Supporting Information

HFIP-mediated three-component imidization of electron-rich arenes with in situ formed spiroindolenines for facile construction of 2arylspiroindolenines

Chunyan Ge,[§]Liang Wang,[§]Fangzhi Hu, Zhanshuai Ding, Xinyao Li, Deshuai Xiao, Jiayi wang, Shuai-Shuai Li*

College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. *E-mail: flyshuaishuai@126.com

Table of Contents

1. General Information	S2	
2. General Procedure		
3. Characterization of Products		
4. Crystal Structures and Data	S18	
5. ¹ H and ¹³ C NMR Spectra	S19	

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from the commercial sources and used as received. Thin layer chromatography (TLC) was used to monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). TLC spots were visualized by UV-light irradiation on Spectroline Model ENF-24061/F 254 nm. The products were purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker 500 MHz NMR spectrometer (CDCl₃ or DMSO-d₆ solvent). The chemical shifts were reported in parts per million (ppm), downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet) or dimethyl sulfoxide-d₆ (δ 2.54, singlet). Multiplicities were afforded as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) was referenced to the appropriate residual solvent peak. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF. All substituted 2-fluorobenzaldehydes, indole, 1-naphthol and sesamol were purchased from adamas-beta. All substituted *o*-aminobenzaldehydes¹ were prepared according to literature.

2. General Procedure

2.1 General Procedure for the Synthesis of 2-Arylspiroindolenine with the Employment of Phenols as Electron-rich Arenes

A reaction tube was charged with 5-hydroxyindole 1a (0.1 mmol), *o*-amino benzaldehyde 2 (0.13 mmol), phenol 3 (0.15 mmol) and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:25) to afford the desired 2-arylspiroindolenine **4**.

2.2 General Procedure for the Synthesis of 2-Arylspiroindolenine with the Employment of Indoles as Electron-rich Arenes

A reaction tube was charged with 5-hydroxyindole 1a (0.1 mmol), *o*-amino benzaldehyde 2 (0.13 mmol), indole 3 (0.15 mmol) and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica

gel (eluent: ethyl acetate/petroleum ether, 1:15) to afford the desired 2-indolylspiroindolenine 4.

2.3 General Procedure for the Synthesis of 2-Arylspiroindolenine with the Employment of 5-Hydroxyindole as Electron-rich Arene

A reaction tube was charged with 5-hydroxyindole 1a (0.24 mmol), *o*-amino benzaldehyde 2 (0.1 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:4) to afford the desired 2-indolylspiroindolenine **4**.

2.4 Large-scale synthesis

A round bottom flask was charged with 5-hydroxyindole **1a** (1.0 mmol), *o*-amino benzaldehyde **2a** (1.3 mmol), 5-methoxylindole **3i** (1.5 mmol) and HFIP (10.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:15) to afford the desired **4i** (286.9 mg, 63%) as a light yellow solid.

2.5 General Procedure for the Polyallylation of the Product 51

To a 10 mL reaction tube was charged with **4l** (0.05 mmol), NaH (0.3 mmol), and dry THF (2.0 mL). The tube was stirred at room temperature. Upon completion of the reaction as indicated by TLC analysis, H_2O was added (5 mL) and the mixture was extracted with EtOAc (3 x 10 mL). Then the organic layers were dried with Na₂SO₄, and concentrated to dryness. The crude product was purified by silica gel

chromatography (eluent: ethyl acetate/petroleum ether, 1:25) to afford the polyallylated product **5**l in 65% yield as a light yellow solid.

2.6 General Procedure for the Conversion of the Hydroxyl Group

Compound **4i** (0.1 mmol) and 4-dimethylaminopyridine (0.3 mmol) were placed in a 10 mL Shrek tube. Then, the tube was purged with N₂ and CH₂Cl₂ (2 mL) was added. After 5 minutes, N-phenyl-bis(trifluoromethanesulfonimide) (0.2 mmol) was added and the mixture was stirred at room temperature. The reaction was monitored by thin layer chromatography eluting with CH₂Cl₂. When the starting material was consumed, H₂O was added (5 mL) and the mixture was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine (30 mL) and dried under anhydrous Na₂SO₄. The organic solvents were removed under reduced pressure and the residue was purified by column chromatography eluting with (eluent: ethyl acetate/petroleum ether, 1:25) to afford the desired **6i** (53.9 mg, 68%) as a light yellow solid.

2.7 Control experiment

Control experiment (a)

A reaction tube was charged with intermediate **7a** (0.1 mmol), 5-hydroxyindole **1a** (0.1 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:4) to afford the desired product **4l** in 95% yield as a light yellow solid.

Control experiment (b)

A reaction tube was charged with intermediate **7a** (0.1 mmol), 5-hydroxyindole **1a** (0.1 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under N_2 atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:4) to afford the desired product **4I** in 30% yield as a light yellow solid.

Control experiment (c)

A reaction tube was charged with intermediate **7a** (0.1 mmol), 5-hydroxyindole **1a** (0.1 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under O_2 atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:4) to afford the desired product **4l** in 94% yield as a light yellow solid.

Control experiment (d)

A reaction tube was charged with intermediate $7b^2$ (0.1 mmol), 5-hydroxyindole 1a (0.1 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. No reaction occurred by TLC analysis, albeit with prolonged reaction time.

Control experiment (e)

A reaction tube was charged with *o*-amino benzaldehyde 2a (0.1 mmol), 3-aminophenol 3a (0.13 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:8) to afford the product **8a** in 97% yield. And the structure of **8a** was determined by the literature³.

Control experiment (f)

A reaction tube was charged with intermediate 7a (0.11 mmol), *o*-amino benzaldehyde 2a (0.11 mmol), 3-aminophenol 3a (0.1 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:25) to afford the product 4a in 70% yield and 8a (eluent: ethyl acetate/petroleum ether, 1:8) in 8% yield.

