Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Asymmetric synthesis of tricyclic 6,5,5-fused polycycles by

desymmetric Pauson-Khand reaction

Qi Teng[#], Dong Chen[#], Chen-Ho Tong and Zhenghu Xu^{}* <u>xuzh@sdu.edu.cn</u>

CONTENT:

1. General Information	S2
2. Preparation of Starting Materials	S2
3. Standard Procedure for the Pauson-Khand Reaction	S5
4. Scale-up Experiment	S7
5. Investigation of the Additives	S7
6. X-ray Crystallography	S7
7. Characterization of Compound 2	S8
8. NMR and HRMS Spectra of All Compounds	
9. References	S68

1. General Information

Unless otherwise noted, analytic grade solvents were used for the chromatography, and all the reagents were obtained commercially and used without further purification. All reactions were performed under nitrogen atmosphere and in a flame-dried or oven-dried glassware with magnetic stirring. Reactions were monitored by TLC. Solvents were dried with CaH₂. All NMR spectra were recorded on Bruker-500 MHz spectrometer. The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz respectively. All ¹H NMR experiments are reported in δ units, parts per million (ppm), and were measured relative to the signals for TMS. All ¹³C NMR spectra are reported in ppm relative to deuterochloroform (77.16 ppm) and were obtained with ¹H decoupling. HRMS were measured on the Q-TOF6510 instruments.

2. Preparation of Starting Materials

(1) General procedure for the synthesis of O-Tethered Alkynes

1a-1p were prepared according to the previously reported procedure.^{[1],[2]}

The meso-1,6-dienyne substrates **1** were prepared from commercially available 4-substituted phenols **S1** and 3-substituted propargyl alcohol S2 using standard procedures^[1] as following:

To a stirred solution of 4-substitude phenol S1 (1.0 mmol) in 1 mL of 3-substitude propargyl alcohol S2 was added [bis(trifluoroacetoxy)iodo]benzene (PIFA, 516 mg, 1.2 mmol, 1.2 equiv.) in several portions at 0 °C. The resulting reaction mixture was stirred at room temperature for overnight. Then the reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate (15 mL \times 3). The combined organic solvent was washed with brine (15 mL), dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was

purified by a silica gel column chromatography (petroleum ether) to give the desired products **1a-1h**, **1j**, **1k** and **1m**.

General procedure for the synthesis of 1i, 1l and 1n-1p:

To a stirred suspension of PIFA (4.50 g, 10.5 mmol) in ethylene glycol (40 mL) was added a solution of 4-methoxyphenol (1.00 g, 8.06 mmol) in CH_2Cl_2 (5 mL) and ethylene glycol (5 mL) at room temperature. After 20 minutes, the reaction mixture was quenched with NaHCO₃ (saturated aqueous solution, 50 mL). After 10 minutes, the resultant solution was extracted with CH_2Cl_2 (3 × 100 mL). Then the combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: 4/1) to afford product 1,4-dioxaspiro[4.5]deca-6,9-dien-8-one (S4).

To a well-stirred solution of S4 (1.0 mmol) in 1 mL of tetrahydrofuran was dropwise added Grignard reagent (1mol/L in tetrahydrofuran, 1.2equiv) at 0 °C under nitrogen atmosphere. After 20 minutes, the resulting mixture was quenched with water (50 mL) and extracted with dichloromethane (3 × 50 mL). The combined

organic layers were then dried over anhydrous sodium sulfate and concentrated in vacuo to afford crude product **S5**. The crude product **S5** could be used for the next step with no further purification.

To a solution of crude product **S5** in 10 mL tetrahydrofuran was added NaH (60% in mineral oil, 5.0 mmol, 5.0 equiv.) in several portions at 0 °C under nitrogen atmosphere, followed by the addition of β -brominated alkynes (**S6**, 3.0 mmol, 3.0 equiv.). Then the mixture was heated at 50 °C overnight. The resulting solution was quenched with 10 mL of water at 0 °C and acidified with hydrochloric acid (6 mol/L, 0.9 mL). The resulting mixture was stirred at room temperature to hydrolyze the ketal. After two hours, the mixture was extracted with dichloromethane (50 mL × 3). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was then purified by a silica gel column chromatography to give the desired products **1i**, **1i** and **S7**, precursor of **1n-1p**.

