Supporting Information

Asymmetric synthesis of tricyclic 6,5,5-fused polycycles by
desymmetric Pauson-Khand reaction
Qi Teng ${ }^{\#}$, Dong Chen ${ }^{\#}$, Chen-Ho Tong and Zhenghu Xu ${ }^{*}$xuzh@sdu.edu.cn
CONTENT:

1. General Information. S2
2. Preparation of Starting Materials S2
3. Standard Procedure for the Pauson-Khand Reaction S5
4. Scale-up Experiment S7
5. Investigation of the Additives S7
6. X-ray Crystallography S7
7. Characterization of Compound 2 S8
8. NMR and HRMS Spectra of All Compounds S33
9. References S68

1. General Information

Unless otherwise noted, analytic grade solvents were used for the chromatography, and all the reagents were obtained commercially and used without further purification. All reactions were performed under nitrogen atmosphere and in a flame-dried or oven-dried glassware with magnetic stirring. Reactions were monitored by TLC. Solvents were dried with CaH_{2}. All NMR spectra were recorded on Bruker- 500 MHz spectrometer. The chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz respectively. All ${ }^{1} \mathrm{H}$ NMR experiments are reported in δ units, parts per million (ppm), and were measured relative to the signals for TMS. All ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm relative to deuterochloroform (77.16 ppm) and were obtained with ${ }^{1} \mathrm{H}$ decoupling. HRMS were measured on the Q-TOF6510 instruments.

2. Preparation of Starting Materials

(1) General procedure for the synthesis of \boldsymbol{O}-Tethered Alkynes
$\mathbf{1 a - 1} \mathbf{p}$ were prepared according to the previously reported procedure. ${ }^{[1],[2]}$

The meso-1,6-dienyne substrates $\mathbf{1}$ were prepared from commercially available 4-substituted phenols S1 and 3-substituted propargyl alcohol S2 using standard procedures ${ }^{[1]}$ as following:

To a stirred solution of 4 -substitude phenol $\mathbf{S 1}(1.0 \mathrm{mmol})$ in 1 mL of 3-substitude propargyl alcohol $\mathbf{S 2}$ was added [bis(trifluoroacetoxy)iodo]benzene (PIFA, $516 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv.) in several portions at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at room temperature for overnight. Then the reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$). The combined organic solvent was washed with brine (15 mL) , dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was
purified by a silica gel column chromatography (petroleum ether) to give the desired products $\mathbf{1 a} \mathbf{- 1 h}, \mathbf{1}, \mathbf{1 k}$ and $\mathbf{1 m}$.

General procedure for the synthesis of $\mathbf{1 i}, \mathbf{1 1}$ and $\mathbf{1 n} \mathbf{- 1 p}$:

To a stirred suspension of PIFA ($4.50 \mathrm{~g}, 10.5 \mathrm{mmol}$) in ethylene glycol (40 mL) was added a solution of 4-methoxyphenol ($1.00 \mathrm{~g}, 8.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and ethylene glycol (5 mL) at room temperature. After 20 minutes, the reaction mixture was quenched with NaHCO_{3} (saturated aqueous solution, 50 mL). After 10 minutes, the resultant solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. Then the combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: 4/1) to afford product 1,4-dioxaspiro[4.5]deca-6,9-dien-8-one (S4).

To a well-stirred solution of $\mathbf{S 4}(1.0 \mathrm{mmol})$ in 1 mL of tetrahydrofuran was dropwise added Grignard reagent ($1 \mathrm{~mol} / \mathrm{L}$ in tetrahydrofuran, 1.2 equiv) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After 20 minutes, the resulting mixture was quenched with water (50 mL) and extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined
organic layers were then dried over anhydrous sodium sulfate and concentrated in vacuo to afford crude product $\mathbf{S 5}$. The crude product $\mathbf{S 5}$ could be used for the next step with no further purification.

To a solution of crude product $\mathbf{S 5}$ in 10 mL tetrahydrofuran was added $\mathrm{NaH}(60 \%$ in mineral oil, 5.0 mmol , 5.0 equiv.) in several portions at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, followed by the addition of β-brominated alkynes (S6, $3.0 \mathrm{mmol}, 3.0$ equiv.). Then the mixture was heated at $50^{\circ} \mathrm{C}$ overnight. The resulting solution was quenched with 10 mL of water at $0^{\circ} \mathrm{C}$ and acidified with hydrochloric acid ($6 \mathrm{~mol} / \mathrm{L}$, 0.9 mL). The resulting mixture was stirred at room temperature to hydrolyze the ketal. After two hours, the mixture was extracted with dichloromethane $(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was then purified by a silica gel column chromatography to give the desired products $\mathbf{1 i}, \mathbf{1}$ and $\mathbf{S 7}$, precursor of $\mathbf{1 n} \mathbf{- 1 p}$.

