), as cathode and anode, respectively (the electrolysis setup is shown in Fig. S1). The substrate 1,4-dicyanobenzene **1a** (128 mg, 1 mmol), 3-methylcyclohex-2-en-1-one **4w** (227 μ L, 2 mmol), and *n*Bu₄NOAc (301 mg, 1 mmol) were added to the solvent DMSO (10 mL). The resulting mixture was allowed to stir and electrolyze at constant current condition (20 mA, *J* = 8.9 mA · cm⁻²) at 50 °C for 5 hours. Then the reaction mixture was poured into water (150 mL) and extracted with ethyl acetate (50 mL*3). The combined organic phase was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 10/1-6/1) on silica gel to afford the desired product **3a** (173 mg) in 81 % yield.

4. Procedure for gram scale reaction

Fig. S2 Gram-scale electrolysis setup (graphite rods (*5): diameter 1.0 cm, length 10 cm, immergence depth 3.0 cm; nickel plate: width 23 cm, immergence depth 5.0 cm)

An undivided cell was equipped with a magnet stirrer, nickel plate (23*5.0 cm²), 5 graphite rods (1.0*10 cm), as cathode and anode, respectively (the electrolysis setup is shown in **Fig. S2**). The substrate 1,4-dicyanobenzene **1a** (12.8 g, 0.1 mol), methyl cinnamate **2a** (32.4 g, 0.2 mol), NaOAc (656 mg, 8 mmol) and $^{n}Bu_{4}NClO_{4}$ (6.8 g, 10 mmol) were added to the solvent DMSO (200 mL). The resulting mixture was allowed to stir and electrolyze at constant current condition (1000 mA, $J = 8.7 \text{ mA} \cdot \text{cm}^{-2}$) at room temperature for 10 hours. Then the reaction mixture was poured into water (1000 mL) and extracted with ethyl acetate (200 mL*3). The combined organic phase was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 10/1-6/1) on silica gel to afford the desired product **3a** (16.6 g) in 63 % yield.

5. X-ray crystallographic data of 5y, 5z

5y

(CCDC number: 2122022)

Table S2.	Crystal	data	and	structure	refinemen	t for	5y
-----------	---------	------	-----	-----------	-----------	-------	----

Identification code	5у
Empirical formula	C ₁₇ H ₁₉ NO
Formula weight	253.33
Temperature/K	150.0
Crystal system	trigonal
Space group	P3 ₁ 21
a/Å	10.9010(19)
b/Å	10.9010(19)
c/Å	20.449(5)
α/°	90
β/°	90
γ/°	120
Volume/Å ³	2104.4(9)
Z	6
$\rho_{calc}g/cm^3$	1.199
µ/mm⁻¹	0.370
F(000)	816.0
Radiation	GaKα (λ = 1.34139)
20 range for data collection/°	8.148 to 110.19
Index ranges	-13 ≤ h ≤ 13, -13 ≤ k ≤ 13, -24 ≤ l ≤ 24
Reflections collected	44884
Independent reflections	2673 [R _{int} = 0.0554, R _{sigma} = 0.0297]
Data/restraints/parameters	2673/0/175
Goodness-of-fit on F ²	0.997

Final R indexes [I>=2σ (I)]	$R_1 = 0.0364$, $wR_2 = 0.1076$
Final R indexes [all data]	$R_1 = 0.0373$, $wR_2 = 0.1087$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.19
Flack parameter	0.15(10)

Table S3. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **5y**. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

· · · · · · · · · · · · · · · · · · ·			0	
Atom	х	у	Z	U(eq)
C001	394.2(19)	2784.3(19)	7600.9(8)	36.0(4)
C002	1848.3(18)	3283.6(19)	7572.1(8)	33.6(4)
O003	4945(3)	6808(2)	6159.3(9)	90.9(8)
C004	2983.1(17)	4850.5(18)	7655.0(8)	33.9(4)
C005	2340.9(17)	5820.0(18)	7643.8(8)	33.9(4)
C006	-590(2)	1350(2)	7555.4(9)	40.6(4)
C007	2273(2)	2273(2)	7507.2(8)	42.2(4)
C008	1793(2)	5829(2)	6947.4(10)	46.7(5)
N009	-1946(3)	-2307(2)	7386.5(10)	66.7(6)
C00A	1306(2)	840(2)	7469.8(9)	45.6(5)
C00B	-132(2)	374.4(19)	7492.7(8)	41.1(4)
C00C	3421.4(18)	7442.5(19)	7545.4(8)	38.7(4)
C00D	3289(2)	7095(2)	6802.3(9)	47.3(5)
COOE	3641(3)	4945(3)	8338.1(11)	56.0(5)
COOF	4902(2)	8202(2)	7837.2(10)	49.7(5)
C00G	4095(2)	5315(2)	7093.3(11)	51.1(5)
С00Н	-1148(2)	-1124(2)	7434.8(9)	50.1(5)
C00I	4191(2)	6468(2)	6638.8(9)	54.8(6)
COOJ	2715(3)	8309(2)	7727.7(14)	58.1(6)

Table S4. Anisotropic Displacement Parameters (Å²×10³) for **5y**. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C001	35.0(9)	36.4(9)	40.1(8)	0.1(7)	0.7(7)	20.5(7)
C002	34.3(9)	38.1(9)	32.3(8)	0.7(6)	-0.5(6)	21.0(7)
O003	98.8(15)	74.7(13)	69.3(11)	2.1(9)	47.8(11)	20.9(11)
C004	26.5(8)	36.6(9)	40.8(8)	-2.6(7)	-2.3(6)	17.6(7)
C005	27.4(8)	34.7(8)	41.1(8)	-2.2(6)	-0.2(6)	16.5(7)
C006	37.1(9)	41.9(10)	41.0(9)	2.6(8)	1.8(7)	18.3(8)
C007	40.5(10)	43.8(10)	50.1(10)	-0.8(8)	-0.1(8)	26.9(9)
C008	41.2(10)	36.4(9)	55.7(11)	1.8(8)	-16.0(8)	14.2(8)
N009	81.7(15)	39.8(10)	62.4(11)	3.3(8)	-2.4(10)	18.3(10)
C00A	56.8(12)	41.2(10)	48.7(10)	0.0(8)	0.0(9)	31.9(9)
C00B	51.1(11)	33.6(9)	34.2(8)	2.0(6)	0.7(7)	17.8(8)
C00C	33.5(9)	34.5(9)	45.0(9)	-2.5(7)	0.2(7)	14.6(7)
C00D	51.6(12)	37.9(9)	41.1(9)	3.1(7)	-5.3(8)	14.0(9)

C00E	54.3(12)	51.0(11)	61.2(11)	-4.3(9)	-24.9(10)	25.2(10)
C00F	40.6(10)	39.6(10)	58.4(11)	-9.7(9)	-5.0(9)	12.3(8)
C00G	37.5(9)	43.5(10)	70.1(13)	-3.3(9)	17.5(9)	18.5(8)
C00H	62.9(13)	38.3(10)	43.1(9)	5.0(8)	1.5(9)	20.8(10)
C00I	53.4(12)	42.5(11)	45.9(10)	-7.5(8)	14.4(9)	7.0(9)
C00J	52.3(12)	37.6(10)	87.1(16)	-0.2(10)	7.0(12)	24.4(9)

Table S5. Bond Lengths for 5y.

	0				
Atom	Atom	Length/Å	Atom	Atom	Length/Å
C001	C002	1.396(2)	C007	C00A	1.382(3)
C001	C006	1.388(3)	C008	C00D	1.550(3)
C002	C004	1.537(2)	N009	C00H	1.144(3)
C002	C007	1.398(3)	C00A	C00B	1.387(3)
O003	C00I	1.212(2)	COOB	C00H	1.449(3)
C004	C005	1.532(2)	C00C	C00D	1.555(3)
C004	C00E	1.550(2)	C00C	C00F	1.520(3)
C004	C00G	1.559(2)	C00C	C001	1.533(3)
C005	C008	1.546(2)	C00D	C00I	1.489(3)
C005	C00C	1.572(2)	C00G	C00I	1.524(3)
C006	COOB	1.388(3)			

Table S6. Bond Angles for 5y.