To a solution of *O*-tethered alkyne **11** (10.0 mmol, 1.0 equiv.) in degassed triethylamine (TEA, 1 mol/L, 10mL) was added Pd(PPh₃)₂Cl₂ (3 mol%), CuI (1.5 mol%) and substituted iodobenzene (15 mmol, 1.5 equiv.) under nitrogen atmosphere. The mixture was stirred at 65 °C. After five hours, the reaction was cooled to room temperature. The solution was washed with saturated ammonium chloride solution and extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: 12/1 to 8/1) to give the desired products **1p-1t**.

(2) General procedure for the synthesis of *N*-Tethered Alkynes^[3]

To a well-stirred solution of substrate **S3** (1 equiv.) in dimethyl formamide (DMF, 0.5 mol/L) was added NaH (2.0 equiv.) in several portion at 0 $^{\circ}$ C under nitrogen atmosphere. The resulting reaction mixture was added 1-bromo-2-butyne (1.5 equiv.) at 0 $^{\circ}$ C and stirred for 30 min. The reaction mixture was quenched by saturated aqueous NH₄Cl and extracted with 1:1 ratio of hexanes/EtOAc (3 times). The combined organic solvent was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/Hexane) to afford **1q** and **1r**.

3. Standard Procedure for the Pauson-Khand Reaction

General Procedure for Rhodium-Catalyzed Asymmetric Synthesis of Fused tricyclic Scaffold

To a mixture of reactant **1** (0.1 mmol), $[Rh(CO)_2Cl]_2$ (0.005 mmol, 5.0 mol%), (S)-BINAP (0.010 mmol, 10 mol%), AgNTf₂ (0.010 mmol, 10 mol%), CH₃OLi (0.020 mmol, 20 mol%), DCM (2 mL) was added under atmosphere of carbon monoxide (0.1 atm) and nitrogen (0.9 atm). Then the reaction mixture was stirred at 40 °C overnight under atmosphere above. The solvent was evaporated under reduce pressure when the reaction completed. The mixture was further purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: 4/1 to 1.5/1) to afford the desired product **2**.

White solid. 91% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.58 (dd, J = 10.3, 1.6 Hz, 1H), 5.77 (d, J = 10.3 Hz, 1H), 4.82 (d, J = 15.7 Hz, 1H), 4.63 (d, J = 15.7 Hz, 1H), 3.69 (d, J = 5.8 Hz, 1H), 3.41 (dd, J = 3.4, 1.7 Hz, 1H), 1.76 (s, 3H), 1.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 199.9, 187.4, 176.0, 151.4, 132.7, 126.5, 76.6, 65.7, 58.7, 50.1, 26.6, 9.3. HRMS (ESI, m/z) calcd for C₁₂H₁₂O₃ [M+H]⁺ 205.0859, found 205.0859. >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 14.3 min (minor), 15.6 min (major).

Integration Results					
No.	Retention Time	Area	Height	Relative Area	Relative Height
	min	mAU*min	mAU	%	%
1	13.600	200.964	323.450	50.36	54.94
2	16.045	198.119	265.264	49.64	45.06
Total:		399.083	588.715	100.00	100.00

4. Scale-up Experiment

To a mixture of reactant **1a** (1.8 mmol), $[Rh(CO)_2Cl]_2$ (0.050 mmol, 2.8 mol%), (S)-BINAP (0.100 mmol, 5.6 mol%), AgNTf₂ (0.100 mmol, 5.6 mol%), CH₃OLi (0.200 mmol, 11 mol%), DCM (30 mL) was added under atmosphere of carbon monoxide (0.1 atm) and nitrogen (0.9 atm). Then the reaction mixture was stirred at s⁷

40 °C for 40 hours under atmosphere above. The solvent was evaporated under reduce pressure when the reaction completed. The mixture was further purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: 2/1) to afford product **2a**.

5. Investigation of the Additives

The investigation was carried out with standard reaction under optimized conditions but changing MeOLi to other additives. The results were shown as follow.

1a (0.1 mmol)	[Rh] (10 mol AgNTf ₂ (12 DCM (2		
Entry	additive	T/ºC	Yield/%
1	MeONa	40	55
2	DBU	40	0
3	LiNTf ₂	40	77
4	MeOLi	40	91

6. X-ray Crystallography

The crystal of **2a** suitable for XRD analysis was prepared by recrystallization from a mixed solvent of dichloromethane and petroleum ether. CCDC 2049470 (**2a**) contains the supplementary crystallographic data for this paper. The crystallographic data can be obtained free from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/ci</u>.