To a solution of O-tethered alkyne 11 ($10.0 \mathrm{mmol}, 1.0$ equiv.) in degassed triethylamine (TEA, $1 \mathrm{~mol} / \mathrm{L}, 10 \mathrm{~mL}$) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($3 \mathrm{~mol} \%$), $\mathrm{CuI}(1.5$ $\mathrm{mol} \%$) and substituted iodobenzene ($15 \mathrm{mmol}, 1.5$ equiv.) under nitrogen atmosphere. The mixture was stirred at $65{ }^{\circ} \mathrm{C}$. After five hours, the reaction was cooled to room temperature. The solution was washed with saturated ammonium chloride solution and extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: $12 / 1$ to $8 / 1$) to give the desired products $\mathbf{1 p - 1 t}$.
(2) General procedure for the synthesis of \boldsymbol{N}-Tethered Alkynes ${ }^{[3]}$

To a well-stirred solution of substrate $\mathbf{S 3}$ (1 equiv.) in dimethyl formamide (DMF, $0.5 \mathrm{~mol} / \mathrm{L}$) was added NaH (2.0 equiv.) in several portion at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The resulting reaction mixture was added 1-bromo-2-butyne (1.5 equiv.) at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $1: 1$ ratio of hexanes/EtOAc (3 times). The combined organic solvent was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/Hexane) to afford $\mathbf{1 q}$ and $\mathbf{1 r}$.

3. Standard Procedure for the Pauson-Khand Reaction

General Procedure for Rhodium-Catalyzed Asymmetric Synthesis of Fused tricyclic Scaffold

To a mixture of reactant $\mathbf{1}(0.1 \mathrm{mmol}),\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(0.005 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, (S)-BINAP ($0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), AgNTf_{2} ($0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{OLi}$ ($0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$), DCM (2 mL) was added under atmosphere of carbon monoxide (0.1 atm) and nitrogen (0.9 atm). Then the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ overnight under atmosphere above. The solvent was evaporated under reduce pressure when the reaction completed. The mixture was further purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: $4 / 1$ to $1.5 / 1$) to afford the desired product 2.

White solid. 91% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.77(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.9,187.4,176.0,151.4,132.7,126.5,76.6,65.7,58.7,50.1$, 26.6, 9.3. HRMS (ESI, m / z) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$205.0859, found 205.0859. $>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate 1 $\mathrm{mL} / \mathrm{min}$, Retention times: 14.3 min (minor), 15.6 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	13.600	200.964	323.450	50.36	54.94
2	16.045	198.119	265.264	49.64	45.06
Total:	399.083	588.715	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results						
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	
1	14.278	0.854				
2	15.577	241.118	1.566	0.35	0.40	

4. Scale-up Experiment

To a mixture of reactant $\mathbf{1 a}(1.8 \mathrm{mmol}),\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(0.050 \mathrm{mmol}, 2.8 \mathrm{~mol} \%)$, (S)-BINAP ($0.100 \mathrm{mmol}, 5.6 \mathrm{~mol} \%$), AgNTf_{2} ($0.100 \mathrm{mmol}, 5.6 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{OLi}$ ($0.200 \mathrm{mmol}, 11 \mathrm{~mol} \%$), DCM (30 mL) was added under atmosphere of carbon monoxide (0.1 atm) and nitrogen (0.9 atm). Then the reaction mixture was stirred at
$40^{\circ} \mathrm{C}$ for 40 hours under atmosphere above. The solvent was evaporated under reduce pressure when the reaction completed. The mixture was further purified by column chromatography (silica gel, petroleum ether/ ethyl acetate: $2 / 1$) to afford product 2a.

5. Investigation of the Additives

The investigation was carried out with standard reaction under optimized conditions but changing MeOLi to other additives. The results were shown as follow.

6. X-ray Crystallography

The crystal of 2a suitable for XRD analysis was prepared by recrystallization from a mixed solvent of dichloromethane and petroleum ether. CCDC 2049470 (2a) contains the supplementary crystallographic data for this paper. The crystallographic data can be obtained free from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/ci.