	Atom	Atom	Atom	Angle/°	Atom	Atom	Atom
	C006	C001	C002	121.58(16)	C006	COOB	С00Н
	C001	C002	C004	123.67(15)	C00A	COOB	C006
	C001	C002	C007	117.10(16)	C00A	COOB	C00H
	C007	C002	C004	119.08(15)	C00D	C00C	C005
	C002	C004	COOE	105.18(15)	COOF	C00C	C005
	C002	C004	C00G	110.04(14)	COOF	C00C	C00D
	C005	C004	C002	111.92(13)	COOF	C00C	COOJ
	C005	C004	COOE	108.87(15)	C00J	C00C	C005
	C005	C004	C00G	108.30(14)	C00J	C00C	C00D
	COOE	C004	C00G	112.55(17)	C008	C00D	C00C
	C004	C005	C008	109.26(14)	C00I	COOD	C008
	C004	C005	C00C	115.73(13)	C00I	C00D	C00C
	C008	C005	C00C	87.10(13)	C00I	C00G	C004
	C001	C006	C00B	119.85(18)	N009	C00H	C00B
	C00A	C007	C002	121.98(18)	O003	C00I	C00D
	C005	C008	C00D	86.78(14)	O003	C00I	C00G
-	C007	C00A	C00B	119.73(17)	COOD	C00I	C00G

эу.					
Atom	x	У	Ζ	U(eq)	
H001	70.68	3441.94	7652.93	43	
H005	1627.94	5613.82	7996.44	41	
H006	-1574.33	1036.9	7567.26	49	
H007	3256.05	2581.07	7488.21	51	
H00A	1027.91	6067.95	6932.12	56	
HOOB	1542.95	4968.07	6688.61	56	
HOOC	1625.98	177.55	7428.58	55	
HOOD	3341.35	7838.43	6498.48	57	
HOOE	4324.82	5936.62	8438.32	84	
HOOF	4123.74	4390.44	8338.6	84	
H00G	2890.58	4567.67	8669.17	84	
HOOH	5421.76	9173.31	7668.58	74	
H00I	5403.23	7698.83	7716.52	74	
HOOJ	4836.06	8224.92	8314.51	74	
НООК	5039.07	5652.6	7291.7	61	
HOOL	3870.93	4470.82	6826.36	61	
HOOM	3297.18	9281.55	7568.46	87	
HOON	2623.7	8317.84	8204.13	87	
H00O	1774.04	7880.31	7526.97	87	

 Table S7. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å2×10³) for

 5v

5z

(CCDC number: 2122023)

Identification code	5z
Empirical formula	C ₃₀ H ₃₇ NO ₃
Formula weight	459.60
Temperature/K	150.0
Crystal system	hexagonal
Space group	P65
a/Å	22.005(2)
b/Å	22.005(2)
c/Å	10.6121(15)
α/°	90
β / °	90
γ/°	120
Volume/Å ³	4450.2(11)
Z	6
ρ _{calc} g/cm ³	1.029
µ/mm ⁻¹	0.327
F(000)	1488.0
Radiation	GaKα (λ = 1.34139)
20 range for data collection/°	4.034 to 110.098
Index ranges	-26 ≤ h ≤ 26, -26 ≤ k ≤ 26, -12 ≤ l ≤ 12
Reflections collected	120880
Independent reflections	5647 [R _{int} = 0.0514, R _{sigma} = 0.0211]
Data/restraints/parameters	5647/7/311
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	$R_1 = 0.0295$, $wR_2 = 0.0895$
Final R indexes [all data]	$R_1 = 0.0301$, $wR_2 = 0.0902$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.13
Flack parameter	0.13(9)

Table S8. Crystal data and structure refinement for 5z.

$(Å^2 \times 10^3)$ for 5z is defined as 1/3 of of the trace of the orthogonalised U _{IJ} tensor.					
Atom	x	у	Z	U(eq)	
0001	11808.6(7)	8421.0(7)	780.3(13)	59.4(4)	
0002	10768.9(9)	8137.1(10)	-80.0(19)	78.9(5)	
O003	10519.1(8)	5554.7(10)	11015.1(14)	68.7(4)	
N00A	6262.8(8)	3340.1(10)	9983(2)	69.6(5)	
C00B	10781.2(7)	6234.3(7)	7997.8(14)	34.3(3)	
C00C	10271.8(7)	6403.8(7)	7290.4(14)	34.0(3)	
C00D	9816.2(8)	6447.6(8)	8330.0(16)	38.6(3)	

Table S9. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters

COOE	11154.1(8)	6030.9(8)	7013.4(15)	39.1(3)
C00F	10975.8(8)	7722.3(8)	3964.0(16)	41.1(3)
C00G	7925.3(8)	4320.5(9)	8611.4(17)	44.3(3)
C00H	11534.0(8)	6620.2(9)	6047.3(16)	41.3(3)
C00I	7568.5(8)	4286.3(8)	9715.5(18)	42.8(4)
C00J	11053.7(7)	6845.8(7)	5396.9(14)	34.9(3)
С00К	10622.9(7)	7006.2(8)	6348.9(15)	36.7(3)
C00L	11397.7(13)	8482.6(12)	-79(2)	61.7(5)
C00M	11455.5(7)	7456.6(8)	4448.3(15)	39.2(3)
C00N	10570.7(8)	5428.7(10)	9924.7(18)	48.8(4)
C000	6838.0(9)	3753.9(9)	9860(2)	51.3(4)
C00P	10072.7(9)	7102.2(10)	5641.7(18)	49.2(4)
C00Q	10362.8(9)	7547.6(10)	4480.3(19)	50.3(4)
COOR	11239.5(10)	8207.0(9)	2831.7(18)	49.5(4)
C00S	7910.5(8)	4750.0(8)	10695.0(17)	42.8(3)
C00T	11312.5(8)	6845.7(9)	8816.5(17)	45.0(4)
C00U	11684.4(11)	7177.7(10)	3309.8(18)	52.2(4)
C00V	11984.7(11)	7695.1(11)	2212(2)	58.1(5)
C00W	12103.4(9)	8071.5(10)	5065(2)	56.8(5)
C00X	10965.5(13)	5059.5(14)	9570(3)	71.2(7)
C00Y	11827.1(18)	9030.5(19)	-1039(3)	98.4(10)
C004	9738.1(7)	5885.7(8)	9316.7(14)	37.2(3)
C005	8980.2(7)	5304.7(8)	9462.7(14)	35.9(3)
C006	8614.5(8)	5259.6(8)	10559.1(15)	39.1(3)
C007	8628.9(8)	4826.5(9)	8494.2(15)	42.1(3)
C008	10244.9(7)	5629.7(8)	8865.1(15)	37.4(3)
C009	11460.4(9)	7899.8(9)	1772.8(17)	49.8(4)

Table S10. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **5z**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U ₂₂	U ₃₃	U ₂₃	U 13	U 12
0001	55.1(7)	64.8(8)	48.9(7)	18.6(6)	11.5(6)	22.9(6)
0002	68.1(10)	84.4(11)	76.4(11)	19.8(9)	-2.5(8)	32.4(9)
0003	71.1(9)	100.2(12)	45.8(8)	12.8(7)	-1.0(6)	51.2(9)
N00A	39.8(8)	67.7(10)	86.1(13)	24.6(10)	2.4(8)	15.6(8)
C00B	29.4(6)	38.6(7)	34.0(7)	0.1(6)	2.0(5)	16.3(6)
C00C	30.0(6)	35.0(6)	36.6(7)	-1.5(5)	0.9(5)	15.9(5)
C00D	34.0(7)	40.4(7)	43.4(8)	4.7(6)	7.2(6)	20.1(6)
C00E	38.5(7)	46.2(8)	39.0(8)	1.8(6)	5.3(6)	26.0(6)
C00F	42.4(8)	38.4(7)	40.8(8)	2.6(6)	2.3(6)	19.0(6)

C00G	38.9(7)	41.7(7)	49.7(9)	1.9(6)	-3.7(6)	18.1(6)
C00H	36.2(7)	49.6(8)	42.5(8)	6.0(7)	7.2(6)	24.7(6)
C00I	33.0(7)	41.1(7)	57.6(10)	12.6(7)	2.6(7)	21.1(6)
C00J	32.0(6)	34.5(6)	36.6(7)	-0.4(6)	3.0(5)	15.4(5)
C00K	34.1(6)	36.4(7)	40.2(7)	1.2(6)	4.7(6)	18.1(5)
COOL	72.2(13)	65.0(11)	51.0(11)	14.5(9)	10.0(9)	36.6(10)
C00M	33.1(7)	38.5(7)	41.3(8)	1.7(6)	4.1(6)	14.3(6)
C00N	37.4(8)	59.1(10)	49.7(10)	16.3(8)	6.2(7)	24.1(7)
C000	38.9(9)	50.6(9)	64.6(11)	15.5(8)	0.5(8)	22.7(8)
C00P	41.4(8)	58.6(9)	54.9(10)	17.1(8)	13.4(7)	30.4(7)
C00Q	48.2(9)	55.4(9)	55.4(10)	15.4(8)	7.3(8)	32.0(8)
COOR	52.3(9)	46.3(8)	48.7(10)	9.5(7)	7.5(7)	23.8(7)
C00S	37.6(7)	48.4(8)	48.2(9)	10.6(7)	10.4(6)	25.8(7)
C00T	34.9(7)	47.3(8)	44.4(9)	-6.1(7)	-3.6(6)	14.4(6)
C00U	59.3(10)	60.7(10)	45.9(9)	11.1(8)	17.0(8)	37.1(9)
C00V	60.0(10)	70.0(12)	49.2(10)	15.6(9)	20.4(8)	36.3(9)
C00W	42.1(9)	48.9(9)	57.9(11)	7.6(8)	-4.0(8)	6.6(7)
C00X	70.2(12)	92.3(16)	76.4(14)	37.6(13)	21.8(11)	59.7(12)
C00Y	100(2)	113(2)	89(2)	58.2(18)	28.7(16)	57.9(18)
C004	31.6(6)	43.0(7)	34.9(7)	0.5(6)	1.5(5)	17.2(6)
C005	32.7(7)	40.6(7)	36.5(7)	5.2(6)	3.1(5)	19.9(6)
C006	37.7(7)	43.2(8)	39.7(8)	2.5(6)	3.9(6)	22.7(6)
C007	37.3(7)	48.1(8)	38.9(8)	1.4(6)	1.6(6)	20.0(6)
C008	31.6(6)	40.8(7)	39.4(8)	3.3(6)	1.6(6)	17.8(6)
C009	49.4(9)	48.7(9)	41.7(9)	10.7(7)	10.7(7)	17.4(7)