3. Characterization of Products

2-(4-(diethylamino)-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (33.6 mg, 71% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.37 (d, J = 9.1 Hz, 1H), 7.25 (d, J = 8.3 Hz, 1H), 7.19 – 7.14 (m, 2H), 6.96 (d, J = 7.3 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 6.60 (t, J = 7.3 Hz, 1H), 6.55 (d, J = 8.1 Hz, 1H), 6.24 (s, 1H), 6.12 (d, J = 8.9 Hz, 1H), 6.08 (s, 1H), 4.25 (dd, J = 9.3, 5.9 Hz, 1H), 3.81 (d, J = 16.6 Hz, 1H), 3.41 (dd, J = 8.6, 6.4 Hz, 1H), 3.31 (q, J = 6.9 Hz, 4H), 3.25 (dd, J = 16.6, 8.3 Hz, 1H), 2.66 (d, J = 16.6 Hz, 1H), 1.75 (dd, J = 19.5, 8.2 Hz, 2H), 1.59 – 1.51 (m, 2H), 1.13 (t, J = 7.0 Hz, 6H), 0.70 – 0.61 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 178.0, 164.5, 153.4, 150.9, 144.1, 140.1, 129.8, 129.3, 127.9, 118.5, 118.1, 116.0, 114.7, 111.9, 110.6, 105.2, 103.1, 98.9, 61.7, 57.6, 47.3, 44.4, 44.4, 36.5, 29.7, 26.9, 23.1, 12.8, **HRMS** (**ESI**): calcd. for C₂₉H₃₂N₃O₂ [M+H]⁺: 454.2489, found: 454.2490.

2-(4-(diethylamino)-2-hydroxyphenyl)-6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (36.3 mg, 74% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (d, *J* = 9.0 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.04 (dd, *J* = 14.3, 7.1 Hz, 1H), 6.70 (d, *J* = 7.8 Hz, 1H), 6.31 (dd, *J* = 16.9, 8.3 Hz, 2H), 6.21 (s, 1H), 6.13 (d, *J* = 9.9 Hz, 2H), 4.25 – 4.16 (m, 1H), 3.52 (d, *J* = 17.2 Hz, 1H), 3.39 (t, *J* = 8.1 Hz, 1H), 3.29 (d, *J* = 6.8 Hz, 4H), 3.22 (dd, *J* = 16.4, 8.1 Hz, 1H), 2.85 (d, *J* = 17.1 Hz, 1H), 1.71 (dd, *J* = 18.3, 8.8 Hz, 2H), 1.58 – 1.51 (m, 2H), 1.18 (s, 1H), 1.10 (t, *J* = 6.6 Hz, 6H), 0.71 – 0.63 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 177.7, 164.6, 162.0 (d, *J* = 237.5 Hz), 153.5, 151.0, 145.5, 145.4 (d, *J* = 3.75 Hz), 140.0, 129.2, 128.4 (d, *J* = 11.2 Hz), 118.5, 114.9, 111.7, 106.3, 105.4 (d, *J* = 20 Hz), 105.0, 103.3, 102.7 (d, *J* = 22.5 Hz), 98.9, 61.3, 56.7, 47.7, 44.4, 44.4, 29.6, 26.9, 23.0, 12.8, 12.8. **HRMS (ESI):** calcd. for C₂₉H₃₁FN₃O₂ [M+H]⁺: 472.2395, found: 472.2407.

6'-chloro-2-(4-(diethylamino)-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (28.9 mg, 57% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (d, *J* = 9.0 Hz, 1H), 7.27 (d, *J* = 8.2 Hz, 1H), 7.19 (s, 1H), 7.07 (t, J = 8.0 Hz, 1H), 6.72 – 6.67 (m, 2H), 6.47 (d, *J* = 8.2 Hz, 1H), 6.25 (s, 1H), 6.15 (d, *J* = 9.3 Hz, 2H), 4.25 – 4.17 (m, 1H), 3.57 (d, *J* = 17.6 Hz, 1H), 3.40 (t, *J* = 8.6 Hz, 1H), 3.32 (dd, *J* = 13.9, 7.0 Hz, 4H), 3.29 – 3.24 (m, 1H), 2.93 (d, *J* = 17.6 Hz, 1H), 1.74 (dd, *J* = 17.4, 8.3 Hz, 2H), 1.66 (m, 2H), 1.13 (t, *J* = 6.8 Hz, 6H), 0.67 (dd, *J* = 20.4, 10.1 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 177.8, 164.4, 153.2, 150.9, 146.1, 145.3, 135.3, 129.2, 128.3, 118.7, 116.9, 116.3, 114.8, 114.2, 111.6, 109.1, 104.9, 103.1, 98.9, 61.2, 57.5, 47.6, 44.4, 44.4, 34.4, 26.9, 23.1, 12.8, 12.8. **HRMS (ESI):** calcd. for C₂₉H₃₁ClN₃O₂ [M+H]⁺: 488.2099, found: 488.2085.

6'-bromo-2-(4-(diethylamino)-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (36.4 mg, 66% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (d, *J* = 9.1 Hz, 1H), 7.27 (d, *J* = 8.3 Hz, 1H), 7.19 (s, 2H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 6.51 (d, *J* = 8.2 Hz, 1H), 6.25 (d, *J* = 1.9 Hz, 1H), 6.15 (d, *J* = 14.1 Hz, 2H), 4.20 (dd, *J* = 9.2, 6.0 Hz, 1H), 3.56 (d, *J* = 17.5 Hz, 1H), 3.40 (td, *J* = 8.8, 3.0 Hz, 1H), 3.33 (q, *J* = 7.1 Hz, 4H), 3.30 – 3.25 (m, 1H), 2.90 (d, *J* = 17.5 Hz, 1H), 1.81 – 1.68 (m, 2H), 1.53 (m, 2H), 1.14 (t, *J* = 7.0 Hz, 6H), 0.72 – 0.64 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 177.7, 164.4, 153.1, 150.9, 145.4, 140.4, 129.2, 129.0, 128.7, 126.2, 120.1, 118.7, 117.8, 114.8, 111.5, 109.8, 104.9, 103.2, 98.9, 61.2, 57.9, 47.6, 44.4, 44.4, 37.3, 26.8, 23.1, 12.8, 12.8. **HRMS** (**ESI**): calcd. for C₂₉H₃₁BrN₃O₂ [M+H]⁺: 532.1594, found: 532.1585.