7. Characterization of Compound 2

Yellow solid. 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.43 (dd, J = 10.4, 1.6 Hz, 1H), 5.79 (d, J = 10.4 Hz, 1H), 4.73 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 15.6 Hz, 1H), 3.58 (d, J = 5.8 Hz, 1H), 3.41 – 3.25 (m, 1H), 1.85 (qd, J = 7.5, 2.7 Hz, 2H), 1.69 (s, 3H), 0.89 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.0, 187.6, 175.9, 150.1, 132.4, 127.7, 79.9, 65.6, 59.2, 48.3, 32.4, 9.3, 8.3. HRMS (ESI, m/z) calcd for C₁₃H₁₄O₃ [M+H]⁺ 219.1016, found 219.1024. [α]²³_D = -116.6° (c 0.26, CHCl₃); 98% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 12.2 min (minor), 13.6 min (major).

Integration Results						
No.	Retention Time	Area	Height	Relative Area	Relative Height	
	min	mAU*min	mAU	%	%	
1	11.552	555.945	1087.559	49.90	55.50	
2	13.508	558.261	871.836	50.10	44.50	
Total:		1114.206	1959.395	100.00	100.00	

Yellow solid. 68% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.49 (dd, J = 10.5, 1.4 Hz, 1H), 5.91 (d, J = 10.5 Hz, 1H), 4.77 (d, J = 15.5 Hz, 1H), 4.67 (d, J = 15.5 Hz, 1H), 3.62 (d, J = 5.8 Hz, 1H), 3.37 (d, J = 1.6 Hz, 1H), 2.21 – 2.05 (m, 1H), 1.75 (s, 3H), 1.02 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.1, 187.6, 175.9, 148.4, 132.4, 128.5, 82.2, 65.6, 59.8, 47.5, 37.3, 17.5, 17.0, 9.3. HRMS (ESI, m/z) calcd for C₁₄H₁₆O₃ [M+H]⁺ 233.1172, found 233.1175. [α]²³_D = -97.0° (c 0.13, CHCl₃); 98% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 10.6 min (minor), 12.2 min (major).

Integration Results						
No.	Retention Time	Area	Height	Relative Area	Relative Height	
	min	mAU*min	mAU	%	%	
1	10.642	8.064	22.692	0.93	1.66	
2	12.208	860.159	1343.428	99.07	98.34	

Total:	868.223	1366.120	100.00	100.00

MeO

2d

White solid. 86% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.43 (dd, J = 10.4, 1.5 Hz, 1H), 5.86 (d, J = 10.3 Hz, 1H), 4.77 (d, J = 15.5 Hz, 1H), 4.61 (d, J = 15.5 Hz, 1H), 3.69 (d, J = 5.7 Hz, 1H), 3.56 – 3.50 (m, 1H), 3.49 (dd, J = 3.5, 1.9 Hz, 1H), 3.22 (ddd, J = 11.0, 10.0, 3.3 Hz, 1H), 3.18 (s, 3H), 2.22 (ddd, J = 14.4, 11.1, 4.7 Hz, 1H), 2.06 (dt, J = 14.2, 3.5 Hz, 1H), 1.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.6, 187.9, 176.2, 148.7, 132.5, 128.3, 78.9, 68.1, 65.1, 60.0, 58.6, 50.3, 39.0, 9.3. HRMS (ESI, m/z) calcd for C₁₄H₁₆O₄ [M+H]⁺ 249.1121, found 249.1144. [α]17_D = -73.4° (c 0.38, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 27.2 min (major), 34.1 min (major).

Integration Results						
No.	Retention Time	Area	Height	Relative Area	Relative Height	
	min	mAU*min	mAU	%	%	
1	25.285	222.573	183.951	49.76	65.67	
2	29.733	224.715	96.170	50.24	34.33	
Total:		447.288	280.121	100.00	100.00	