Table S11. Bond Lengths for 5z.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
0001	C00L	1.338(3)	C00I	C000	1.448(2)
0001	C009	1.4605(19)	C00I	C00S	1.386(3)
0002	C00L	1.200(3)	C00J	С00К	1.5423(19)
0003	C00N	1.208(3)	C00J	C00M	1.553(2)
N00A	C000	1.138(2)	С00К	COOP	1.526(2)
C00B	C00C	1.5419(19)	C00L	C00Y	1.498(3)
C00B	COOE	1.5270(19)	C00M	C00U	1.549(2)
C00B	C00T	1.536(2)	C00M	C00W	1.537(2)
C00B	C008	1.562(2)	C00N	C00X	1.504(3)
C00C	C00D	1.526(2)	C00N	C008	1.513(2)
C00C	C00K	1.526(2)	C00P	C00Q	1.504(2)
C00D	C004	1.563(2)	COOR	C009	1.512(3)

COOE	C00H	1.532(2)	COOS	C006	1.393(2)
C00F	C00M	1.529(2)	C00U	C00V	1.529(3)
C00F	C00Q	1.323(2)	C00V	C009	1.507(3)
C00F	COOR	1.516(2)	C004	C005	1.5192(19)
C00G	C00I	1.391(3)	C004	C008	1.555(2)
C00G	C007	1.389(2)	C005	C006	1.390(2)
C00H	C00J	1.537(2)	C005	C007	1.396(2)

Table S12. Bond Angles for 5z.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C00L 0001 C009	117.09(15)	COOF COOM COOU	108.23(14)
C00C C00B C008	99.31(10)	COOF COOM COOW	108.69(14)
COOE COOB COOC	107.46(12)	C00U C00M C00J	108.64(12)
COOE COOB COOT	111.01(12)	C00W C00M C00J	111.22(14)
COOE COOB COO8	116.18(12)	C00W C00M C00U	109.79(15)
COOT COOB COOC	112.99(12)	O003 COON COOX	120.64(18)
C00T C00B C008	109.44(13)	O003 C00N C008	122.13(16)
COOD COOC COOB	104.09(12)	C00X C00N C008	117.23(17)
COOK COOC COOB	114.54(11)	N00A C000 C00I	179.3(3)
COOK COOC COOD	118.81(12)	COOQ COOP COOK	112.69(13)
C00C C00D C004	104.49(11)	COOF COOQ COOP	124.60(15)
COOB COOE COOH	110.82(12)	COO9 COOR COOF	111.71(14)
COOQ COOF COOM	123.26(15)	C00I C00S C006	119.41(15)
COOQ COOF COOR	120.58(15)	C00V C00U C00M	113.84(15)
COOR COOF COOM	116.16(14)	C009 C00V C00U	110.36(15)
C007 C00G C00I	119.44(16)	C005 C004 C00D	111.98(12)
COOE COOH COOJ	113.66(12)	C005 C004 C008	114.26(12)
C00G C00I C00O	120.09(18)	C008 C004 C00D	105.37(12)
C00S C00I C00G	120.52(14)	C006 C005 C004	119.89(14)
C00S C00I C00O	119.38(16)	C006 C005 C007	118.69(14)
COOH COOJ COOK	112.35(12)	C007 C005 C004	121.38(13)
COOH COOJ COOM	112.62(11)	C005 C006 C00S	121.01(15)
COOK COOJ COOM	112.05(12)	C00G C007 C005	120.92(15)
COOC COOK COOJ	109.41(11)	COON COO8 COOB	114.84(12)
COOC COOK COOP	110.49(12)	C00N C008 C004	114.02(13)
COOP COOK COOJ	109.30(14)	C004 C008 C00B	104.26(11)
O001 C00L C00Y	111.0(2)	O001 C009 C00R	110.16(15)
0002 C00L 0001	124.02(19)	O001 C009 C00V	106.16(14)
O002 COOL COOY	125.0(2)	C00V C009 C00R	111.66(16)
COOF COOM COOJ	110.23(12)		

tor 5 2				
Atom	x	У	Z	U(eq)
H00C	9956.95	5976.22	6785.91	41
H00A	9352.33	6338.47	7995.8	46
HOOB	10046.23	6921.68	8711.11	46
H00D	10806.57	5597.56	6576.29	47
HOOE	11497.69	5933.87	7436.21	47
H00G	7689.56	4000.31	7943.4	53
HOOF	11746.73	6461.98	5396.7	50
ноон	11919.4	7032.51	6476.21	50
HOOJ	10707.69	6433.58	4891.08	42
НООК	10943.65	7448.73	6811.3	44
H00I	9680.44	6635.75	5396.79	59
HOOL	9882.76	7323.07	6211.58	59
H00Q	10086.25	7715.21	4090.01	60
H00M	10863.86	8293.32	2528.22	59
HOON	11643.99	8663.29	3087.17	59
HOOS	7667.13	4720.67	11452.39	51
H00O	11578.09	7262.59	8289.02	67
HOOP	11635.89	6717.73	9209.82	67
HOOR	11062.4	6946.84	9473.14	67
H00T	12042.64	7061.56	3595.43	63
H00U	11274.06	6738.73	3005.79	63
H00V	12421.25	8119.3	2483.06	70
H00W	12102.05	7477.19	1507.2	70
HOOX	12291.72	8481.56	4508.8	85
H00Y	12461.92	7938.8	5205.77	85
H00Z	11969.56	8186.04	5873.25	85
H010	10701.74	4704.54	8925.74	107
H011	11024.42	4831.87	10316.2	107
H012	11427.44	5401.45	9235.54	107
H00\$	11519.13	9132.2	-1554.43	148
H00:	12069.45	8858.18	-1580.29	148
H00	12173.67	9459.52	-609.68	148
H004	9907.3	6123.05	10150.6	45
H006	8848.09	5581.28	11226.19	47
H007	8874.47	4847.54	7744.34	50
H008	9969.81	5205.22	8326.65	45
H009	11038.46	7479.41	1418.79	60

Table S13. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 5z

6. Control experiments Radical suppression experiment

An undivided cell was equipped with a magnet stirrer, platinum plate (1.8 *1.5 cm²), graphite rod (0.6*10 cm), as cathode and anode, respectively (the electrolysis setup is shown in Fig. S1). The substrate 1,4-dicyanobenzene **1a** (128 mg, 1 mmol), methyl cinnamate **2a** (324 mg, 2 mmol), NaOAc (16 mg, 0.2 mmol), radical scavenger (1.5 mmol) and $^{n}Bu_{4}NClO_{4}$ (342 mg, 1 mmol) were added to the solvent DMSO (10 mL). The resulting mixture was allowed to stir and electrolyze at constant current condition (20 mA, $J = 8.9 \text{ mA} \cdot \text{cm}^{-2}$) at 50 °C for 5 hours. Then the reaction mixture was poured into water (150 mL) and extracted with ethyl acetate (50 mL*3). The combined organic phase was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 10/1-6/1) on silica gel to afford the desired product **3a**.

An undivided cell was equipped with a magnet stirrer, platinum plate (1.8 *1.5 cm²), graphite rod (0.6*10 cm), as cathode and anode, respectively (the electrolysis setup is shown in Fig. S1). The substrate 1,2-dicyanobenzene **1f** (128 mg, 1 mmol), methyl cinnamate **2a** (324 mg, 2 mmol), NaOAc (16 mg, 0.2 mmol) and *n*Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent DMSO (10 mL). The resulting mixture was allowed to stir and electrolyze at constant current condition (20 mA, $J = 8.9 \text{ mA} \cdot \text{cm}^{-2}$) at 50 °C for 5 hours. Then the reaction mixture was poured into water (150 mL) and extracted with ethyl acetate (50 mL*3). The combined organic phase was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 10/1-6/1) on silica gel to afford the desired product **6a** (29 mg) in 11 % yield.

7. Cyclic voltammetric experiments

Fig S3. Cyclic voltammograms of substrates in 0.1 M $^{n}Bu_4NClO_4$ (DMSO), using a glassy carbon working electrode and Pt wire and Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV·s⁻¹ scan rate: a. blank; b. 1,4-dicyanobenzene; c. methyl cinnamate; d. methyl (*E*)-3-(4-(trifluoromethyl)phenyl)acrylate; e. (*E*)-4-phenylbut-3-en-2-one.

As shown in the Figure 2c, substrate 1,4-DCB (1a), with reductive peak at -2.10 V, is more susceptible to cathodic reaction when compared to methyl cinnamate (2a) (-2.36 V) and enone (4a) (-2.16 V). This result indicates that the electroreductive addition is initiated by the reduction of 1,4-DCB. Further investigation of failed substrate 2x showed that its reductive potential (-2.09) is slightly less negative than 1a. This confirmed that more reducible cinnamate was unfavored for the reductive addition.