(2-hydroxy-4-(pyrrolidin-1-yl)phenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (28.3 mg, 60% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.9 Hz, 1H), 7.25 (d, *J* = 8.3 Hz, 1H), 7.16 (m, 2H), 6.96 (d, *J* = 7.4 Hz, 1H), 6.70 – 6.66 (m, 1H), 6.60 (t, *J* = 7.3 Hz, 1H), 6.55 (d, *J* = 8.1 Hz, 1H), 6.14 (s, 1H), 6.08 (s, 1H), 6.04 (d, *J* = 8.9 Hz, 1H), 4.25 (m, 1H), 3.82 (d, *J* = 16.6 Hz, 1H), 3.45 – 3.37 (m, 1H), 3.27 (d, *J* = 11.5 Hz, 5H), 2.67 (d, *J* = 16.6 Hz, 1H), 1.95 (d, *J* = 15.9 Hz, 4H), 1.72 (m, 2H), 1.52 (m, 2H), 0.65 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 178.3, 164.3, 153.2, 150.6, 145.8, 144.1, 140.2, 129.8, 129.2, 128.0, 118.6, 118.1, 116.0, 114.7, 111.8, 110.6, 105.4, 103.6, 99.4, 61.7, 57.6, 47.5, 47.5, 47.3, 36.4, 26.9, 25.5, 25.5, 23.1. **HRMS (ESI):** calcd. for C₂₉H₃₀N₃O₂ [M+H]⁺: 452.2333, found: 452.2325.

2-(4-amino-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (27.5 mg, 66% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.7 Hz, 1H), 7.27 (d, *J* = 8.3 Hz, 1H), 7.19 (m, 2H), 6.96 (d, *J* = 7.3 Hz, 1H), 6.69 (d, *J* = 8.3 Hz, 1H), 6.60 (t, *J* = 7.3 Hz, 1H), 6.55 (d, *J* = 8.1 Hz, 1H), 6.27 (s, 1H), 6.10 (d, *J* = 7.7 Hz, 2H), 4.23 (m, 1H), 4.08 – 3.96 (m, 2H), 3.84 – 3.78 (m,1H), 3.41 (m, 1H), 3.25 (m, 1H), 2.65 (d, *J* = 16.6 Hz, 1H), 1.76 (m, 2H), 1.52 (m, 2H), 1.20 (d, *J* = 22.0 Hz, 2H), 0.72 – 0.59 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 178.3, 164.5, 153.6, 150.5, 145.3, 144.0, 140.3, 129.8, 129.5, 128.0, 119.0, 117.9, 116.1, 114.8, 111.8, 110.6, 107.7, 106.2, 102.6, 61.6, 57.8, 47.3, 36.3, 26.9, 23.0. HRMS (ESI): calcd. for C₂₅H₂₄N₃O₂ [M+H]⁺: 398.1863, found: 398.1857.

2-(6-hydroxybenzo[d][1,3]dioxol-5-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (27.7mg, 62% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 15.27 (s, 1H), 9.40 (s, 1H), 7.38 (d, J = 8.3 Hz, 1H), 7.31 (s, 1H), 7.21 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 7.3 Hz, 1H), 6.72 (dd, J = 8.3, 1.9 Hz, 1H), 6.68 (d, J = 6.7 Hz, 2H), 6.63 (t, J = 7.3 Hz, 1H), 6.07 (d, J = 1.9 Hz, 1H), 6.04 (d, J = 5.1 Hz, 2H), 4.42 (dd, J = 9.5, 5.9 Hz, 1H), 3.84 (d, J = 16.3 Hz, 1H), 3.50 (dd, J = 9.0, 7.1 Hz, 1H), 3.23 (q, J = 8.4 Hz, 1H), 2.60 (d, J = 16.4 Hz, 1H), 1.89 – 1.80 (m, 1H), 1.75 (dd, J = 12.3, 5.3 Hz, 1H), 1.47 (dt, J = 12.0, 5.9 Hz, 1H), 0.56 (dd, J = 19.5, 10.2 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 178.0, 160.2, 156.1, 151.1, 144.3, 143.4, 140.6, 129.7, 128.2, 119.4, 118.1, 116.0, 115.1, 112.3, 111.1, 107.6, 106.3, 102.1, 99.4, 60.6, 58.1, 47.4, 35.9, 26.9, 26.8, 22.9. **HRMS (ESI):** calcd. for C₂₆H₂₃N₂O₄ [M+H]⁺: 427.1652, found: 427.1645.

2-(1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) afforded the product (26.8 mg, 68% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.78 (s, 1H), 9.07 (s, 1H), 8.74 (d, J = 7.6 Hz, 1H), 8.19 (s, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.26 – 7.17 (m, 3H), 7.01 (d, J = 7.3 Hz, 1H), 6.67 (dd, J = 15.5, 8.2 Hz, 2H), 6.60 (t, J = 7.3 Hz, 1H), 6.02 (s, 1H), 4.35 (dd, J = 9.3, 6.0 Hz, 1H), 3.77 (d, J = 15.9 Hz, 1H), 3.52 (t, J = 8.5 Hz, 1H), 3.22 (dd, J = 16.9, 8.5 Hz, 1H), 2.55 (s, 1H), 1.79 (dd, J = 21.0, 9.2 Hz, 2H), 1.42 (m, 1H), 0.66 – 0.46 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.9, 154.6, 149.1, 144.6, 141.4, 136.8, 129.6, 129.2, 128.1, 126.9, 123.9, 123.0, 121.1, 119.8, 119.2, 115.6, 114.5, 111.9, 111.8, 110.7, 109.5, 62.7, 57.1, 47.7, 38.2, 27.0, 23.2. **HRMS (ESI):** calcd. for C₂₇H₂₄N₃O [M+H]⁺: 406.1914, found: 406.1906.

2-(5-methoxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) afforded the product (28.2 mg, 62% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.63 (d, J = 2.0 Hz, 1H), 9.09 (s, 1H), 8.31 (d, J = 2.5 Hz, 1H), 8.11 (d, J = 2.9 Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.19 (s, 1H), 7.01 (d, J = 7.3 Hz, 1H), 6.89 (dd, J = 8.7, 2.6 Hz, 1H), 6.68 (dd, J = 8.2, 2.4 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 6.60 (t, J = 7.3 Hz, 1H), 6.01 (d, J = 2.4 Hz, 1H), 4.32 (dd, J = 9.6, 5.9 Hz, 1H), 3.85 (s, 3H), 3.74 (d, J = 15.9 Hz, 1H), 3.21 (d, J = 8.1 Hz, 1H), 2.51 (dd, J = 3.6, 1.9 Hz, 2H), 1.84 – 1.70 (m, 2H), 1.41 (m, 1H), 0.63 – 0.53 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 175.0, 155.2, 154.5, 149.0, 144.5, 141.3, 131.9, 129.6, 129.5, 128.1, 127.5, 119.8, 119.1, 115.6, 114.5, 112.7, 112.6, 111.9, 110.7, 109.3, 106.1, 62.7, 57.1, 55.9, 47.7, 38.2, 27.0, 23.2. HRMS (ESI): calcd. for C₂₈H₂₆N₃O₂ [M+H]⁺: 436.2020, found: 436.2014.