White solid. 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.51 (dd, J = 10.4, 1.3 Hz, 1H), 5.86 (d, J = 10.4 Hz, 1H), 4.79 (d, J = 15.6 Hz, 1H), 4.64 (d, J = 15.6 Hz, 1H), 4.33 (ddd, J = 17.2, 12.3, 6.0 Hz, 1H), 4.01 (ddd, J = 11.7, 9.1, 5.1 Hz, 1H), 3.69 (d, J = 5.8 Hz, 1H), 3.55 – 3.41 (m, 1H), 2.24 (qt, J = 14.6, 5.3 Hz, 2H), 2.03 (s, 3H), 1.77 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 199.7, 187.2, 175.5, 170.5, 149.0, 132.8, 128.1, 78.0, 65.4, 60.0, 59.2, 49.3, 38.2, 20.9, 9.3. HRMS (ESI, m/z) calcd for C₁₅H₁₆O₅ [M+H]⁺ 277.1071, found 277.1091. [α]¹⁷_D = 46.6° (c 0.16, CHCl₃); 98% ee; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 11.8 min (minor), 16.0 min (major).

Integration Results					
No.	Retention Time	Area	Height	Relative Area	Relative Height
	min	mAU*min	mAU	%	%
1	11.612	308.814	393.615	49.35	60.57
2	15.890	316.740	255.950	50.62	39.39
3	27.213	0.147	0.271	0.02	0.04
Total:		625.701	649.836	100.00	100.00

White solid. 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.52 (dd, J = 10.4, 1.5 Hz, 1H), 5.88 (d, J = 10.4 Hz, 1H), 4.80 (d, J = 15.6 Hz, 1H), 4.65 (d, J = 15.5 Hz, 1H), 3.77 (d, J = 5.8 Hz, 1H), 3.64 – 3.45 (m, 2H), 3.37 (dt, J = 10.3, 7.8 Hz, 1H), 2.55 – 2.42 (m, 2H), 1.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.53 (s), 187.05 (s), 174.8, 148.7, 132.8, 128.2, 78.5, 65.5, 59.1, 48.5, 42.6, 25.8, 9.4. HRMS (ESI, m/z) calcd for C₁₃H₁₃BrO₃ [M+H]⁺ 297.0121, found 297.0113. [α]¹⁷_D = -97.4° (c 0.16, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 90/10, detected at 254 nm, flow rate 1 mL/min, Retention times: 41.2 min (minor), 42.4 min (major).

Integration Results						
No.	Retention Time	Area	Height	Relative Area	Relative Height	
	min	mAU*min	mAU	%	%	
1	24.173	981.700	707.029	99.51	99.73	
2	34.123	4.792	1.917	0.49	0.27	
Total:		986.492	708.946	100.00	100.00	

Integration Results						
No.	Retention Time	Area	Height	Relative Area	Relative Height	
	min	mAU*min	mAU	%	%	
1	41.213	2.492	3.502	0.25	0.83	
2	42.360	1008.759	416.723	99.75	99.17	
Total:		1011.251	420.225	100.00	100.00	

White solid. 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.49 (dd, J = 10.5, 1.4 Hz, 1H), 5.88 (d, J = 10.5 Hz, 1H), 4.75 (d, J = 15.5 Hz, 1H), 4.65 (d, J = 15.5 Hz, 1H), 3.61 (d, J = 5.8 Hz, 1H), 3.45 – 3.30 (m, 1H), 1.96 (d, J = 12.5 Hz, 1H), 1.79 (ddd, J = 9.4, 6.9, 3.5 Hz, 2H), 1.75 (s, 3H), 1.70 (d, J = 18.0 Hz, 2H), 1.35 – 1.19 (m, 3H), 1.18 – 1.05 (m, 1H), 1.04 – 0.93 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 200.1, 187.8, 175.9, 149.1, 132.2, 128.1, 81.8, 65.4, 59.9, 47.8, 47.4, 27.9, 27.2, 26.2, 26.2, 26.0, 9.3. HRMS (ESI, m/z) calcd for C₁₇H₂₀O₃ [M+H]⁺ 273.1485, found 273.1487. [α]¹⁷_D = 34.2° (c 0.20, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 90/10, detected at 254 nm, flow rate 1 mL/min, Retention times: 16.1 min (minor), 19.1 min (major).