Fig S4. Cyclic voltammograms of substrates in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire and Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV·s⁻¹ scan rate: a. blank; b. 1,4-dicyanobenzene; c. methyl cinnamate; d. DMSO

The anodic process in the reaction was further studied. It was found that solvent DMSO and substrate **2a** could be oxidized at the anode with anodic peaks at 1.74 V and 1.90 V, respectively. As DMSO is excessive in the reaction, oxidation of DMSO preferentially occurs at the anode.

8. Experimental data for products

NC[^]

Methyl 3-(4-cyanophenyl)-3-phenylpropanoate (**3a**): 207 mg, 78% yield, colorless oil; regioselectivity: 14/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.28 (m, 3H), 7.20 (m, 2H), 4.61 (t, *J* = 8.0 Hz, 1H), 3.58 (s, 3H), 3.07 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 149.0, 142.0, 132.5, 128.9, 128.6, 127.6, 127.2, 118.8, 110.5, 51.9, 47.0, 40.0; These data are in accordance with the literature.³

NC

Ethyl 3-(4-cyanophenyl)-3-phenylpropanoate (**3b**): 226 mg, 81% yield, colorless oil; regioselectivity: 7/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.30 (m, 2H), 7.21 (m, 3H), 4.60 (t, *J* = 8.0 Hz, 1H), 4.04 (q, *J* = 8.0 Hz, 2H), 3.05 (d, *J* = 8.0 Hz, 2H), 1.12 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.1, 148.9, 141.9, 132.3, 128.8, 128.5, 127.5, 127.0, 118.7, 110.5, 60.6, 47.0, 40.2, 14.0; HRMS (ESI): cacld. for C₁₈H₁₇NO₂ [M+H]⁺: 280.1332, found 280.1328.

Isopropyl 3-(4-cyanophenyl)-3-phenylpropanoate (**3c**): 214mg, 73% yield, colorless oil; regioselectivity: 21/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 7.21 (m, 3H), 4.90 (m, 1H), 4.58 (t, J = 8.0 Hz, 1H), 3.02 (d, J = 8.0 Hz, 2H), 1.08 (d, J = 4.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 170.7, 148.9, 141.9, 132.3, 128.8, 128.5, 127.6, 127.0, 118.7, 110.4, 68.1, 47.2, 40.5, 21.6, 21.6; HRMS (ESI): cacld. for C₁₉H₁₉NO₂ [M+H]⁺: 294.1489, found 294.1487.

Isobutyl 3-(4-cyanophenyl)-3-phenylpropanoate (**3d**): 213mg, 69% yield, colorless oil; regioselectivity: 19/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 8.0 Hz, 3H), 4.59 (t, *J* = 8.0 Hz, 1H), 3.76 (d, *J* = 8.0 Hz, 1H), 3.06 (d, *J* = 8.0 Hz, 2H), 1.78 (m, 1H), 0.80 (d, *J* = 4.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 171.2, 148.9, 141.9, 132.3, 128.8, 128.5, 127.5, 127.0, 118.7, 110.4, 70.8, 47.0, 40.2, 27.5, 18.8; HRMS (ESI): cacld. for C₂₀H₂₁NO₂ [M+H]⁺: 308.1645, found 308.1648.

Methyl 3-(4-cyanophenyl)-3-(*p*-tolyl)propanoate (**3e**): 142 mg, 51% yield, colorless oil; regioselectivity: 8/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.10 (m, 4H), 4.57 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.05 (d, *J* = 8.0 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 149.1, 138.9, 136.7, 132.3, 129.5, 128.4, 127.3, 118.7, 110.3, 51.8, 46.5, 39.9, 20.9; HRMS (ESI): cacld. for $C_{18}H_{17}NO_2$ [M+H]⁺: 280.1332, found 280.1324.

Methyl 3-(4-cyanophenyl)-3-(4-isobutylphenyl)propanoate (**3f**): 170 mg, 53% yield, colorless oil; regioselectivity: 6/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.08 (s, 4H), 4.57 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.06 (d, *J* = 8.0 Hz, 2H), 2.42 (d, *J* = 8.0 Hz, 2H), 1.82 (m, 1H), 0.87 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 149.1, 140.5, 139.1, 132.3, 129.5, 128.4, 127.1, 118.8, 110.3, 51.8, 46.5, 44.8, 40.0, 30.0, 22.3; HRMS (ESI): cacld. for C₂₁H₂₃NO₂

Methyl 3-(4-(tert-butyl)phenyl)-3-(4-cyanophenyl)propanoate (**3g**): 145 mg, 45% yield, colorless oil; regioselectivity: 7/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.58 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.06 (d, *J* = 8.0 Hz, 2H), 1.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 149.8, 149.1, 138.8, 132.3, 128.5, 127.0, 125.7, 118.8, 110.3, 51.8, 46.4, 39.9, 34.3, 31.2; HRMS (ESI): cacld. for $C_{21}H_{23}NO_2$ [M+H]⁺: 322.1802, found 322.1790.

Methyl 3-([1,1'-biphenyl]-4-yl)-3-(4-cyanophenyl)propanoate (**3h**): 154 mg, 45% yield, colorless oil; regioselectivity: 24/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.54 (m, 6H), 7.37 (m, 5H), 7.25 (d, *J* = 8.0 Hz, 2H), 4.64 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.09 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.5, 148.7, 140.9, 140.3, 139.9, 132.4, 128.7, 128.4, 127.9, 127.4, 127.3, 126.8, 118.6, 110.4, 51.8, 46.5, 39.8; HRMS (ESI): cacld. for C₂₃H₁₉NO₂ [M+H]⁺: 342.1489, found 342.1497.

Methyl 3-(4-cyanophenyl)-3-(4-methoxyphenyl)propanoate (**3i**): 210 mg, 71% yield, colorless oil; regioselectivity: 5/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 4.56 (t, J = 8.0 Hz, 1H), 3.76 (s, 3H), 3.59 (s, 3H), 3.04

(d, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 158.4, 149.2, 133.9, 132.3, 128.5, 128.3, 118.7, 114.1, 110.3, 55.1, 51.8, 46.1, 40.0; HRMS (ESI): cacld. for C₁₈H₁₇NO₃ [M+H]⁺: 296.1281, found 296.1278.

Methyl 3-(4-cyanophenyl)-3-(4-isopropoxyphenyl)propanoate (**3j**): 110 mg, 34% yield, colorless oil; regioselectivity: 9/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 4.52 (m, 2H), 3.59 (s, 3H), 3.03 (d, J = 8.0 Hz, 2H), 1.31 (d, J = 4.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 156.8, 149.3, 133.7, 132.4, 128.5, 128.4, 118.8, 115.9, 110.3, 69.8, 51.8, 46.1, 40.1, 22.0; HRMS (ESI): cacld. for C₂₀H₂₁NO₃ [M+H]⁺324.1594: , found 324.1586.

Methyl 3-(4-cyanophenyl)-3-(4-phenoxyphenyl)propanoate (**3k**): 197 mg, 55% yield, colorless oil; regioselectivity: 9/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.58 (d, *J* = 8.0 Hz, 2H), 7.33 (q, *J* = 8.0 Hz, 4H), 7.12 (m, 3H), 6.98 (d, *J* = 12.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 4.59 (t, *J* = 8.0 Hz, 1H), 3.60 (s, 3H), 3.05 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.6, 156.7, 156.3, 148.9, 136.5, 132.4, 129.7, 128.8, 128.4, 123.4, 119.0 118.8, 118.7, 110.5, 51.8, 46.2, 40.0; HRMS (ESI): cacld. for C₂₃H₁₉NO₃ [M+H]⁺ 358.1438, found 358.1431.

Methyl 3-(4-cyanophenyl)-3-(4-fluorophenyl)propanoate (**3**I): 156 mg, 55% yield, colorless oil; regioselectivity: 7/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.58 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H),

7.17 (t, J = 8.0 Hz, 2H), 6.99 (t, J = 8.0 Hz, 2H), 4.60 (t, J = 8.0 Hz, 1H), 3.60 (s, 3H), 3.05 (d, J = 8.0 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃): -115.3; ¹³C NMR (100 MHz, CDCl₃): 171.4, 161.6 (d, $J_{F-C} = 244$ Hz), 148.6, 137.6 (d, $J_{F-C} = 3$ Hz), 132.4, 129.0 (d, $J_{F-C} = 8$ Hz), 128.3, 118.6, 115.7 (d, $J_{F-C} = 22$ Hz), 110.6, 51.8, 46.1, 39.9; HRMS (ESI): cacld. for C₁₇H₁₄FNO₂ [M+H]⁺: 284.1081, found 284.1080.