2-(5-fluoro-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) afforded the product (26.6 mg, 60% yield) as a yellow solid.

¹**H** NMR (500 MHz, DMSO) δ 11.87 (s, 1H), 9.16 (s, 1H), 8.47 – 8.42 (m, 1H), 8.23 (d, J = 2.8 Hz, 1H), 7.48 (dd, J = 8.8, 4.7 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.19 (t, J = 7.7 Hz, 1H), 7.12 – 7.07 (m, 1H), 7.00 (d, J = 7.3 Hz, 1H), 6.69 (dd, J = 8.2, 2.4 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 6.59 (t, J = 7.3 Hz, 1H), 6.00 (d, J = 2.3 Hz, 1H), 4.32 (dd, J = 9.6, 5.9 Hz, 1H), 3.72 (s, 1H), 3.50 (d, J = 7.0 Hz, 1H), 3.20 (q, J = 8.7 Hz, 1H), 2.54 (s, 1H), 1.82 – 1.70 (m, 2H), 1.40 (m, 1H), 0.55 (dd, J = 19.2, 10.2 Hz, 1H); ¹³C NMR (125 MHz, DMSO) δ 174.7, 158.5 (d, J = 230.0 Hz), 154.7, 148.9, 144.5, 141.3, 133.5, 130.8,

129.6, 128.2, 127.2 (d, J = 11.3 Hz), 119.9, 119.0, 115.7, 114.5, 113.1 (d, J = 10.0 Hz), 111.9, 111.2 (d, J = 26.3 Hz), 110.7, 109.6 (d, J = 3.8 Hz), 108.4 (d, J = 23.8 Hz), 62.6, 57.1, 47.7, 38.0, 26.9, 23.2. **HRMS** (ESI) : calcd. for C₂₇H₂₃FN₃O [M+H]⁺: 424.1820, found: 424.1807.

2-(5-chloro-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4k)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) afforded the product (25.3 mg, 55% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.98 (s, 1H), 9.10 (s, 1H), 8.75 (s, 1H), 8.28 (s, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.25 (dd, J = 8.6, 2.2 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.01 (d, J = 7.2 Hz, 1H), 6.69 (dd, J = 8.3, 2.3 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 6.60 (t, J = 7.3 Hz, 1H), 6.02 (s, 1H), 4.33 (dd, J = 9.6, 5.9 Hz, 1H), 3.76 (d, J = 15.9 Hz, 1H), 3.52 (t, J = 7.8 Hz, 1H), 3.25 – 3.19 (m, 1H), 2.55 (s, 1H), 1.83 – 1.74 (m, 2H), 1.44 – 1.37 (m, 1H), 0.62 – 0.53 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 174.5, 154.8, 148.8, 144.5, 141.3, 135.4, 130.6, 129.6, 128.2, 127.9, 125.8, 122.9, 122.8, 120.0, 119.1, 115.6, 114.5, 113.6, 111.9, 110.7, 109.2, 62.6, 57.2, 47.7, 37.9, 26.9, 23.2. HRMS (ESI): calcd. for C₂₇H₂₃ClN₃O [M+H]⁺: 440.1524, found: 440.1503.

2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4l)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) afforded the product (37.5 mg, 85% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.54 (s, 1H), 9.06 (s, 1H), 8.93 (s, 1H), 8.17 (s, 1H), 8.08 (s, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 8.6 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.1 Hz, 1H), 6.79 – 6.73 (m, 1H), 6.72 – 6.68 (m, 1H), 6.64 (d, J = 8.1 Hz, 1H), 6.60 (t, J = 7.3 Hz, 1H), 6.04 (s, 1H), 4.32 (dd, J = 9.1, 6.1 Hz, 1H), 3.76 (d, J = 16.0 Hz, 1H), 3.51 (t, J = 8.0 Hz, 1H), 3.22 (d, J = 8.3 Hz, 1H), 2.52 (d, J = 5.7 Hz, 1H), 1.78 (dd, J = 21.1, 9.2 Hz, 2H), 1.48 – 1.37 (m, 1H), 0.65 – 0.53 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.9, 154.6, 149.1, 144.6, 141.4, 136.8, 129.6, 129.2, 128.1, 126.9, 123.9, 122.9, 121.1, 119.8, 119.2, 115.6, 114.5, 112.0, 111.9, 110.7, 109.5, 62.7, 57.1, 47.7, 38.2, 26.9, 23.2. **HRMS (ESI):** calcd. for C₂₇H₂₄N₃O₂ [M+H]⁺: 422.1863, found: 422.1853.

2-(2-methy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4m)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) afforded the product (22.4 mg, 51% yield, dr 4:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 10.77 (d, J = 21.5 Hz, 1H), 8.62 (s, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.24 (dd, J = 7.5, 0.8 Hz, 1H), 7.22 (d, J = 2.7 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 7.17 (t, J = 7.9 Hz, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.88 (d, J = 2.2 Hz, 1H), 6.63 (dd, J = 8.6, 2.3 Hz, 1H), 6.60 – 6.56 (m, 2H), 6.41 (d, J = 7.4 Hz, 1H), 6.27 – 6.21 (m, 1H), 4.04 – 3.96 (m, 1H), 3.10 (dd, J = 16.5, 9.1 Hz, 1H), 2.53 – 2.49 (m, 1H), 2.28 (s, 3H), 1.82 (m, 1H), 1.73 – 1.67 (m, 1H), 1.61 (m, 1H), 0.45 – 0.36 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 184.9, 155.5, 151.0, 144.3, 139.6, 130.9, 129.6, 128.9, 128.9, 128.1, 125.9, 125.1, 123.7, 119.8, 118.3, 115.8, 112.1, 111.7, 110.5, 104.3, 100.7, 61.0, 56.2, 47.6, 35.7, 26.7, 23.3, 16.4. **HRMS (ESI):** calcd. for C₂₈H₂₆N₃O [M+H]⁺: 420.2070, found: 420.2099.