7. Characterization of Compound 2

Yellow solid. 70% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.43$ (dd, $J=10.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.79$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.25(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{qd}, J=7.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 0.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,187.6,175.9$, 150.1, 132.4, 127.7, 79.9, 65.6, 59.2, 48.3, 32.4, 9.3, 8.3. HRMS (ESI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$219.1016, found 219.1024. $[\alpha]^{23}{ }_{\mathrm{D}}=-116.6^{\circ}\left(\mathrm{c} 0.26, \mathrm{CHCl}_{3}\right) ; 98 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 12.2 min (minor), 13.6 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	11.552	555.945	1087.559	49.90	55.50
2	13.508	558.261	871.836	50.10	44.50
Total:	$\mathbf{1 1 1 4 . 2 0 6}$	$\mathbf{1 9 5 9 . 3 9 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU *in	Height mAU	Relative Area $\%$	Relative Height $\%$
1	12.175	4.012	8.997	0.82	1.14
2	13.570	484.075	778.818	99.18	98.86
Total:	$\mathbf{4 8 8 . 0 8 6}$	$\mathbf{7 8 7 . 8 1 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Yellow solid. 68% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.49$ (dd, $J=10.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.91(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.1, 187.6, 175.9, 148.4, 132.4, 128.5, 82.2, 65.6, 59.8, 47.5, 37.3, 17.5, 17.0, 9.3. HRMS (ESI, m/z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$233.1172, found 233.1175. $[\alpha]^{23}{ }_{\mathrm{D}}=$ -97.0° (c $0.13, \mathrm{CHCl}_{3}$); 98% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 10.6 min (minor), 12.2 min (major).

Integration Results

No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	10.342	279.566	666.368	49.97	55.82
2	12.527	279.953	527.479	50.03	44.18
Total:	$\mathbf{1 1 9 3 . 8 4 7}$				

Integration Results						
No.	Retention Time min	Area $\mathrm{mAU} * \mathrm{~min}$	Height mAU	Relative Area $\%$	Relative Height $\%$	
1	10.642	8.064	22.692	0.93	1.66	
2	12.208	860.159	1343.428	99.07	98.34	

Total:	868.223	1366.120	100.00	100.00

White solid. 86% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.43(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=3.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{ddd}, J=$ $11.0,10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{ddd}, J=14.4,11.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (dt, J $=14.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.6,187.9,176.2$, $148.7,132.5,128.3,78.9,68.1,65.1,60.0,58.6,50.3,39.0,9.3$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$249.1121, found 249.1144. $[\alpha] 17_{\mathrm{D}}=-73.4^{\circ}$ (c 0.38, CHCl_{3}); $>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate 1 $\mathrm{mL} / \mathrm{min}$, Retention times: 27.2 min (major), 34.1 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	25.285	222.573	183.951	49.76	65.67
2	29.733	224.715	96.170	50.24	34.33
Total:	$\mathbf{4 4 7 . 2 8 8}$	$\mathbf{2 8 0 . 1 2 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results						
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	
1	24.173	981.700	707.029	99.51	99.73	
2	34.123	4.792	1.917	0.49	0.27	
Total:	$\mathbf{9 8 6 . 4 9 2}$	$\mathbf{7 0 8 . 9 4 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$		

White solid. 60% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.51(\mathrm{dd}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (ddd, $J=17.2,12.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (ddd, $J=11.7,9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (d, $J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{qt}, J=14.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}$, 3H). 13C NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 199.7, 187.2, 175.5, 170.5, 149.0, 132.8, 128.1, 78.0, 65.4, 60.0, 59.2, 49.3, 38.2, 20.9, 9.3. HRMS (ESI, m/z) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}$277.1071, found 277.1091. $[\alpha]^{17}{ }_{\mathrm{D}}=46.6^{\circ}\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right) ; 98 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 11.8 min (minor), 16.0 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	11.612	308.814	393.615	49.35	60.57
2	15.890	316.740	255.950	50.62	39.39
3	27.213	0.147	0.271	0.02	0.04
Total:	$\mathbf{6 2 5 . 7 0 1}$	$\mathbf{6 4 9 . 8 3 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	11.767	24.063	14.324	0.82	0.57
2	15.963	2910.560	2491.925	99.18	99.43
Total:	$\mathbf{2 9 3 4 . 6 2 3}$	$\mathbf{2 5 0 6 . 2 4 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 65% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.52(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{dt}, J=10.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.42(\mathrm{~m}$, $2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.53$ (s), 187.05 (s$), 174.8,148.7$, $132.8,128.2,78.5,65.5,59.1,48.5,42.6,25.8,9.4$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$297.0121, found 297.0113. $[\alpha]^{17}{ }_{\mathrm{D}}=-97.4^{\circ}\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=90 / 10$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 41.2 min (minor), 42.4 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	24.173	981.700	707.029	99.51	99.73
2	34.123	4.792	1.917	0.49	0.27
Total:	$\mathbf{9 8 6 . 4 9 2}$	$\mathbf{7 0 8 . 9 4 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