Methyl 3-(4-chlorophenyl)-3-(4-cyanophenyl)propanoate (**3m**): 78 mg, 26% yield, colorless oil; regioselectivity: 17/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.58 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 4.59 (t, *J* = 8.0 Hz, 1H), 3.60 (s, 3H), 3.04 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.5, 148.4, 140.4, 133.0, 132.6, 129.1, 129.0, 128.5, 118.7, 110.8, 52.0, 46.3, 39.8; HRMS (ESI): cacld. for C₁₇H₁₄CINO₂ [M+H]⁺: 300.0786, found 300.0784.

Methyl 3-(4-cyanophenyl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoate (**3n**): 141 mg, 36% yield, colorless oil; regioselectivity: 10/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.75 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.62 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.07 (d, *J* = 8.0 Hz, 2H), 1.32 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): 171.6, 148.7, 145.0, 135.4, 132.4, 128.5, 127.0, 118.7, 110.6, 83.8, 51.9, 47.0, 39.7, 24.8 (signal of boron-bonded carbon atom is invisible in the spectra); HRMS (ESI): cacld. for C₂₃H₂₆BNO₄ [M+H]⁺: 392.2028, found 392.2030.

Methyl 3-(4-cyanophenyl)-3-(4-(methylthio)phenyl)propanoate (**3o**): 44 mg, 14% yield, colorless oil; regioselectivity (**3m**): 14/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.58 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 12.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.57 (t, *J* = 8.0 Hz, 1H), 3.60 (s, 3H), 3.04 (d, *J* = 8.0 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.6, 148.8, 138.7, 137.3, 132.4, 128.4, 128.0, 126.8, 118.7, 110.5, 51.9, 46.3, 39.8, 15.6; HRMS (ESI): cacld. for $C_{18}H_{17}SNO_2$ [M+H]⁺: 312.1053, found 312.1058.

Methyl 3-(4-cyanophenyl)-3-(4-(dimethylamino)phenyl)propanoate (**3p**): 49 mg, 16% yield; white solid, m.p. 105-106 °C; regioselectivity: 11/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.66 (d, *J* = 12.0 Hz, 2H), 4.51 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.02 (d, *J* = 8.0 Hz, 2H), 2.91 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): 172.0, 149.9, 149.5, 132.4, 129.7, 128.4, 128.2, 119.0, 112.7, 110.2, 51.8, 46.1, 40.5, 40.2; HRMS (ESI): cacld. for $C_{19}H_{20}N_2O_2$ [M+H]⁺: 309.1598, found 309.1590.

Methyl 3-(4-acetamidophenyl)-3-(4-cyanophenyl)propanoate (**3q**): 168 mg, 52% yield, colorless oil; regioselectivity: 7/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.98 (br, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 4.56 (t, J = 8.0 Hz, 1H), 3.60 (s, 3H), 3.04 (d, J = 8.0 Hz, 2H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 168.8, 148.9, 137.5, 136.9, 132.4, 128.4, 128.0, 120.3, 118.7, 110.2, 51.9, 46.2, 39.8, 24.3; HRMS (ESI): cacld. for C₁₉H₁₈N₂O₃ [M+H]⁺: 323.1390, found 323.1380.

Methyl 3-(4-cyanophenyl)-3-(o-tolyl)propanoate (**3r**): 142 mg, 51% yield; white solid, m.p. 82-83 °C; regioselectivity: 14/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.19 (m, 4H), 4.79 (t, *J* = 8.0 Hz, 1H), 3.60 (s, 3H), 3.04 (m, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 148.6, 139.7, 136.2, 132.3, 131.0, 128.7, 127.1, 126.4, 126.1, 118.8, 110.3, 51.8, 42.9, 40.2, 19.7; HRMS (ESI): cacld. for C₁₈H₁₇NO₂ [M+H]⁺: 280.1332, found 280.1335.

Methyl 3-(4-cyanophenyl)-3-(m-tolyl)propanoate (**3s**): 159 mg, 57% yield, colorless oil; regioselectivity: 13/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 8.0 Hz, 1H), 7.02 (m, 3H), 4.57 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.06 (d, *J* = 8.0 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.6, 149.0, 141.9, 138.5, 132.7, 132.3, 128.7, 128.4, 127.8, 124.4, 118.7, 110.4, 51.8, 46.8, 39.8, 21.4; HRMS (ESI): cacld. for C₁₈H₁₇NO₂ [M+H]⁺: 280.1332, found 280.1330.

Methyl 3-(3-chlorophenyl)-3-(4-cyanophenyl)propanoate (**3t**): 159 mg, 53% yield, colorless oil; regioselectivity: 24/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.60 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.22 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 1H), 4.59 (t, *J* = 8.0 Hz, 1H), 3.61 (s, 3H), 3.05 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.3, 148.0, 143.9, 134.7, 132.6, 130.1, 128.4, 127.7, 127.4, 125.7, 118.6, 110.8, 52.0, 46.5, 39.6; HRMS (ESI): cacld. for C₁₇H₁₄ClNO₂ [M+H]⁺: 300.0786, found 300.0784.

Methyl 3-(4-cyanophenyl)-3-(thiophen-2-yl)propanoate (**3u**): 60 mg, 22% yield, colorless oil; regioselectivity: 16/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.61 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 4.0 Hz, 1H), 6.93 (m, 1H), 6.85 (s, 1H), 4.83 (t, *J* = 8.0 Hz, 1H), 3.62 (s, 3H), 3.16 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 3.05 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 171.1, 148.3, 145.6, 132.5, 128.3, 126.9, 124.7, 124.5, 118.7, 110.9, 52.0, 42.5, 41.3; HRMS (ESI): cacld. for C₁₅H₁₃NO₂S [M+H]⁺: 272.0740, found 272.0729.

Methyl 3-(4-cyanophenyl)-3-(thiophen-3-yl)propanoate (**3v**): 95 mg, 35% yield, colorless oil; regioselectivity: 8/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.59 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.26 (s, 1H), 7.02 (s, 1H), 6.85 (d, J = 4.0 Hz, 1H), 4.66 (t, J = 8.0 Hz, 1H), 3.61 (s, 3H), 3.10 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 2.98 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 171.5, 148.5, 142.6, 132.4, 128.5, 127.1, 126.5, 120.9, 118.7, 110.6, 51.9, 42.7, 40.4; HRMS (ESI): cacld. for C₁₅H₁₃NO₂S [M+H]⁺: 272.0740, found 272.0736.

Methyl 3-(4-cyanophenyl)-3-(naphthalen-2-yl)propanoate (**3w**): 224 mg, 71% yield, colorless oil; regioselectivity: 33/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.78 (m, 3H), 7.68 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.47 (m, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 1H), 4.77 (t, *J* = 8.0 Hz, 1H), 3.60 (s, 3H), 3.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.6, 148.7, 139.3, 133.3, 132.4, 132.3, 128.7, 128.6, 127.7, 127.6, 126.4, 126.00, 125.98, 125.7, 118.2, 110.5, 51.9, 46.97, 39.8; HRMS (ESI): cacld. for C₂₁H₁₇NO₂ [M+H]⁺: 316.1332, found 316.1329.

Methyl 3-(4-cyanophenyl)-3-(3,4-difluorophenyl)propanoate (3x): 148 mg, 49% yield, colorless oil;

regioselectivity: 20/1 *rr*; ¹H NMR (400 MHz, CDCl₃): 7.61 (d, J = 12 Hz, 2H), 7.33 (d, J = 8 Hz, 2H), 7.04 (m, 3H), 4.59 (t, J = 8 Hz, 1H), 3.62 (s, 3H), 3.04 (d, J = 8 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃): -136.54 (J = 22.6 Hz), -139.71 (J = 22.6 Hz); ¹³C NMR (100 MHz, CDCl₃): 171.1, 150.2 (dd, $J_{F-C} = 247$ Hz, $J_{F-C} = 12$ Hz), 149.2 (dd, $J_{F-C} = 246$ Hz, $J_{F-C} = 12$ Hz), 147.8, 138.9 (t, $J_{F-C} = 4.5$ Hz), 132.5, 128.3, 123.5 (dd, $J_{F-C} = 6$ Hz, $J_{F-C} = 4$ Hz), 118.4, 117.5 (d, $J_{F-C} = 17$ Hz), 116.5 (d, $J_{F-C} = 17$ Hz), 110.9, 51.9, 46.0, 39.7; HRMS (ESI): cacld. for C₁₇H₁₃F₂NO₂ [M+H]⁺: 302.0987, found 302.0988.

Methyl 3-(4-cyanophenyl)-3-(3,4-dimethoxyphenyl)propanoate (**3y**): 130 mg, 40% yield, colorless oil; regioselectivity: 54/1 rr; ¹H NMR (400 MHz, CDCl₃): 7.58 (d, *J* = 8 Hz, 2H), 7.35 (d, *J* = 8 Hz, 2H), 6.81 (d, *J* = 8 Hz, 1H), 6.75 (d, *J* = 12 Hz, 1H), 6.68 (s, 1H), 4.56 (t, *J* = 8 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.60 (s, 3H), 3.04 (d, *J* = 8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.6, 149.1, 149.0, 148.0, 134.4, 132.3, 128.3, 119.3, 118.7, 111.2, 111.0, 110.4, 55.8, 55.8, 51.8, 46.4, 40.1; HRMS (ESI): cacld. for C₁₉H₁₉NO₄ [M+H]⁺: 326.1387, found 326.1380.