6'-fluoro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4n)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (35.7 mg, 78% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.54 (d, J = 2.4 Hz, 1H), 9.14 (s, 1H), 8.96 (s, 1H), 8.11 (dd, J = 13.4, 2.7 Hz, 2H), 7.35 (d, J = 8.2 Hz, 1H), 7.26 (d, J = 8.6 Hz, 1H), 7.21 (dd, J = 15.2, 8.0 Hz, 1H), 6.72 (m, 2H), 6.50 (d, J = 8.2 Hz, 1H), 6.44 (t, J = 8.7 Hz, 1H), 6.03 (d, J = 2.4 Hz, 1H), 4.29 (dd, J = 9.6, 6.0 Hz, 1H), 3.58 – 3.53 (m, 2H), 3.21 (dd, J = 16.8, 8.9 Hz, 1H), 2.61 (d, J = 15.7 Hz, 1H), 1.83 – 1.69 (m, 2H), 1.43 (dt, J = 12.0, 5.8 Hz, 1H), 0.62 – 0.52 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.7, 161.5 (d, J = 237.5 Hz), 154.6, 152.7, 149.1, 146.1 (d, J = 7.5 Hz), 141.1, 131.2, 129.4, 128.9 (d, J = 11.3 Hz), 127.7, 119.6, 114.7, 113.1, 112.3, 111.5, 108.7, 108.1, 106.9, 106.0 (d, J = 20.0 Hz), 102.1 (d, J = 22.5 Hz), 62.2, 56.1, 48.1, 31.1, 26.9, 23.1. **HRMS (ESI):** calcd. for C₂₇H₂₃FN₃O₂ [M+H]⁺: 440.1769, found: 440.1753.

6'-chloro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (40)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (32.4 mg, 68% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.52 (d, J = 2.1 Hz, 1H), 9.20 (s, 1H), 9.02 (s, 1H), 8.11 (d, J = 2.4 Hz, 1H), 8.07 (d, J = 2.9 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.28 (d, J = 8.6 Hz, 1H), 7.20 (t, J = 8.1 Hz, 1H), 6.74 (dd, J = 8.6, 2.5 Hz, 1H), 6.72 (d, J = 2.8 Hz, 1H), 6.70 (d, J = 2.7 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 6.04 (d, J = 2.4 Hz, 1H), 4.29 (dd, J = 9.5, 6.0 Hz, 1H), 3.50 (dd, J = 16.1, 12.3 Hz, 2H), 3.22 (dd, J = 17.0, 8.7 Hz, 1H), 2.68 (d, J = 16.7 Hz, 1H), 1.83 – 1.70 (m, 2H), 1.44 (dt, J = 11.5, 5.8 Hz, 1H), 0.59 (dd, J = 19.2, 10.3 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.6, 154.5, 152.7, 149.1, 146.0, 141.2, 134.1, 131.2, 129.4, 129.0, 127.6, 119.7, 116.6, 115.9, 114.8, 113.2, 112.4, 111.5, 109.8, 108.7, 108.1, 62.1, 56.8, 48.0, 36.3, 27.0, 23.2. **HRMS (ESI):** calcd. for C₂₇H₂₃ClN₃O₂ [M+H]⁺: 456.1473, found: 456.1455.

6'-bromo-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4p)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (36.5 mg, 70% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.56 (d, J = 2.3 Hz, 1H), 9.13 (s, 1H), 8.93 (s, 1H), 8.13 (s, 2H), 7.35 (d, J = 8.2 Hz, 1H), 7.26 (d, J = 8.6 Hz, 1H), 7.14 (t, J = 8.1 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.75 – 6.67 (m, 3H), 6.06 (d, J = 2.3 Hz, 1H), 4.33 (dd, J = 9.5, 6.0 Hz, 1H), 3.56 – 3.49 (m, 2H), 3.24 (dd, J = 17.1, 8.7 Hz, 1H), 2.66 (d, J = 16.6 Hz, 1H), 1.87 – 1.73 (m, 2H), 1.45 (m, 1H), 0.65 – 0.53 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.5, 154.6, 152.8, 149.1, 146.1, 141.2, 131.2, 129.5, 129.4, 127.7, 125.4, 119.7, 119.1, 118.3, 114.8, 113.1, 112.3, 111.5, 110.3, 108.7, 108.1, 62.1, 57.0, 48.0, 39.3, 26.9, 23.3. **HRMS (ESI):** calcd. for C₂₇H₂₃BrN₃O₂ [M+H]⁺: 500.0968, found: 500.0954.

5'-methyl-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4q)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (31.9 mg, 70% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.51 (s, 1H), 9.05 (s, 1H), 8.92 (s, 1H), 8.15 (d, J = 2.4 Hz, 1H), 8.03 (d, J = 2.0 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.26 (d, J = 8.6 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.84 (s, 1H), 6.73 (dd, J = 8.6, 2.4 Hz, 1H), 6.69 (dd, J = 8.2, 2.4 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 6.04 (d, J = 2.4 Hz, 1H), 4.27 (dd, J = 9.5, 6.0 Hz, 1H), 3.71 (d, J = 16.1 Hz, 1H), 3.50 – 3.44 (m, 1H), 3.20 (q, J = 8.5 Hz, 1H), 2.53 – 2.50 (m, 1H), 2.20 (s, 3H), 1.84 – 1.67 (m, 2H), 1.40 (m, 1H), 0.59 (dd, J = 19.2, 10.3 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 175.1, 154.4, 152.7, 149.2, 142.5, 141.4, 131.1, 130.2, 129.2, 128.5, 127.8, 123.8, 119.4, 119.2, 114.4, 113.0, 112.3, 112.0, 110.8, 109.0, 108.2, 62.8, 57.3, 47.7, 38.2, 27.0, 23.2, 20.6. **HRMS** (**ESI**): calcd. for C₂₈H₂₆N₃O₂ [M+H]⁺: 436.2020, found: 436.2015.