(manally integrated]

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	41.213	2.492	3.502	0.25	0.83
2	42.360	1008.759	416.723	99.75	99.17
Total:	$\mathbf{1 0 1 1 . 2 5 1}$	$\mathbf{4 2 0 . 2 2 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 60% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.49(\mathrm{dd}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.30(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=9.4,6.9$, $3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.18-1.05$ $(\mathrm{m}, 1 \mathrm{H}), 1.04-0.93(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,187.8,175.9$, 149.1, 132.2, 128.1, 81.8, 65.4, 59.9, 47.8, 47.4, 27.9, 27.2, 26.2, 26.2, 26.0, 9.3. HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$273.1485, found 273.1487. $[\alpha]^{17}{ }_{\mathrm{D}}=$ 34.2° (c $0.20, \mathrm{CHCl}_{3}$); $>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol $=90 / 10$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 16.1 min (minor), 19.1 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	16.103	428.113	614.615	49.96	59.00
2	19.525	428.841	427.168	50.04	41.00
Total:	$\mathbf{8 5 6 . 9 5 4}$	$\mathbf{1 0 4 1 . 7 8 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU *in	Height mAU	Relative Area $\%$	Relative Height $\%$
1	16.100	1.430	2.982	0.22	0.48
2	19.133	663.453	617.988	99.78	99.52
Total:	$\mathbf{6 6 4 . 8 8 3}$	$\mathbf{6 2 0 . 9 7 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 80% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.31$ (m, 5 H), 6.61 (dd, $J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J$ $=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.55(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7,187.0,176.6,151.5,134.6,129.7,129.2,128.8,128.3$, 126.9, 76.2, 67.2, 60.1, 50.3, 26.4. HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 267.1016, found 207.1017. $[\alpha]^{17}{ }_{\mathrm{D}}=-218.7^{\circ}\left(\mathrm{c} 0.81, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column;
hexane $/ 2$-propanol $=90 / 10$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 57.0 min (minor), 57.9 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	49.127	581.078	292.395	50.05	54.80
2	58.118	579.976	241.195	49.95	45.20
Total:	1161.055	533.589	100.00	100.00	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	52.017	1.239	0.853	0.17	0.29
2	57.862	710.943	290.985	99.83	99.71
Total:	$\mathbf{7 1 2 . 1 8 2}$	$\mathbf{2 9 1 . 8 3 8}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 57% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03$ (s, 2H), 6.97 ($\mathrm{s}, 1 \mathrm{H}$), 6.60 (dd, $J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 1.81$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6,187.8,175.2,149.9,141.1,138.8$, $132.8,130.0,126.4,122.85,80.0,65.9,59.0,51.5,21.5,9.4$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 295.1329$, found 295.1325. $[\alpha]^{16}{ }_{\mathrm{D}}=-245.2^{\circ}$ (c 0.49, CHCl_{3}); 96% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5 u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 9.2 min (minor), 10.8 min (major)