Methyl 3-phenyl-3-(pyridin-4-yl)propanoate (**3z**): 56 mg, 23% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 8.50 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 6.0 Hz, 2H), 7.21 (t, *J* = 8.0 Hz, 3H), 7.16 (d, *J* = 4.0 Hz, 2H), 4.53 (t, *J* = 8.0 Hz, 1H), 3.60 (s, 3H), 3.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.6, 152.2, 150.0, 141.7, 128.8, 127.6, 127.1, 122.9, 51.8, 46.3, 39.6. These data are in accordance with the literature.⁴

Methyl 3-(4-(methylsulfonyl)phenyl)-3-phenylpropanoate (**3aa**): 175 mg, 55% yield; white solid, 113-115 °C; ¹H NMR (500 MHz, CDCl₃): 7.85 (d, J = 10.0 Hz, 2H), 7.45(d, J = 5.0 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.22 (m, 3H), 4.65 (t, J = 7.5 Hz, 1H), 3.60 (s, 3H), 3.10 (d, J = 5.0 Hz, 2H), 3.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 171.6, 149.8, 142.0, 138.7, 128.9, 128.7, 127.7, 127.6, 127.1, 51.9, 46.8, 44.4, 40.0; HRMS (ESI): cacld. for C₁₇H₁₈O₄S [M+H]⁺: 319.0999, found 319.0996.

Methyl 3-(1-oxo-1,3-dihydroisobenzofuran-5-yl)-3-phenylpropanoate (**3ab**): 130 mg, 44% yield; white solid, 121-123 °C; ¹H NMR (400 MHz, CDCl₃): 7.84 (d, J = 5.0 Hz, 1H), 7.44 (d, J = 5.0 Hz, 1H), 7.35 (s, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.22 (d, J = 10.0 Hz, 3H), 5.26 (s, 2H), 4.70 (t, J = 7.5 Hz, 1H), 3.60 (s, 3H), 3.12 (d, J = 5.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.7, 170.7, 150.5, 147.2, 142.1, 128.89, 128.86, 127.5, 127.1, 126.0, 124.3, 121.3, 69.5, 51.9, 47.1, 40.1; HRMS (ESI): cacld. for C₁₈H₁₆O₄ [M+H]⁺: 297.1121, found 297.1124.

4-(3-Oxo-1-phenylbutyl)benzonitrile (**5a**): 135 mg, 54% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, *J* = 8 Hz, 2H), 7.30 (m, 4H), 7.20 (m, 3H), 4.65 (t, *J* = 12 Hz, 1H), 3.20 (d, *J* = 8 Hz, 2H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.7, 149.4, 142.4, 132.3, 128.8, 128.5, 127.6, 127.0, 118.7, 110.3, 49.0, 45.7, 30.5; These data are in accordance with the literature.⁵

4-(3-Oxo-1-(*p*-tolyl)butyl)benzonitrile (**5b**): 140 mg, 53% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.54 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8 Hz, 2H), 7.09 (m, 4H), 4.60 (t, *J* = 8 Hz, 1H), 3.18 (d, *J* =

8 Hz, 2H), 2.29 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.9, 149.7, 139.3, 136.6, 132.3, 129.5, 128.4, 127.4, 118.8, 110.1, 49.0, 45.3, 30.5, 20.9; HRMS (ESI): cacld. for C₁₈H₁₇NO [M+H]⁺: 264.1383, found 264.1384.

4-(1-(4-Isobutylphenyl)-3-oxobutyl)benzonitrile (**5c**): 229 mg, 75% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, *J* = 8 Hz, 2H), 7.33 (d, *J* = 8 Hz, 2H), 7.07 (s, 4H), 4.61 (t, *J* = 8 Hz, 1H), 3.19 (d, *J* = 8 Hz, 2H), 2.41 (d, *J* = 8 Hz, 2H), 2.11 (s, 3H), 1.81 (m, 1H), 0.87 (d, *J* = 8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 206.0, 149.7, 140.3, 139.5, 132.3, 129.5, 128.5, 127.2, 118.8, 110.1, 49.0, 45.3, 44.8, 30.5, 30.0, 22.3; HRMS (ESI): cacld. for $C_{21}H_{23}NO$ [M+H]⁺: 306.1852, found 306.1845.

4-(1-(4-(*tert*-Butyl)phenyl)-3-oxobutyl)benzonitrile (**5d**): 238 mg, 78% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, J = 8 Hz, 2H), 7.34 (d, J = 8 Hz, 2H), 7.30 (d, J = 8 Hz, 2H), 7.10 (d, J = 8 Hz, 2H), 4.61 (t, J = 8 Hz, 1H), 3.20 (d, J = 8 Hz, 2H), 2.11 (s, 3H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 206.0, 149.7, 149.6, 139.2, 132.3, 128.5, 127.1, 125.7, 118.8, 110.1, 49.0, 45.2, 34.3, 31.2, 30.5; HRMS (ESI): cacld. for C₂₁H₂₃NO [M+H]⁺: 306.1852, found 306.1856.

4-(1-(4-Methoxyphenyl)-3-oxobutyl)benzonitrile (**5e**): 226 mg, 81% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, *J* = 8 Hz, 2H), 7.32 (d, *J* = 8 Hz, 2H), 7.10 (d, *J* = 8 Hz, 2H), 6.83 (d, *J* = 8 Hz, 2H), 4.59 (t, *J* = 8 Hz, 1H), 3.76 (s, 3H), 3.17 (d, *J* = 8 Hz, 2H), 2.11 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃): 206.0, 158.3, 149.8, 134.3, 132.3, 128.6, 128.4, 118.8, 114.1, 110.0, 55.1, 49.1, 44.9, 30.6; HRMS (ESI): cacld. for C₁₈H₁₇NO₂ [M+H]⁺: 280.1332, found 280.1341.

4-(1-(4-Isopropoxyphenyl)-3-oxobutyl)benzonitrile (**5f**): 157 mg, 51% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, J = 8 Hz, 2H), 7.32 (d, J = 8 Hz, 2H), 7.07 (d, J = 8 Hz, 2H), 6.80 (d, J = 8 Hz, 2H), 4.58 (t, J = 8 Hz, 1H), 4.49 (m, 1H), 3.16 (d, J = 8 Hz, 2H), 2.11 (s, 3H), 1.31 (d, J = 4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 206.0, 156.7, 149.9, 134.1, 132.3, 128.6, 128.4, 118.8, 116.0, 110.1, 69.8, 49.2, 45.0, 30.6, 22.0; HRMS (ESI): cacld. for C₂₀H₂₁NO₂ [M+H]⁺: 308.1645, found 308.1650.

4-(3-Oxo-1-(4-phenoxyphenyl)butyl)benzonitrile (**5g**): 160 mg, 47% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, *J* = 8 Hz, 2H), 7.32 (m, 4H), 7.12 (m, 3H), 6.97 (d, *J* = 8 Hz, 2H), 6.92 (d, *J* = 8 Hz, 2H), 4.63 (t, *J* = 8 Hz, 1H), 3.19 (d, *J* = 8 Hz, 2H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 206.0, 156.9, 156.3, 149.6, 137.1, 132.5, 129.8, 129.0, 128.6, 123.5, 119.1, 119.0, 118.9, 110.3, 49.1, 45.1, 30.7; HRMS (ESI): cacld. for $C_{23}H_{19}NO_2$ [M+H]⁺: 342.1489, found 342.1497.

4-(1-(4-Fluorophenyl)-3-oxobutyl)benzonitrile (**5h**): 112 mg, 42% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H), 7.15 (m, 2H), 6.98 (t, J = 8 Hz, 2H), 4.64 (t, J = 8 Hz, 1H), 3.19 (d, J = 8 Hz, 2H), 2.12 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): -115.5; ¹³C NMR (100 MHz, CDCl₃): 205.6, 161.6 (d, $J_{F-C} = 245$ Hz), 149.2, 138.1 (d, $J_{F-C} = 3$ Hz), 132.4, 129.1 (d, $J_{F-C} = 8$ Hz),

128.4, 118.7, 115.6 (d, J_{F-C} = 21 Hz), 110.4, 49.0, 44.8, 30.5; HRMS (ESI): cacld. for C₁₇H₁₄FNO₂ [M+H]⁺: 268.1132, found 268.1131.

N-(4-(1-(4-cyanophenyl)-3-oxobutyl)phenyl)acetamide (**5i**): 52 mg, 17% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, *J* = 8 Hz, 2H), 7.43 (d, *J* = 8 Hz, 2H), 7.34 (br, 1H), 7.31 (d, *J* = 8 Hz, 2H), 7.13 (d, *J* = 8 Hz, 2H), 4.61 (t, *J* = 8 Hz, 1H), 3.18 (d, *J* = 8 Hz, 2H), 2.16 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 206.0, 168.5, 149.4, 138.3, 136.7, 132.5, 128.6, 128.2, 120.3, 110.3, 100.0, 49.0, 45.2, 30.7, 24.6; HRMS (ESI): cacld. for $C_{19}H_{18}N_2O_2$ [M+H]⁺: 307.1441, found 307.1431.