5'-methoxyl-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4r)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (34.5 mg, 73% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.51 (s, 1H), 9.03 (s, 1H), 8.90 (s, 1H), 8.13 (s, 1H), 8.04 (d, J = 2.8 Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 8.6 Hz, 1H), 6.82 (dd, J = 8.7, 2.9 Hz, 1H), 6.72 (dd, J = 8.8, 2.4 Hz, 2H), 6.68 (dd, J = 8.2, 2.3 Hz, 1H), 6.59 (d, J = 8.8 Hz, 1H), 6.06 (d, J = 2.1 Hz, 1H), 4.24 (dd, J = 9.3, 6.0 Hz, 1H), 3.72 (d, J = 16.2 Hz, 1H), 3.67 (s, 3H), 3.47 – 3.42 (m, 1H), 3.27 – 3.19 (m, 1H), 2.54 (s, 1H), 1.82 – 1.66 (m, 2H), 1.40 (m, 1H), 0.61 – 0.50 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 175.1, 154.4, 152.7, 150.5, 149.2, 141.5, 139.2, 131.1, 129.3, 127.8, 120.4, 119.4, 115.6, 114.4, 113.7, 113.0, 112.3, 112.0, 111.5, 109.0, 108.2, 62.9, 57.4, 55.7, 48.0, 38.4, 26.9, 23.2. **HRMS (ESI):** calcd. for C₂₈H₂₆N₃O₃ [M+H]⁺: 452.1969, found: 452.1985.

5'-fluoro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4s)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (33.9 mg, 74% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.51 (s, 1H), 9.12 (t, *J* = 4.1 Hz, 1H), 8.98 (t, *J* = 4.1 Hz, 1H), 8.11 (s, 1H), 8.04 (s, 1H), 7.34 (dt, *J* = 8.3, 4.3 Hz, 1H), 7.27 (dt, *J* = 8.6, 4.2 Hz, 1H), 7.03 (dd, *J* = 11.8, 5.5 Hz, 1H), 6.93 (d, *J* = 9.1 Hz, 1H), 6.76 – 6.71 (m, 1H), 6.69 (dt, *J* = 8.3, 2.6 Hz, 1H), 6.61 (dd, *J* = 6.9, 4.1 Hz, 1H), 6.00 (d, *J* = 2.4 Hz, 1H), 4.29 – 4.25 (m, 1H), 3.73 (s, 2H), 3.22 – 3.16 (m, 1H), 2.56 (s, 1H), 1.77 (dd, *J* = 21.3, 12.4 Hz, 2H), 1.40 (s, 1H), 0.61 – 0.51 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.9, 154.4, 154.2 (d, *J* = 220.3 Hz), 152.6, 149.2, 141.4, 141.1, 131.1, 129.3, 127.7, 120.7 (d, *J* = 7.5 Hz), 119.5, 116.1 (d, *J* = 22.5 Hz), 114.5, 114.2 (d, *J* = 21.3 Hz), 113.1, 112.3, 111.8, 111.1 (d, *J* = 8.8 Hz), 108.8, 108.1, 62.8, 56.8, 48.1, 38.1, 26.9, 23.2. **HRMS** (**ESI**): calcd. for C₂₇H₂₃FN₃O₂ [M+H]⁺: 440.1769, found: 440.1753.

5'-chloro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4t)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (28.6 mg, 60% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.52 (d, J = 2.4 Hz, 1H), 9.13 (s, 1H), 8.97 (s, 1H), 8.11 (d, J = 2.4 Hz, 1H), 8.05 (d, J = 3.0 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.26 (d, J = 8.6 Hz, 1H), 7.20 (dd, J = 8.6, 2.4 Hz, 1H), 7.08 (d, J = 2.3 Hz, 1H), 6.73 (dd, J = 8.6, 2.5 Hz, 1H), 6.69 (dd, J = 8.3, 2.4 Hz, 1H), 6.62 (d, J = 8.8 Hz, 1H), 5.97 (d, J = 2.4 Hz, 1H), 4.30 (dd, J = 9.7, 5.9 Hz, 1H), 3.70 (d, J = 16.2 Hz, 1H), 3.17 (dd, J = 16.8, 8.9 Hz, 1H), 2.55 (d, J = 16.4 Hz, 1H), 1.83 – 1.70 (m, 2H), 1.44 – 1.37 (m, 1H), 0.61 – 0.52 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.7, 154.5, 152.7, 149.2, 143.4, 141.0, 131.1, 129.3, 129.0, 127.7, 127.6, 121.3, 119.6, 118.9, 114.6, 113.1, 112.3, 111.9, 111.7, 108.8, 108.1, 62.8, 56.6, 47.9,37.9, 26.9, 23.2. **HRMS (ESI):** calcd. for C₂₇H₂₃ClN₃O₂ [M+H]⁺: 456.1473, found:456.1457.

3'-fluoro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4u)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (34.4 mg, 75% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.52 (s, 1H), 9.14 (s, 1H), 8.96 (s, 1H), 8.13 (d, J = 2.1 Hz, 1H), 8.08 (d, J = 2.8 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.26 (d, J = 8.6 Hz, 1H), 7.06 (dd, J = 14.0, 8.1 Hz, 1H), 6.89 (d, J = 7.4 Hz, 1H), 6.74 – 6.68 (m, 2H), 6.63 (td, J = 7.8, 4.8 Hz, 1H), 6.23 (d, J = 2.2 Hz, 1H), 4.31 (t, J = 7.0 Hz, 1H), 3.93 – 3.89 (m, 1H), 3.73 (d, J = 16.3 Hz, 2H), 2.60 (d, J = 16.4 Hz, 1H), 1.71

- 1.63 (m, 1H), 1.51 - 1.42 (m, 2H), 0.65 - 0.57 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 174.9, 154.4, 152.7, 150.8 (d, *J* = 236.3 Hz), 149.3, 141.4, 133.4 (d, *J* = 8.8 Hz), 131.1, 129.3, 127.7, 125.9, 123.6 (d, *J* = 5.0 Hz), 119.6, 116.6 (d, *J* = 7.5 Hz), 114.9 (d, *J* = 21.3 Hz), 114.7, 113.1, 112.3, 111.7, 108.9, 108.2, 63.5, 56.8, 51.4, 38.2, 26.0, 23.8. **HRMS (ESI):** calcd. for C₂₇H₂₃FN₃O₂ [M+H]⁺: 440.1769, found: 440.1760.