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	9.168	28.976	54.684	2.21	2.27
2	10.772	1279.795	2357.296	97.79	97.73
Total:	$\mathbf{1 3 0 8 . 7 7 1}$	$\mathbf{2 4 1 1 . 9 8 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42$ (ddd, $\left.J=7.0,5.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.17$ - 7.04 (m, 2H), 6.59 (dd, $J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.54(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,187.5,174.9,162.5(\mathrm{~d}, J=247.9$ $\mathrm{Hz}), 149.4,137.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 133.0,127.1(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 126.7,115.9(\mathrm{~d}, J=$ 21.7 Hz), 79.6, 66.0, 58.8, 51.8, 9.4. 78\% yield. HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 285.0921$, found 285.0925. [$\left.\alpha\right]^{17}{ }_{\mathrm{D}}=-213.3^{\circ}$ (c $0.63, \mathrm{CHCl}_{3}$); $>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 14.5 min (minor), 21.4 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	13.735	815.822	1310.226	49.95	62.22
2	21.842	817.494	795.454	50.05	37.78
Total:	$\mathbf{1 6 3 3 . 3 1 6}$	$\mathbf{2 1 0 5 . 6 8 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	14.518	5.289	9.873	0.28	0.62
2	21.357	1903.349	1595.223	99.72	99.38
Total:	$\mathbf{1 9 0 8 . 6 3 8}$	$\mathbf{1 6 0 5 . 0 9 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 84% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.56(\mathrm{~m}, 1 \mathrm{H})$, $1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1,187.4,174.6,149.1,140.3,133.1$, 132.1, 127.0, 126.9, 122.5, 79.6, 66.0, 58.7, 51.7, 9.4. HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 345.0121$, found 345.0123. $[\alpha]^{17}{ }_{\mathrm{D}}=-199.0^{\circ}\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5 u column; hexane $/ 2$-propanol $=90 / 10$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 31.7 min (minor), 50.8 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	28.907	976.513	601.434	49.98	62.90
2	52.093	977.309	354.697	50.02	37.10
Total:	1953.822	$\mathbf{9 5 6 . 1 3 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	31.655	5.001	3.252	0.26	0.53
2	50.772	1911.510	606.015	99.74	99.47
Total:	$\mathbf{1 9 1 6 . 5 1 1}$	$\mathbf{6 0 9 . 2 6 8}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 56% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.64-$ $7.38(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.00$ $(\mathrm{m}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{ddd}, J=29.7,15.7$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,187.7,175.0,149.6$, 138.4, 133.1, 133.0, 133.0, 129.07, 128.2, 127.7, 126.8, 126.8, 126.7, 124.3, 122.7, 80.1, 66.1, 58.9, 51.7, 9.4. HRMS (ESI, m/z) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 317.1172$, found 317.1169. $[\alpha]^{16}{ }_{\mathrm{D}}=-253.2^{\circ}\left(\mathrm{c} 0.60, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol = $80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 24.2 min (minor), 35.3 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	22.077	2440.345	1820.914	50.11	57.35
2	35.560	2429.909	1354.067	49.89	42.65
Total:	$\mathbf{4 8 7 0 . 2 5 4}$	$\mathbf{3 1 7 4 . 9 8 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	24.195	6.838			
2	35.258	2601.655	5.932	0.26	0.40
Total:	$\mathbf{2 6 0 8 . 4 9 3}$	$\mathbf{1 4 9 2 . 5 9 5}$	$\mathbf{1 4 9 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

White solid. 86% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.77(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,187.4,175.2,151.4,138.3,126.6$, 76.4, 65.8, 60.0, 53.4, 26.4, 17.9, 12.0. HRMS (ESI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 219.1016, found 219.1023. $[\alpha]^{16}{ }_{\mathrm{D}}=-17.8^{\circ}\left(\mathrm{c} 0.63, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee; Chiral HPLC analysis of the product: Phenomenex 00G-4457-E0 250X4.6 mm 5u column; hexane $/ 2$-propanol $=70 / 30$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 22.3 min (minor), 23.9 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	22.240	76.860	63.035	50.25	52.03
2	24.892	76.108	58.121	49.75	47.97
Total:	152.968	$\mathbf{1 2 1 . 1 5 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

(manally integrated]