Integration Results					
No.	Retention Time	Area	Height	Relative Area	Relative Height
	min	mAU*min	mAU	%	%
1	16.103	428.113	614.615	49.96	59.00
2	19.525	428.841	427.168	50.04	41.00
Total:		856.954	1041.783	100.00	100.00

White solid. 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.31 (m, 5H), 6.61 (dd, J = 10.3, 1.6 Hz, 1H), 5.91 (d, J = 10.3 Hz, 1H), 4.99 (d, J = 15.4 Hz, 1H), 4.87 (d, J = 15.4 Hz, 1H), 3.79 (d, J = 5.8 Hz, 1H), 3.73 – 3.55 (m, 1H), 1.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 187.0, 176.6, 151.5, 134.6, 129.7, 129.2, 128.8, 128.3, 126.9, 76.2, 67.2, 60.1, 50.3, 26.4. HRMS (ESI, m/z) calcd for C₁₇H₁₄O₃ [M+H]⁺ 267.1016, found 207.1017. [α]¹⁷_D = -218.7° (c 0.81, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 90/10, detected at 254 nm, flow rate 1 mL/min, Retention times: 57.0 min (minor), 57.9 min (major).

Total:		1161.055	533,589	100.00	100.00
2	58.118	579.976	241.195	49.95	45.20
1	49.127	581.078	292.395	50.05	54.80
	min	mAU*min	mAU	%	%
NO.	Retention Time	Area	Height	Relative Area	Relative Height

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	52.017	1.239	0.853	0.17	0.29			
2	57.862	710.943	290.985	99.83	99.71			
Total:		712.182	291.838	100.00	100.00			

White solid. 57% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.03 (s, 2H), 6.97 (s, 1H), 6.60 (dd, J = 10.3, 1.5 Hz, 1H), 5.90 (d, J = 10.3 Hz, 1H), 4.98 (d, J = 15.4 Hz, 1H), 4.85 (d, J = 15.4 Hz, 1H), 3.80 (d, J = 5.8 Hz, 1H), 3.74 – 3.63 (m, 1H), 2.33 (s, 6H), 1.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 199.6, 187.8, 175.2, 149.9, 141.1, 138.8, 132.8, 130.0, 126.4, 122.85, 80.0, 65.9, 59.0, 51.5, 21.5, 9.4. HRMS (ESI, m/z) calcd for C₁₉H₁₈O₃ [M+H]⁺ 295.1329, found 295.1325. [α]¹⁶_D = -245.2° (c 0.49, CHCl₃); 96% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 9.2 min (minor), 10.8 min (major)

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	9.168	28.976	54.684	2.21	2.27			
2	10.772	1279.795	2357.296	97.79	97.73			
Total:		1308.771	2411.980	100.00	100.00			

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (ddd, J = 7.0, 5.1, 2.5 Hz, 2H), 7.17 – 7.04 (m, 2H), 6.59 (dd, J = 10.3, 1.5 Hz, 1H), 5.92 (d, J = 10.3 Hz, 1H), 5.00 (d, J = 15.5 Hz, 1H), 4.86 (d, J = 15.5 Hz, 1H), 3.78 (d, J = 5.8 Hz, 1H), 3.71 – 3.54 (m, 1H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.3, 187.5, 174.9, 162.5 (d, J = 247.9 Hz), 149.4, 137.0 (d, J = 3.2 Hz), 133.0, 127.1 (d, J = 8.2 Hz), 126.7, 115.9 (d, J = 21.7 Hz), 79.6, 66.0, 58.8, 51.8, 9.4. 78% yield. HRMS (ESI, m/z) calcd for C₁₇H₁₃FO₃ [M+H]⁺ 285.0921, found 285.0925. [α]¹⁷_D = -213.3° (c 0.63, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 14.5 min (minor), 21.4 min (major).

Integration Results							
No.	Retention Time	Area	Height	Relative Area	Relative Height		
	min	mAU*min	mAU	%	%		
1	13.735	815.822	1310.226	49.95	62.22		
2	21.842	817.494	795.454	50.05	37.78		
Total:		1633.316	2105.680	100.00	100.00		

White solid. 84% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.46 (m, 2H), 7.40 – 7.28 (m, 2H), 6.57 (dd, *J* = 10.3, 1.6 Hz, 1H), 5.92 (d, *J* = 10.3 Hz, 1H), 4.99 (d, *J* = 15.4 Hz, 1H), 4.86 (d, *J* = 15.5 Hz, 1H), 3.77 (d, *J* = 5.8 Hz, 1H), 3.69 – 3.56 (m, 1H), 1.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 199.1, 187.4, 174.6, 149.1, 140.3, 133.1, 132.1, 127.0, 126.9, 122.5, 79.6, 66.0, 58.7, 51.7, 9.4. HRMS (ESI, m/z) calcd for C₁₇H₁₃BrO₃ [M+H]⁺ 345.0121, found 345.0123. [α]¹⁷_D = -199.0° (c 0.50, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 90/10, detected at 254 nm, flow rate 1 mL/min, Retention times: 31.7 min (minor), 50.8 min (major).