4-(1-(4-Cyanophenyl)-3-oxobutyl)phenyl acetate (**5j**): 98 mg, 32% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, *J* = 8 Hz, 2H), 7.32 (d, *J* = 8 Hz, 2H), 7.18 (d, *J* = 8 Hz, 2H), 7.02 (d, *J* = 8 Hz, 2H), 4.66 (t, *J* = 8 Hz, 1H), 3.19 (d, *J* = 8 Hz, 2H), 2.28 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.6, 169.4, 149.4, 149.0, 139.9, 132.4, 128.6, 128.5, 121.9, 118.7, 110.3, 48.9, 45.0, 30.5, 21.1; HRMS (ESI): cacld. for C₁₉H₁₇NO₃ [M+H]⁺: 308.1281, found 308.1282.

4-(3-Oxo-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)butyl)benzonitrile (**5k**): 98 mg, 22% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.75 (d, J = 8 Hz, 2H), 7.55 (d, J = 8 Hz, 2H), 7.32

(d, J = 8 Hz, 2H), 7.20 (d, J = 8 Hz, 2H), 4.66 (t, J = 8 Hz, 1H), 3.21 (d, J = 8 Hz, 2H), 2.11 (s, 3H), 1.32 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): 205.7, 149.1, 145.4, 135.3, 132.3, 128.5, 127.0, 118.7, 110.2, 83.8, 48.7, 45.8, 30.6, 24.8 (signal of boron-bonded carbon atom is invisible in the spectra); HRMS (ESI): cacld. for C₂₃H₂₆BNO₃ [M+H]⁺: 376.2079, found 376.2086.

4-(3-Oxo-1-(o-tolyl)butyl)benzonitrile (**5**I): 79 mg, 30% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.54 (d, *J* = 8 Hz, 2H), 7.29 (d, *J* = 8 Hz, 2H), 7.17 (m, 4H), 4.85 (t, *J* = 8 Hz, 1H), 3.17 (d, *J* = 8 Hz, 2H), 2.26 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.9, 149.2, 140.2, 136.3, 132.3, 131.0, 128.8, 127.0, 126.3, 126.2, 118.8, 110.1, 49.3, 41.6, 30.6, 19.8; HRMS (ESI): cacld. for C₁₈H₁₇NO [M+H]⁺: 264.1383, found 264.1383.

4-(3-Oxo-1-(m-tolyl)butyl)benzonitrile (**5m**): 129 mg, 49% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, J = 8 Hz, 2H), 7.33 (d, J = 8 Hz, 2H), 7.18 (t, J = 8 Hz, 1H), 7.01 (m, 3H), 4.60 (t, J = 8 Hz, 1H), 3.20 (d, J = 4 Hz, 2H), 2.30 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.9, 149.5, 142.2, 138.5, 132.3, 128.7, 128.5, 128.4, 127.7, 124.5, 118.8, 110.1, 48.9, 45.6, 30.5, 21.4; HRMS (ESI): cacld. for C₁₈H₁₇NO [M+H]⁺: 264.1383, found 264.1379.

4-(1-(2,4-Dimethoxyphenyl)-3-oxobutyl)benzonitrile (**5n**): 96 mg, 31% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.52 (d, *J* = 8 Hz, 2H), 7.32 (d, *J* = 8 Hz, 2H), 7.00 (d, *J* = 8 Hz, 1H), 6.43 (m, 2H), 4.88 (t, *J* = 8 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.15 (d, *J* = 4 Hz, 2H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 206.5, 159.8, 157.6, 149.7, 132.0, 128.6, 128.1, 123.1, 119.0, 109.7, 104.1, 98.9, 55.3, 55.2,
48.1, 39.2, 30.2; HRMS (ESI): cacld. for C₁₉H₁₉NO₃ [M+H]⁺: 310.1438, found 310.1443.

4-(1-(Furan-2-yl)-3-oxobutyl)benzonitrile (**5o**): 29 mg, 12% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.59 (d, *J* = 8 Hz, 2H), 7.37 (d, *J* = 8 Hz, 2H), 7.32 (s, 1H), 6.30 (s, 1H), 6.04 (s, 1H), 4.66 (t, *J* = 8 Hz, 1H), 3.27 (dd, *J* = 16 Hz, *J* = 8 Hz, 1H), 3.04 (dd, *J* = 16 Hz, *J* = 8 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.3, 154.8, 147.2, 142.0, 132.4, 128.7, 118.8, 110.8, 110.3, 106.3, 47.7, 39.9, 30.4; These data are in accordance with the literature.⁶

4-(3-Oxo-1-(thiophen-2-yl)butyl)benzonitrile (**5p**): 69 mg, 27% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.60 (d, *J* = 8 Hz, 2H), 7.39 (d, *J* = 8 Hz, 2H), 7.18 (d, *J* = 4 Hz, 1H), 6.92 (s, 1H), 6.81 (s, 1H), 4.89 (t, *J* = 8 Hz, 1H), 3.29 (dd, *J* = 16 Hz, *J* = 8 Hz, 1H), 3.18 (dd, *J* = 16 Hz, *J* = 8 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.3, 149.0, 146.1, 132.6, 128.5, 127.0, 124.6, 124.5, 118.8, 110.8, 50.4, 41.3, 30.6; HRMS (ESI): cacld. for C₁₅H₁₃NOS [M+H]⁺: 256.0791, found 256.0790.

4-(3-Oxo-1-(thiophen-3-yl)butyl)benzonitrile (**5q**): 133 mg, 52% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, *J* = 8 Hz, 2H), 7.33 (d, *J* = 8 Hz, 2H), 7.26 (s, 1H), 6.98 (s, 1H), 6.84 (d, *J* = 8 Hz, 1H), 4.70 (t, *J* = 8 Hz, 2H), 3.18 (m, 2H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 205.9, 149.2, 143.1, 132.5, 128.7, 127.3, 126.6, 120.9, 118.9, 110.4, 49.5, 41.5, 30.6; HRMS (ESI): cacld. for C₁₅H₁₃NOS [M+H]⁺: 256.0791, found 256.0795.

4-(3-Cyclopropyl-3-oxo-1-phenylpropyl)benzonitrile (**5r**): 160 mg, 58% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, *J* = 8 Hz, 2H), 7.32 (m, 4H), 7.21 (m, 3H), 4.68 (t, *J* = 8 Hz, 1H), 3.34 (d, *J* = 8 Hz, 2H), 1.92 (m, 1H), 0.88 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): 208.1, 149.6, 142.6, 132.4, 128.9, 128.7, 127.7, 127.0, 118.9, 110.2, 49.0, 45.9, 21.1, 11.1; HRMS (ESI): cacld. for C₁₉H₁₇NO [M+H]⁺: 276.1383, found 276.1385.

4-(3-(adamantan-1-yl)-3-oxo-1-phenylpropyl)benzonitrile (**5s**): 111 mg, 30% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.55 (d, *J* = 8 Hz, 2H), 7.33 (d, *J* = 8 Hz, 2H), 7.28 (d, *J* = 8 Hz, 2H), 7.20 (m, 3H), 4.69 (t, *J* = 8 Hz, 1H), 3.22 (m, 2H), 2.01 (s, 3H), 1.69 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): 212.4, 149.9, 142.9, 132.3, 128.7, 128.6, 127.7, 126.8, 118.9, 110.0, 46.3, 45.3, 41.9, 37.9, 36.4, 27.7; HRMS (ESI): cacld. for C₂₆H₂₇NO [M+H]⁺: 370.2165, found 370.2166.

4-(4-Oxopentan-2-yl)benzonitrile (**5t**): 107 mg, 57% yield; white solid, m.p. 65-66 °C; ¹H NMR (400 MHz, CDCl₃): 7.58 (d, J = 8 Hz, 2H), 7.33 (d, J = 8 Hz, 2H), 3.39 (m, 1H), 2.74 (m, 2H), 2.09 (s, 3H), 1.27 (d, J = 8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 206.5, 151.7, 132.3, 127.7, 118.8, 110.1, 51.1, 35.1, 30.4, 21.5; These data are in accordance with the literature.⁶

4-(3-Oxocyclopentyl)benzonitrile (**5u**): 54 mg, 29% yield; white solid, m.p. 50-51 °C; ¹H NMR (400 MHz, CDCl₃): 7.64 (d, J = 8 Hz, 2H), 7.38 (d, J = 8 Hz, 2H), 3.49 (m, 1H), 2.71 (dd, J = 20 Hz, J = 8 Hz, 1H), 2.50 (m, 2H), 2.33 (dd, J = 16 Hz, J = 8 Hz, 2H), 1.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): 216.7, 148.5, 132.5, 127.6, 118.7, 110.7, 45.2, 42.2, 38.6, 30.8; These data are in accordance with the literature.⁵

4-(3-Oxocyclohexyl)benzonitrile (**5v**): 70 mg, 35% yield; white solid, m.p. 97-98 °C; ¹H NMR (400 MHz, CDCl₃): 7.64 (d, J = 8 Hz, 2H), 7.35 (d, J = 8 Hz, 2H), 3.09 (t, J = 12 Hz, 1H), 2.49 (m, 4H), 2.14 (m, 2H), 1.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 216.7, 148.5, 132.5, 127.6, 118.7, 110.7, 45.2, 42.2, 38.6, 30.8; These data are in accordance with the literature.⁷

4-(3-Oxocyclohexyl)benzonitrile (**5w**): 173 mg, 81% yield; white solid, m.p. 114-115 °C; ¹H NMR (400 MHz, CDCl₃): 7.62 (d, *J* = 8 Hz, 2H), 7.44 (d, *J* = 8 Hz, 2H), 2.86 (d, *J* = 16 Hz, 1H), 2.48 (d, *J* = 16 Hz, 1H), 2.33 (m, 2H), 2.21 (m, 1H), 1.95 (m, 2H), 1.62 (m, 1H), 1.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 210.2, 152.8, 132.4, 126.5, 118.7, 110.2, 52.6, 43.3, 40.6, 37.6, 29.6, 21.9; HRMS (ESI): cacld. for C₁₄H₁₅NO [M+H]⁺: 214.1226, found 214.1224.