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	22.295	3.187	3.563	0.37	0.53
2	23.927	861.772	665.054	99.63	99.47
Total:	$\mathbf{8 6 4 . 9 6 0}$	$\mathbf{6 6 8 . 6 1 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 65% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{dd}$, $J=10.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, J $=16.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7,187.0,176.6,151.5,134.6,129.7,129.2,128.8$, $128.3,126.9,76.6,67.2,60.1,50.3,26.4$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$267.1016, found 267.1019. 99% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane/2-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 22.2 min (minor), 25.7 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	21.177	1349.487	1537.035	50.02	55.62
2	25.797	1348.474	1226.494	49.98	44.38
Total:	$\mathbf{2 6 9 7 . 9 6 0}$	$\mathbf{2 7 6 3 . 5 2 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	22.162	9.941	11.417	0.54	0.72
2	25.708	1822.960	1582.922	99.46	99.28
Total:	$\mathbf{1 8 3 2 . 9 0 1}$	$\mathbf{1 5 9 4 . 3 3 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 79% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.62 (dd, $J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (dd, $J=16.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (dd, $J=16.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70-3.57(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3$, 186.6, 178.8, 166.4, 151.5, 133.9, 133.7, 130.4, 129.9, 128.1, 127.0, 76.2, 67.2, 60.1, 52.3, 50.6, 26.3. HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 325.1071$, found 325.1076. $[\alpha]^{17}{ }_{\mathrm{D}}=-52.5^{\circ}\left(\mathrm{c} 0.83, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5u column; hexane $/ 2-$ propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 31.4 min (minor), 36.6 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	25.630	929.197	344.582	49.58	46.67
2	37.125	944.765	393.680	50.42	53.33
Total:	$\mathbf{1 8 7 3 . 9 6 1}$	$\mathbf{7 3 8 . 2 6 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	31.408	9.006	3.989	0.50	0.55
2	36.622	1776.116	718.712	99.50	99.45
Total:	$\mathbf{1 7 8 5 . 1 2 3}$	$\mathbf{7 2 2 . 7 0 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 60% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.56(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06$ (dd, $J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=17.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{dt}, J=12.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.4, 186.6, 172.9, 151.3, 131.5, 128.9, 127.8, 127.7, 127.5, 127.1, 76.5, 67.0, 59.4, 50.6, 26.3. 97% ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate 1 $\mathrm{mL} / \mathrm{min}$, Retention times: 22.5 min (minor), 31.2 min (major).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	21.918	890.410	964.679	49.88	60.68
2	31.572	894.625	625.086	50.12	39.32
Total:	$\mathbf{1 7 8 5 . 0 3 4}$	$\mathbf{1 5 8 9 . 7 6 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU *in	Height mAU	Relative Area $\%$	Relative Height $\%$
1	22.528	20.687			
2	31.247	1272.386	25.273	1.60	2.85
Total:	$\mathbf{1 2 9 3 . 0 7 3}$	$\mathbf{8 8 8 . 1 1 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 75% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ (dd, $J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.2, 186.1, 167.7, 150.4, 144.1, 138.1, 133.9, 130.0, 126.9, 125.5, 63.5, 58.0, 52.5, 48.6, 27.3, 21.6, 9.1. HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 358.1108$, found 358.1124 . $[\alpha]^{16}{ }_{\mathrm{D}}=164.3^{\circ}$ (c $0.10, \mathrm{CHCl}_{3}$); $>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times: 48.0 min (major), 67.0 (minor).

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	47.977	765.414	259.674	50.08	60.28
2	58.788	763.053	171.137	49.92	39.72
Total:	$\mathbf{1 5 2 8 . 4 6 8}$	$\mathbf{4 3 0 . 8 1 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	48.043	929.652	309.715	99.63	99.66
2	66.958	3.435	1.048	0.37	0.34
Total:	$\mathbf{9 3 3 . 0 8 7}$	$\mathbf{3 1 0 . 7 6 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

White solid. 96% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}$, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.38$ (m, $1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{td}, J=12.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (d, $J=8.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.4,186.5,167.9,148.4,144.1$, $138.1,133.5,129.9,127.0,67.7,59.3,50.5,48.5,38.8,26.8,22.6,21.6,13.8,9.1 .>99 \%$ ee; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5u column; hexane $/ 2$-propanol $=80 / 20$, detected at 254 nm , flow rate $1 \mathrm{~mL} / \mathrm{min}$, Retention times:

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	19.375	884.997	739.284	49.66	58.40
2	23.757	897.133	526.677	50.34	41.60
Total:	$\mathbf{1 7 8 2 . 1 3 0}$	$\mathbf{1 2 6 5 . 9 6 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Integration Results					
No.	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$
1	20.378	3.119	2.782	0.31	0.45
2	22.878	1000.851	611.619	99.69	99.55
Total:	$\mathbf{1 0 0 3 . 9 7 0}$	$\mathbf{6 1 4 . 4 0 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

8. NMR and HRMS Spectra of All Compounds

2a
Molecular Weight: 204.22Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$
Exact Mass: 204.0786
Molecular Weight: 204.2250
m/z: 204.0786 (100.0\%), 205.0820 (13.0\%)
HRMS (ESI, m/z) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$205.0859, found 205.0859.