2'-(5-hydroxy-1H-indol-3-yl)-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,3'-indol]-5'-ol (4v)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (30.1 mg, 64% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.48 (s, 1H), 9.05 (s, 1H), 8.92 (s, 1H), 8.13 (s, 1H), 8.02 (s, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 8.6 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 6.99 (d, J = 7.3 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 6.73 (d, J = 8.6 Hz, 1H), 6.69 (d, J = 8.2 Hz, 1H), 6.65 (t, J = 7.3 Hz, 1H), 6.31 (s, 1H), 4.13 (dd, J = 9.1, 3.8 Hz, 1H), 3.73 – 3.69 (m, 1H), 3.63 – 3.61 (m,1H), 3.34 (s, 1H), 2.44 (d, J = 16.5 Hz, 1H), 1.78 (d, J = 6.5 Hz, 2H), 1.55 – 1.52 (m, 2H), 1.50 – 1.48 (m, 1H), 1.16 (dd, J = 20.8, 10.3 Hz, 2H), 0.91 – 0.87 (m, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 175.6, 154.3, 152.7, 149.1, 148.4, 142.1, 131.2, 129.9, 129.0, 127.7, 127.6, 120.8, 119.5, 116.8, 114.4, 113.6, 113.0, 112.3, 112.3, 109.1, 108.1, 63.1, 59.7, 50.4, 38.9, 30.3, 29.2, 28.1, 26.8. **HRMS (ESI):** calcd. for C₂₉H₂₈N₃O₂ [M+H]⁺: 450.2176, found: 450.2164.

2-(5-hydroxy-1H-indol-3-yl)-6a',6b',7',8',9',10',10a',11'-octahydro-5'H-spiro[indole-3,6'isoindolo[2,1-a]quinolin]-5-ol (4w)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (27.3 mg, 55% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.47 (d, J = 1.9 Hz, 1H), 9.07 (s, 1H), 8.94 (s, 1H), 8.17 (d, J = 2.8 Hz, 1H), 8.13 (d, J = 2.2 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 8.6 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 6.72 (dd, J = 8.6, 2.3 Hz, 1H), 6.66 (dd, J = 8.2, 2.3 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 6.55 (t, J = 7.3 Hz, 1H), 5.93 (d, J = 2.3 Hz, 1H), 4.55 (d, J = 9.8 Hz, 1H), 3.76 (d, J = 15.8 Hz, 1H), 3.22 (q, J = 9.5 Hz, 2H), 2.43 (d, J = 16.0 Hz, 1H), 1.93 (dd, J = 11.3, 5.5 Hz, 1H), 1.63 – 1.54 (m, 1H), 1.46 (d, J = 12.6 Hz, 1H), 1.37 (dd, J = 25.1, 12.5 Hz, 1H), 1.23 (s, 1H), 1.16 (d, J = 12.9 Hz, 1H), 1.08 – 0.95 (m, 2H), 0.83 (t, J = 11.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO) δ 175.7, 154.3, 152.6, 149.2, 145.0, 141.4, 131.1, 129.8, 129.4, 128.2, 127.7, 119.7, 118.9, 115.2, 114.3, 112.9, 112.2, 111.9, 112.9, 112.2, 111.9, 112.9, 112.2, 111.9, 112.9, 112.2, 111.9, 112.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9, 113.9,

110.2, 109.5, 108.2, 61.6, 56.6, 56.6, 55.3, 53.9, 36.9, 28.8, 25.2, 25.0, 21.5. **HRMS (ESI):** calcd. for C₃₁H₃₀N₃O₂ [M+H]⁺: 476.2333, found: 476.2303.

2-(1-allyl-5-allyloxy-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-allyloxy (5l)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (17.6 mg, 65% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.42 (d, J = 2.4 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.43 (s, 1H), 7.19 – 7.14 (m, 3H), 6.97 – 6.91 (m, 2H), 6.78 (dd, J = 8.4, 2.5 Hz, 1H), 6.61 – 6.53 (m, 2H), 6.17 (d, J = 2.4 Hz, 1H), 6.10 (m, 1H), 5.93 (m, 1H), 5.82 (m, 1H), 5.45 (dd, J = 17.2, 1.3 Hz, 1H), 5.25 (d, J = 10.5 Hz, 1H), 5.18 (m, 2H), 5.10 (s, 1H), 5.08 (d, J = 6.5 Hz, 1H), 4.65 (d, J = 5.4 Hz, 4H), 4.19 (d, J = 5.4 Hz, 2H), 4.11 (dd, J = 9.6, 5.8 Hz, 1H), 3.63 (dd, J = 15.0, 5.9 Hz, 1H), 3.44 (td, J = 8.6, 2.8 Hz, 1H), 3.22 (dd, J = 16.7, 8.5 Hz, 1H), 2.65 (d, J = 16.3 Hz, 1H), 1.75 – 1.67 (m, 2H), 1.16 (m, 1H), 0.73 – 0.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 155.9, 154.9, 144.2, 140.8, 134.1, 133.5, 132.6, 131.8, 129.7, 128.9, 128.2, 120.0, 118.5, 118.4, 117.6, 117.5, 115.9, 114.2, 110.8, 110.4, 110.2, 107.3, 69.7, 69.1, 63.3, 57.6, 49.5, 47.6, 38.0, 30.6, 29.7, 26.9, 23.3, 19.2, 13.7. HRMS (ESI): calcd. for C₃₆H₃₆N₃O₂ [M+H]⁺: 542.2802, found: 542.2789.