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	31.655	5.001	3.252	0.26	0.53			
2	50.772	1911.510	606.015	99.74	99.47			
Total:		1916.511	609.268	100.00	100.00			

White solid. 56% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.98 – 7.75 (m, 4H), 7.64 – 7.38 (m, 3H), 6.68 (dd, J = 10.3, 1.6 Hz, 1H), 5.98 (d, J = 10.3 Hz, 1H), 5.15 – 5.00 (m, 1H), 4.93 (d, J = 15.4 Hz, 1H), 3.84 (d, J = 5.8 Hz, 1H), 3.74 (ddd, J = 29.7, 15.7, 4.1 Hz, 1H), 1.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 199.5, 187.7, 175.0, 149.6, 138.4, 133.1, 133.0, 133.0, 129.07, 128.2, 127.7, 126.8, 126.8, 126.7, 124.3, 122.7, 80.1, 66.1, 58.9, 51.7, 9.4. HRMS (ESI, m/z) calcd for C₂₁H₁₆O₃ [M+H]⁺ 317.1172, found 317.1169. [α]¹⁶_D = -253.2° (c 0.60, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 24.2 min (minor), 35.3 min (major).

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	22.077	2440.345	1820.914	50.11	57.35			
2	35.560	2429.909	1354.067	49.89	42.65			
Total:		4870.254	3174.981	100.00	100.00			

1492.595

100.00

100.00

P H H 2m

Total:

White solid. 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.59 (dd, J = 10.3, 1.6 Hz, 1H), 5.77 (d, J = 10.3 Hz, 1H), 4.85 (d, J = 15.8 Hz, 1H), 4.68 (d, J = 15.8 Hz, 1H), 3.67 (d, J = 5.8 Hz, 1H), 3.48 – 3.30 (m, 1H), 2.35 – 2.10 (m, 2H), 1.61 (s, 3H), 1.04 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.5, 187.4, 175.2, 151.4, 138.3, 126.6, 76.4, 65.8, 60.0, 53.4, 26.4, 17.9, 12.0. HRMS (ESI, m/z) calcd for C₁₃H₁₄O₃ [M+H]⁺ 219.1016, found 219.1023. [α]¹⁶_D = -17.8° (c 0.63, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Phenomenex 00G-4457-E0 250X4.6 mm 5u column; hexane/2-propanol = 70/30, detected at 254 nm, flow rate 1 mL/min, Retention times: 22.3 min (minor), 23.9 min (major).

2608.493

-100						
0.0	5.0	10.0	15.0	20.0	25.0	31.0
			i ime [min]			

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	22.295	3.187	3.563	0.37	0.53			
2	23.927	861.772	665.054	99.63	99.47			
Total:		864.960	668.617	100.00	100.00			

White solid. 65% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.31 (m, 5H), 6.60 (dd, J = 10.3, 1.1 Hz, 1H), 5.81 (d, J = 10.3 Hz, 1H), 5.17 (d, J = 16.7 Hz, 1H), 4.76 (dd, J = 16.6, 1.5 Hz, 1H), 3.85 (d, J = 6.0 Hz, 1H), 3.58 (d, J = 4.5 Hz, 1H), 1.67 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 187.0, 176.6, 151.5, 134.6, 129.7, 129.2, 128.8, 128.3, 126.9, 76.6, 67.2, 60.1, 50.3, 26.4. HRMS (ESI, m/z) calcd for C₂₁H₁₆O₃ [M+H]⁺ 267.1016, found 267.1019. 99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 22.2 min (minor), 25.7 min (major).

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	21.177	1349.487	1537.035	50.02	55.62			
2	25.797	1348.474	1226.494	49.98	44.38			
Total:		2697.960	2763.529	100.00	100.00			

White solid. 79% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 6.62 (dd, J = 10.3, 1.5 Hz, 1H), 5.83 (d, J = 10.3 Hz, 1H), 5.20 (dd, J = 16.9, 1.1 Hz, 1H), 4.77 (dd, J = 16.9, 1.7 Hz, 1H), 3.92 (s, 3H), 3.87 (d, J = 6.0 Hz, 1H), 3.70 – 3.57 (m, 1H), 1.68 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.3, 186.6, 178.8, 166.4, 151.5, 133.9, 133.7, 130.4, 129.9, 128.1, 127.0, 76.2, 67.2, 60.1, 52.3, 50.6, 26.3. HRMS (ESI, m/z) calcd for C₁₉H₁₆O₅ [M+H]⁺ 325.1071, found 325.1076. [α]¹⁷_D = -52.5° (c 0.83, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 31.4 min (minor), 36.6 min (major).

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	31.408	9.006	3.989	0.50	0.55			
2	36.622	1776.116	718.712	99.50	99.45			
Total:		1785.123	722.700	100.00	100.00			

White solid. 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 3.6 Hz, 1H), 7.43 (d, *J* = 5.0 Hz, 1H), 7.20 – 7.05 (m, 1H), 6.67 – 6.56 (m, 1H), 5.81 (d, *J* = 10.3 Hz, 1H), 5.06 (dd, *J* = 17.1, 1.8 Hz, 1H), 4.85 (dd, *J* = 17.1, 2.1 Hz, 1H), 3.84 (d, *J* = 5.9 Hz, 1H), 3.58 (dt, *J* = 12.8, 5.4 Hz, 1H), 1.66 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 186.6, 172.9, 151.3, 131.5, 128.9, 127.8, 127.7, 127.5, 127.1, 76.5, 67.0, 59.4, 50.6, 26.3. 97% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 22.5 min (minor), 31.2 min (major).

No.	Retention Time	Area	Height	Relative Area	Relative Height
	min	mAU*min	mAU	%	%
1	21.918	890.410	964.679	49.88	60.68
2	31.572	894.625	625.086	50.12	39.32
Total:		1785.034	1589.765	100.00	100.00

White solid. 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.13 (dd, J = 10.4, 1.4 Hz, 1H), 5.77 (d, J = 10.4 Hz, 1H), 4.56 (d, J = 15.5 Hz, 1H), 4.39 – 4.25 (m, 1H), 3.59 (d, J = 6.0 Hz, 1H), 3.48 – 3.38 (m, 1H), 2.46 (s, 3H), 1.82 (s, 3H), 1.76 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 198.2, 186.1, 167.7, 150.4, 144.1, 138.1, 133.9, 130.0, 126.9, 125.5, 63.5, 58.0, 52.5, 48.6, 27.3, 21.6, 9.1. HRMS (ESI, m/z) calcd for C₁₉H₁₉NO₄S [M+H]⁺ 358.1108, found 358.1124. [α]¹⁶_D = 164.3° (c 0.10, CHCl₃); >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times: 48.0 min (major), 67.0 (minor).

Total:		933.087	310.763	100.00	100.00
2	66.958	3.435	1.048	0.37	0.34
1	48.043	929.652	309.715	99.63	99.66
	min	mAU*min	mAU	%	%
No.	Retention Time	Area	Height	Relative Area	Relative Height

White solid. 96% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.06 (dd, J = 10.5, 1.3 Hz, 1H), 5.89 (d, J = 10.5 Hz, 1H), 4.56 (d, J = 15.3 Hz, 1H), 4.25 (d, J = 15.3 Hz, 1H), 3.55 (d, J = 6.0 Hz, 1H), 3.47 – 3.38 (m, 1H), 2.55 – 2.47 (m, 1H), 2.46 (s, 3H), 1.89 (td, J = 12.9, 5.1 Hz, 1H), 1.74 (d, J = 8.7 Hz, 3H), 1.38 – 1.29 (m, 2H), 1.26 (t, J = 7.1 Hz, 1H), 1.22 – 1.08 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 198.4, 186.5, 167.9, 148.4, 144.1, 138.1, 133.5, 129.9, 127.0, 67.7, 59.3, 50.5, 48.5, 38.8, 26.8, 22.6, 21.6, 13.8, 9.1. >99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = 80/20, detected at 254 nm, flow rate 1 mL/min, Retention times:

Integration Results								
No.	Retention Time	Area	Height	Relative Area	Relative Height			
	min	mAU*min	mAU	%	%			
1	19.375	884.997	739.284	49.66	58.40			
2	23.757	897.133	526.677	50.34	41.60			
Total:		1782.130	1265.961	100.00	100.00			