(R)-4-(2-oxochroman-4-yl)benzonitrile (5x): 82 mg, 33% yield; white solid, m.p. 154-155 °C; ¹H NMR

(400 MHz, CDCl₃): 7.65 (d, J = 8 Hz, 2H), 7.36 (t, J = 8 Hz, 1H), 7.29 (d, J = 8 Hz, 2H), 7.15 (m, 2H), 7.00 (d, J = 8 Hz, 1H), 4.44 (t, J = 8 Hz, 1H), 3.13 (dd, J = 16 Hz, J = 8 Hz, 1H), 3.03 (dd, J = 16 Hz, J = 4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 166.6, 151.6, 145.7, 132.9, 129.4, 128.3, 128.1, 124.9, 124.0, 118.3, 117.4, 111.6, 40.6, 36.5; HRMS (ESI): cacld. for C₁₆H₁₁NO₂ [M+H]⁺: 250.0863, found 250.0864.

4-((1R,2S,5S)-2,6,6-Trimethyl-4-oxobicyclo[3.1.1]heptan-2-yl)benzonitrile (**5y**): 114 mg, 45% yield; white solid, m.p. 142-143 °C; ¹H NMR (400 MHz, CDCl₃): 7.64 (d, *J* = 8 Hz, 2H), 7.36 (d, *J* = 8 Hz, 2H), 3.10 (d, *J* = 20 Hz, 1H), 2.89 (d, *J* = 20 Hz, 1H), 2.64 (m, 3H), 1.49 (s, 3H), 1.46 (s, 3H), 1.31 (m, 1H), 1.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 211.9, 157.2, 132.3, 126.6, 118.7, 109.6, 56.2, 50.1, 48.1, 41.0, 39.9, 31.4, 27.5, 26.6, 25.4; HRMS (ESI): cacld. for C₁₇H₁₉NO [M+H]⁺: 254.1539, found 254.1537.

(3S,8S,10R,13S,16R,17S)-17-Acetyl-16-(4-cyanophenyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14, 15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (**5z**): 372 mg, 81% yield; white solid, m.p. 183-185 °C; ¹H NMR (400 MHz, CDCl₃): 7.48 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 5.32 (s, 1H), 4.55 (m, 1H), 3.84 (d, *J* = 8.0 Hz, 1H), 2.55 (d, *J* = 12.0 Hz,1H), 2.28 (m, 2H), 1.98 (s, 7 H), 1.66 (m, 12 H), 1.13 (m, 2H), 0.98 (s, 3H), 0.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 207.3, 170.5, 152.8, 139.6, 132.3, 128.0, 121.9, 119.0, 109.5, 74.0, 73.6, 57.4, 49.7, 45.7, 42.0, 38.7, 37.9, 36.9, 36.5, 33.8, 31.8, 31.7, 31.6, 27.6, 21.4, 20.8, 19.2, 13.8; HRMS (ESI): cacld. for C₃₀H₃₇NO₃ [M+H]⁺: 460.2846, found 460.2859.

4-(2-Cyano-1-phenylethyl)benzonitrile (**5aa**): 188 mg, 81% yield, colorless oil; white solid, m.p. 113-114 °C; ¹H NMR (400 MHz, CDCl₃): 7.63 (d, *J* = 8 Hz, 2H), 7.34 (m, 5H), 7.19 (d, *J* = 8 Hz, 2H), 4.43 (t, *J* = 8 Hz, 1H), 3.05 (d, *J* = 8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 146.4, 139.7, 132.7, 129.2, 128.4, 127.9, 127.4, 118.3, 117.7, 111.5, 47.0, 23.7; These data are in accordance with the

literature.8

Diethyl 2-((4-cyanophenyl)(phenyl)methyl)malonate (**5ab**): 249 mg, 71% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.56 (d, J = 8 Hz, 2H), 7.42 (d, J = 8 Hz, 2H), 7.24 (m, 5H), 4.81 (d, J = 12 Hz, 1H), 4.31 (d, J = 12 Hz, 1H), 4.02 (m, 4H), 1.04 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): 167.2, 167.1, 146.9, 139.8, 132.4, 128.8, 128.6, 127.8, 127.4, 118.5, 110.8, 61.8, 61.7, 56.9, 51.0, 13.8, 13.9; HRMS (ESI): cacld. for C₂₁H₂₁NO₄ [M+H]⁺: 352.1543, found 352.1534.

Diethyl 2-((4-chlorophenyl)(4-cyanophenyl)methyl)malonate (**5ac**): 293 mg, 76% yield; white solid, m.p. 70-71 °C; ¹H NMR (400 MHz, CDCl₃): 7.58 (d, J = 12 Hz, 2H), 7.39 (d, J = 8 Hz, 2H), 7.26 (d, J = 8 Hz, 2H), 7.20 (d, J = 8 Hz, 2H), 4.80 (d, J = 12 Hz, 1H), 4.27 (d, J = 12 Hz, 1H), 4.03 (m, 4H), 1.06 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): 167.0, 166.9, 146.3, 138.4, 133.4, 132.5, 129.1, 129.0, 128.5, 118.4, 111.1, 61.9, 56.7, 50.2, 13.8; HRMS (ESI): cacld. for C₂₁H₂₀ClNO₄ [M+H]⁺: 386.1154, found 386.1149.

Methyl 3-(2-cyanophenyl)-3-phenylpropanoate (**6a**): 29 mg, 11% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): 7.60 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 6.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.29 (m, 4H), 7.21 (m, 2H), 5.01 (t, *J* = 8.0 Hz, 1H), 3.59 (s, 3H), 3.14 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.1, 146.8, 141.3, 133.3, 133.0, 128.7, 127.6, 127.2, 127.07, 127.06, 117.8, 112.8, 51.8, 44.8, 39.8; HRMS (ESI): cacld. for C₁₇H₁₅NO₂ [M+H]⁺: 266.1176, found 266.1178.

11. References

- 1. Cao, W.; Liu, X.; Peng, R.; He, P.; Lin, L.; Feng, X. Chem. Commun. **2013**, 49, 3470-3472.
- 2. Shih, J.-L.; Nguyen, T. S.; May, J. A. Angew. Chem. Int. Ed. 2015, 54, 9931-9935.
- 3. Yang, W.; Ling, B.; Hu, B.; Yin, H.; Mao, J.; Walsh, P. J. Angew. Chem. Int. Ed. 2020, 59,161-166.
- 4. Zhang, S.; Li, L.; Li, X.; Zhang, J.; Xu, K.; Li, G.; Findlater, M. Org. Lett. 2020, 22, 3570-3575.
- 5. Tells, J. C.; Amani, J.; Molander, G. A. Org. Lett. 2016, 18, 2994-2997.
- 6. Zhang, T.; Li, W.-A.; Shen, H.-C.; Chen, S.-S.; Han, Z.-Y. Org. Lett. **2021**, 23, 1473-1477.
- 7. Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science **2013**, 339, 1593-1596.
- 8. Takastu, K.; Shintani, R.; Hayashi, T. Angew. Chem. Int. Ed. 2011, 50, 5548-5552.

NMR spectra 3a ¹HNMR

4.63

-3.58< 3.08< 3.06

3a Regioselectivity (gram-scale reaction)

3b¹³CNMR

3c Regioselectivity

3d ¹HNMR

3f¹HNMR

3h ¹HNMR

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 f1 (ppm)

3i Regioselectivity

3j ¹HNMR

3I ¹HNMR

3m¹³CNMR

30¹HNMR

3p Regioselectivity

3q ¹³CNMR

3r Regioselectivity

3.23

3.21

8. 3.13 3.11 3.09 f1 (ppm) 3.19 3.17 3.15 3.07 3.05 3.03 3.01 2.99 2.97 3s ¹³CNMR

3t Regioselectivity

3v Regioselectivity

3y Regioselectivity

3aa ¹HNMR

3ab ¹HNMR

180 170 100 90 f1 (ppm)

5c ¹HNMR

5e ¹HNMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

5f¹HNMR

5g ¹HNMR

5h ¹⁹FNMR

.0

5I ¹³CNMR

5m¹³CNMR

5u ¹³CNMR

5w¹³CNMR

5y ¹³CNMR

S1