2-(5-methoxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-trifluoromethanesulfonate (6i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (53.9 mg, 68% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.86 (s, 1H), 8.31 (d, J = 2.4 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.38 (s, 1H), 7.22 (d, J = 7.7 Hz, 1H), 7.17 (dd, J = 12.3, 7.9 Hz, 1H), 7.14 (dd, J = 8.4, 2.4 Hz, 1H), 7.10 (d, J = 8.8 Hz, 1H), 6.91 (d, J = 7.4 Hz, 1H), 6.84 (dd, J = 8.8, 2.4 Hz, 1H), 6.62 (t, J = 7.4 Hz, 1H), 6.59 (s, 1H), 6.42 (d, J = 2.4 Hz, 1H), 3.96 (dd, J = 9.2, 6.1 Hz, 1H), 3.84 (s, 3H), 3.53 – 3.47 (m, 1H), 3.43 (td, J = 8.7, 3.2 Hz, 1H), 3.21 (q, J = 8.3 Hz, 1H), 2.59 (d, J = 16.2 Hz, 1H), 1.72 – 1.61 (m, 2H), 1.43 (m, 1H), 1.35 (s, 1H), 1.25 – 1.16 (m, 1H), 0.81 – 0.74 (m, 1H), 0.54 (dd, J = 20.8, 10.8 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 179.4, 156.2, 155.7, 146.4, 143.8, 141.0, 131.1, 129.6, 128.5, 128.2, 127.2, 123.8, 121.2, 120.2, 117.8, 117.3, 116.3, 114.2, 111.9, 110.6, 110.3, 105.7, 63.5, 58.3, 55.9, 47.4, 38.1, 26.9, 23.1. **HRMS (ESI):** calcd. for C₂₉H₂₅F₃N₃O₄S [M+H]⁺: 568.1512, found: 568.1503.

4-(diethylamino)-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,4-dien-6-one (8a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:8) gave the product (31.2 mg, 97% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) 7.12 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 7.3 Hz, 1H), 6.57 (t, J = 7.3 Hz, 1H), 6.49 (d, J = 8.1 Hz, 1H), 6.39 (dd, J = 10.5, 1.9 Hz, 1H), 6.15 (dd, J = 10.4, 2.1 Hz, 1H), 5.33 (s, 1H), 3.85 (dd, J = 9.9, 5.0 Hz, 1H), 3.52 – 3.43 (m, 2H), 3.37 (q, J = 7.0 Hz, 4H), 3.18 (d, J = 7.5 Hz, 1H), 2.61 (d, J = 15.8 Hz, 1H), 2.00 – 1.86 (m, 3H), 1.30 (dd, J = 10.3, 7.9 Hz, 1H), 1.21 (t, J = 7.0 Hz, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 197.4, 156.5, 143.9, 143.2, 129.1, 127.3, 119.9, 118.6, 114.9, 110.1, 96.6, 64.4, 47.2, 45.7, 44.9, 39.8, 27.8, 23.5. **HRMS (ESI):** calcd. for C₂₁H₂₆N₂O [M+H]⁺: 323.2045, found: 323.2047.

Reference

- 1. I. D. Jurberg, B. Peng, E. W çstefeld, M. Wasserloos and N. Maulide, *Angew. Chem. Int. Ed.*, 2012, **51**, 1950.
- 2. G. Bai, F. Dong, L. Xu, Y. Liu, L. Wang and S.-S. Li, Org. Lett. 2019, 21, 6225.
- 3. S.-S. Li, X. Lv, D. Ren, C.-L. Shao, Q. Liu and J. Xiao, Chem. Sci. 2018, 9, 8253.

4. Crystal Structures and Data

Table 1. Crystal data and structure refinement for 41.

Identification code	41
Empirical formula	$C_{27}H_{23}N_3O_2$
Formula weight	842.97
Temperature	293(2) K
Wavelength	1.54184 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 10.0368(4) A alpha = 92.957(4) deg.
	b = 13.6087(6) A beta = 95.422(3) deg.
	c = 20.5575(9) A gamma = 90.160(4) deg.
Volume	2791.5(2) A^3
Z, Calculated density	2, 1.003 Mg/m^3
Absorption coefficient	0.511 mm^-1
F(000)	888
Crystal size	0.120 x 0.110 x 0.110 mm
Theta range for data collection	3.811 to 67.230 deg.
Limiting indices	-8<=h<=12, -16<=k<=16, -24<=l<=24
Reflections collected / unique	20183 / 9964 [R(int) = 0.0496]
Completeness to theta = 67.230	99.7 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	9964 / 0 / 581
Goodness-of-fit on F ²	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0754, wR2 = 0.2702
R indices (all data)	R1 = 0.1157, wR2 = 0.3100
Extinction coefficient	n/a
Largest diff. peak and hole	0.753 and -0.262 e.A^-3

5. ¹H and ¹³C NMR Spectra 2-(4-(diethylamino)-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4a)

2-(4-(diethylamino)-2-hydroxyphenyl)-6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4b)

6'-chloro-2-(4-(diethylamino)-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4c)

6'-bromo-2-(4-(diethylamino)-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4d)

(2-hydroxy-4-(pyrrolidin-1-yl)phenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4e)

 $\begin{array}{c} 7.7.3\\ 7.139\\ 7.17.128\\ 7.17.$

2-(4-amino-2-hydroxyphenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4f)

-178.26 -164.48 -164.48 -153.61 -155.54 -144.00 -144.00 -144.00 -144.00 -117.93

2-(6-hydroxybenzo[d][1,3]dioxol-5-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4g)

2-(1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4h)

2-(5-methoxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4i)

2-(5-fluoro-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2a]quinolin]-5-ol (4j)

2-(5-chloro-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4k)

$\begin{array}{c} 11.5\\ 9.06\\ 8.17\\ 8.16\\ 8.17\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 7.73\\ 7.73\\ 8.08\\ 7.73\\$	0.60
--	------

2-(2-methy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-ol (4m)

6'-fluoro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4n)

6'-chloro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (40)

6'-bromo-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4p)

5'-methyl-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4q)

5'-methoxyl-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4r)

5'-fluoro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4s)

5'-chloro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4t)

3'-fluoro-2-(5-hydroxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'pyrrolo[1,2-a]quinolin]-5-ol (4u)

2'-(5-hydroxy-1H-indol-3-yl)-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,3'-indol]-5'-ol (4v)

2-(5-hydroxy-1H-indol-3-yl)-6a',6b',7',8',9',10',10a',11'-octahydro-5'H-spiro[indole-3,6'-isoindolo[2,1-a]quinolin]-5-ol (4w)

2-(1-allyl-5-allyloxy-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-allyloxy (5l)

2-(5-methoxy-1H-indol-3-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-5-trifluoromethanesulfonate (6i)

4-(diethylamino)-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,4-dien-6-one (8a)