T6-17-1

2b
Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$
Exact Mass: 218.0943
Molecular Weight: 218.2520
m/z: 218.0943 (100.0\%), 219.0976 (14.1\%)
HRMS (ESI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$219.1016, found 219.1024.

T6-17-2

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
Exact Mass: 232.1099
Molecular Weight: 232.2790
m/z: 232.1099 (100.0\%), 233.1133 (15.1\%), 234.1167 (1.1\%)
HRMS (ESI, m/z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$233.1172, found 233.1175.

Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

Acquisition Date 6/18/2021 5:01:11 PM
D:IDatalfengleilTQ-1_GB3_01_6569.d
1225-1.m
TQ-1
meter
Acquisition Parameter
Source Type
Focus
Scan Begin
Scan End
Not active
$50 \mathrm{~m} / \mathrm{z}$ $1600 \mathrm{~m} / \mathrm{z}$

Intens.

TQ-1_GB3_01_6569.d
Bruker Compass DataAnalysis 4.4
printed: 6/18/2021 5:11:57 PM
by: demo
Page 1 of 1

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$
Exact Mass: 248.1049
Molecular Weight: 248.2780
$\mathrm{m} / \mathrm{z}: 248.1049$ (100.0\%), 249.1082 (15.1\%), 250.1116 (1.1\%)
HRMS (ESI, m/z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$249.1121, found 249.1144.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$277.1071, found 277.1091.

Display Report

Analysis Info				Acquisition Date		8/26:2021 3:50:06 PM	
Analysis Name	D:IEataliengleilT6 74 1_GB6_01_0375.d						
Method	1225-1.m						
Sample Name	T6-74-1			Instrument			1825265.10250
Sorrment							
Aaquisition Parameter							
Sourse Type	ESI	Ion Pozarity	Positive		Set Nab	lizer	0.1 Bax
rocus	Not mitive	Set Capillary	$2000 y$		set Dry	Heater	$980{ }^{\circ} \mathrm{C}$
Sodh Begln	$63 \mathrm{~m} / \mathrm{z}$	Set End Fitate Ofiset	-500 V		Set Dry	Cas	$4.01 \mathrm{~mm} / \mathrm{h}$
Scan End	$3300 \mathrm{~m} / \mathrm{z}$	Sat Charging Vellage Set Ccrora	2000 V $0 ⿴ 囗$		Sat Dive	Valua	Sourcem $0^{\circ} \mathrm{C}$

T8-74-1_GB6_01_9575 d 3uker Compass DalaAinalysls 4.4

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{3}$
Exact Mass: 296.0048
Molecular Weight: 297.1480
m/z: 296.0048 (100.0\%), 298.0028 (97.3\%), 297.0082 (14.1\%),

$$
299.0061 \text { (13.7\%) }
$$

HRMS (ESI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$297.0121, found 297.0113.

$$
\iint
$$

$2 g$

				$\stackrel{1}{\circ}$						$$					$\underset{-1}{\substack{8 \\ 8 \\ \hline}}$			
8.5	8.0	7.5	7.0	6.5	6． 0	5． 5	5.0	4.5	4． ppm	3.5	3.0	2． 5	2.0	1.5	1.0	0.5	0.0	－0．5

T6－51－1

¢	$\stackrel{\text { \％}}{\text { ¢ }}$			易参	辟	

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
Exact Mass: 272.1412
Molecular Weight: 272.3440
m/z: 272.1412 (100.0\%), 273.1446 (18.4\%), 274.1480 (1.6\%)
HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$273.1485, found 273.1487.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$267.1016, found 267.1017.

2i
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}$
Exact Mass: 294.1256
Molecular Weight: 294.3500
m/z: 294.1256 (100.0\%), 295.1289 (20.5\%), 296.1323 (2.0\%)
HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$295.1329, found 295.1325.

$\stackrel{n}{\stackrel{2}{2}}$

Display Report

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FO}_{3}$
Exact Mass: 284.0849
Molecular Weight: 284.2864
m/z: 284.0849 (100.0\%), 285.0882 (18.4\%), 286.0916 (1.6\%)
HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$285.0921, found 285.0925.

Display Report

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{3}$
Exact Mass: 344.0048
Molecular Weight: 345.1920
m/z: 344.0048 (100.0\%), 346.0028 (97.3\%), 345.0082 (18.4\%), 347.0061 (17.9\%), 346.0115 (1.6\%), 348.0095 (1.5\%)

HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$345.0121, found 345.0123.

Display Report

HRMS (ESI, m/z) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$317.1172, found 317.1169.