8. NMR and HRMS Spectra of All Compounds

Sample Name Inj Vol Data Filename	T5-186-33 -1 T5-186-33.d	Position InjPosition ACQ Method	P1-F3 0103.m	Instrument Name SampleType Comment	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Success 11/17/2020 8:23:48 AM
×10 ² +E	SI Scan (0.37	4 min) Frag=150	0.0V T5-186-	33.d Subtract (5)			
1-				205.0859			
0.95							
0.9							
0.85							
0.8							
0.75							
0.7-							
0.65							
0.6							
0.55							
0.5							
0.45							
0.4							
0.35							
0.3							
0.25							
0.2							
0.15							
0.1-							
0.05	1						
o –	1						ب باب م

2a

Molecular Weight: 204.22Chemical Formula: C₁₂H₁₂O₃ Exact Mass: 204.0786 Molecular Weight: 204.2250 m/z: 204.0786 (100.0%), 205.0820 (13.0%)

HRMS (ESI, m/z) calcd for $C_{12}H_{12}O_3$ [M+H]⁺ 205.0859, found 205.0859.

2b

Chemical Formula: C₁₃H₁₄O₃ Exact Mass: 218.0943 Molecular Weight: 218.2520 m/z: 218.0943 (100.0%), 219.0976 (14.1%)

HRMS (ESI, m/z) calcd for $C_{13}H_{14}O_3$ [M+H]⁺ 219.1016, found 219.1024.

278.1040 (1.0%)

HRMS (ESI, m/z) calcd for $C_{15}H_{16}O_5 [M+H]^+ 277.1071$, found 277.1091.

Display Report

299.0061 (13.7%)

HRMS (ESI, m/z) calcd for $C_{13}H_{13}BrO_3 [M+H]^+$ 297.0121, found 297.0113.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50

S47

-10

40 30 20 10 Ó

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 ppm

-10

50 40 30 20 10 0

HRMS (ESI, m/z) calcd for $C_{17}H_{14}O_3 [M+H]^+$ 267.1016, found 267.1017.

Display Report

HRMS (ESI, m/z) calcd for $C_{17}H_{13}FO_3 [M+H]^+$ 285.0921, found 285.0925.

Display Report

Display Report

HRMS (ESI, m/z) calcd for $C_{21}H_{16}O_3 [M+H]^+ 317.1172$, found 317.1169.

Display Report

HRMS (ESI, m/z) calcd for $C_{13}H_{14}O_3$ [M+H]⁺ 219.1016, found 219.1023.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

2n

Chemical Formula: C₁₇H₁₄O₃ Exact Mass: 266.0943 Molecular Weight: 266.2960 m/z: 266.0943 (100.0%), 267.0976 (18.4%), 268.1010 (1.6%)

HRMS (ESI, m/z) calcd for $C_{17}H_{14}O_3 [M+NH_4]^+$ 284.1281, found 284.1284.

Display Report

HRMS (ESI, m/z) calcd for $C_{19}H_{16}O_5 [M+H]^+$ 325.1071, found 325.1076

Display Report

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 ppm 0 -10 20 10

Display Report

HRMS (ESI, m/z) calcd for $C_{22}H_{25}NO_4S [M+H]^+ 400.1577$, found 400.1574.

9. Reference

- [1] a) R. Kumar, Y. Hoshimoto, E. Tamai, M. Ohashi, S. Ogoshi, *Nat. Commun.* 2017, *8*, 32; b) Y. Fukui, P. Liu, Q. Liu, Z.-T. He, N.-Y. Wu, P. Tian, G.-Q. Lin, *J. Am. Chem. Soc.* 2014, *136*, 15607; b) K. Takenaka, S. C. Mohanta, H. Sasai, *Angew. Chem., Int. Ed.* 2014, *53*, 4675; c) P. Liu, Y. Fukui, P. Tian, Z.-T. He, C.-Y. Sun, N.-Y. Wu, G.-Q. Lin, *J. Am. Chem. Soc.* 2013, *135*, 11700; d) Z.-T. He, B. Tian, Y. Fukui, X. Tong, P. Tian, G.-Q. Lin, *Angew. Chem., Int. Ed.* 2013, *52*, 5314.
- [2] K. K. Gollapelli, S. Donikela, N. Manjula, R. Chegondi, ACS Catal. 2018, 8, 1440.
- [3] Q. Teng, N. Thirupathi, C.-H. Tung, Z. Xu, Chem. Sci. 2019, 10, 6863.