Display Report

Analysis Info		Acquisition Date	8/25/2021 2:28:25 PM	
Analysis Name	D:IDatalfengleiTT6-73-2_RA4_01_9264.d			
Method	1225-1.m	Operator	Demo User	
Sample Name	T6-73-2	Instrument	impact II	1825265.10256

Acquisition Parameter					
Source Type	ESI	lon Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	2600 V	Set Dry Heater	$180^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / 2$	Set End Plate Offset	-500 V	Set Dry Gas	$4.0 / / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	0 nA	Set APCI Heater	$0^{\circ} \mathrm{C}$

T6-73-2_RA4_01_9284.d
Bruker Compass DataAnalysis 4.4
printed: 8/25/2021 2:29:53 PM
by: demo
Page 1 of 1

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$
Exact Mass: 218.0943
Molecular Weight: 218.2520
m/z: 218.0943 (100.0\%), 219.0976 (14.1\%)
HRMS (ESI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$219.1016, found 219.1023.

T6-20-2

T6-20-2

$\begin{aligned} & 9 \\ & 6 \\ & \stackrel{0}{9} \\ & 1 \end{aligned}$	$\begin{aligned} & \widetilde{2} \\ & \stackrel{0}{6} \\ & \text { \| } \end{aligned}$	$\begin{aligned} & \text { E} \\ & \text { B } \\ & \stackrel{0}{0} \\ & \hline 1 \end{aligned}$		

Display Report

Analysis Info		Acquisition Date $4 / 28 / 2021$ 3:33:43 PM	
Analysis Name	D:IDatalfengleilT6-20-2_RC1_01_4861.d	Operator	Demo User
Method	1225-1.m	Instrument impact II	
Sample Name	T6-20-2		

Sample Name	T6-20-2	Instrument impact II 1825265.10256

Comment

Acquisition Parameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	2600 V	Set Dry Heater	$180^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$4.01 / \mathrm{min}$
Scan End	$1300 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	0 nA	Set APCI Heater	$0^{\circ} \mathrm{C}$

T6-20-2_RC1_01_4861.d
Bruker Compass DataAnalysis 4.4
printed: 4/28/2021 3:57:48 PM
by: demo
Page 1 of 1

2n
Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$
Exact Mass: 266.0943
Molecular Weight: 266.2960
m/z: 266.0943 (100.0\%), 267.0976 (18.4\%), 268.1010 (1.6\%)
HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$284.1281, found 284.1284.

20

Display Report

CD-1-65-2_マA1_01_1ade2.d
Bruker Compass DataAnalysis 4.4
printed: 12/2:2021 4:06:56 PM
by: demo
Page 1 of *

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$
Exact Mass: 324.0998
Molecular Weight: 324.3320
m/z: 324.0998 (100.0\%), 325.1031 (20.5\%), 326.1065 (2.0\%), 326.1040 (1.0\%)
HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 325.1071$, found 325.1076

C1-56

T6－49－2	$\stackrel{\circ}{9}$ 0 0		® 0 - -1	F 总 $\stackrel{n}{i}$ i	 ま アくらにな				¢

[^0]
Display Report

HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 358.1108$, found 358.1124.

T6-32-

T6-32-1

Display Report

9. Reference

[1] a) R. Kumar, Y. Hoshimoto, E. Tamai, M. Ohashi, S. Ogoshi, Nat. Commun. 2017, 8, 32; b) Y. Fukui, P. Liu, Q. Liu, Z.-T. He, N.-Y. Wu, P. Tian, G.-Q. Lin, J. Am. Chem. Soc. 2014, 136, 15607; b) K. Takenaka, S. C. Mohanta, H. Sasai, Angew. Chem., Int. Ed. 2014, 53, 4675; c) P. Liu, Y. Fukui, P. Tian, Z.-T. He, C.-Y. Sun, N.-Y. Wu, G.-Q. Lin, J. Am. Chem. Soc. 2013, 135, 11700; d) Z.-T. He, B. Tian, Y. Fukui, X. Tong, P. Tian, G.-Q. Lin, Angew. Chem., Int. Ed. 2013, 52, 5314.
[2] K. K. Gollapelli, S. Donikela, N. Manjula, R. Chegondi, ACS Catal. 2018, 8, 1440.
[3] Q. Teng, N. Thirupathi, C.-H. Tung, Z. Xu, Chem. Sci. 2019, 10, 6863.

[^0]:

