Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supplementary Information for

Platinum–P(BFPy)₃-catalyzed regioselective diboration of terminal alkynes with (pin)B–B(aam)

Ikuo Kageyuki, Jialun Li and Hiroto Yoshida*

Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

E-mail: yhiroto@hiroshima-u.ac.jp

Table of Contents

1.	General Remarks	S2
2.	Experimental Procedures and Characterization of Products	S2
3.	NOE Experiments for Determining Stereochemistry	S16
4.	Chemoselective Cross-Coupling of 3a	S18
5.	References	S19
6.	NMR Spectra of Products	S20

I. General Remarks

All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique under an argon atmosphere. Nuclear magnetic resonance spectra were taken on a Varian System 500 (¹H, 500 MHz; ¹³C, 125 MHz; ¹¹B, 160 MHz) or Varian System 400 (¹H, 400 MHz) spectrometer using residual proton in DMSO- d_6 (¹H, $\delta = 2.50$), Acetone- d_6 (¹H, $\delta = 2.05$), residual chloroform (¹H, $\delta = 7.26$) or CDCl₃ $({}^{13}C, \delta = 77.0)$ as an internal standard and boron trifluoride diethyl etherate $({}^{11}B, \delta = 0.00)$ as an external standard. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, m = multiplet), coupling constants (Hz), integration. High-resolution mass spectra were obtained with a Thermo Fisher Scientific LTQ Orbitrap XL spectrometer. Melting points were measured with Yanaco Micro Melting Point apparatus and uncorrected. Preparative recycling gel permeation chromatography was performed with GL Science PU 614 equipped with Shodex GPC H-2001L and -2002L columns (toluene as an eluent). Column chromatography was carried out using Merck Kieselgel 60. All microwave reactions (Biotage, Initiator+) were conducted in a sealed tube, and the reaction temperature was maintained by an external infrared sensor. Unless otherwise noted, commercially available reagents were used without purification. All solvents were dried over activated molecular sieves 3Å.

2. Experimental Procedures and Characterization of Products Pt-Catalyzed Diboration of Alkynes

A reaction tube equipped with a magnetic stirring bar was charged with $Pt(dba)_2$ (4.5 µmol), $P(BFPy)_3^1$ (4.95 µmol), $(pin)B-B(aam)^2$ (0.15 mmol), an alkyne (0.225 mmol) and toluene (2 mL), and the mixture was stirred at 180 °C for 30 min under microwave irradiation. The mixture was diluted with ethyl acetate and filtered through a Celite plug. The organic solution was washed with brine, dried over Na₂SO₄, and evaporated. Purification of the residue by boric acid impregnated silica gel-column chromatography (hexane/ethyl acetate as an eluent) or gel permeation chromatography (toluene as an eluent) gave the product.

(*E*)-2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3a)

A pale yellow solid: mp 190-191 °C (49.4 mg)

¹H NMR (CDCl₃) δ 8.23 (dd, J = 8.0, 1.5 Hz, 1H), 8.05 (s, 1H), 7.64 (s, 1H), 7.52 (dd, J = 8.1, 7.1 Hz, 1H), 7.44 (dd, J = 7.5, 2.1 Hz, 2H), 7.39 – 7.33 (m, 2H), 7.30 (d, J = 7.2 Hz, 1H), 7.14 (ddd, J = 8.0, 7.2, 1.1 Hz, 1H), 7.03 (dd, J = 8.1, 1.2 Hz, 1H), 6.60 (s, 1H), 1.40 (s, 12H).

¹³C NMR (CDCl₃) δ 167.79, 144.62, 140.95, 133.79, 129.29, 128.47, 127.85, 127.23, 121.74, 118.86, 117.59, 84.95, 25.08.

¹¹B NMR (CDCl₃) δ 29.95, 27.65.

HRMS Calcd for C₂₁H₂₄B₂N₂O₃: [M+Na]⁺, 397.1865. Found: *m*/*z* 397.1867

(*E*)-2-(2-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2,3-dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3b)

A pale yellow solid: mp 82-83 °C (56.3 mg)

¹H NMR (CDCl₃) δ 8.22 (d, *J* = 7.9 Hz, 1H), 7.98 (s, 1H), 7.56 (s, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 2H), 6.53 (s, 1H), 3.83 (s, 3H), 1.41 (s, 12H).

¹³C NMR (CDCl₃) δ 166.76, 159.61, 144.67, 136.68, 133.74, 129.25, 128.46, 121.63, 119.23, 117.55, 113.90, 84.89, 55.43, 25.08.

¹¹B NMR (CDCl₃) δ 29.65, 22.19.

HRMS Calcd for C₂₂H₂₆B₂N₂O₄: [M+Na]⁺, 427.1971. Found: *m/z* 427.1968

(E)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)vinyl)-2,3-

dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (3c)

A pale yellow solid: mp 182-183 °C (51.1 mg)

¹H NMR (CDCl₃) δ 8.22 (dd, J = 8.0, 1.6 Hz, 1H), 8.00 (s, 1H), 7.59 (s, 1H), 7.51 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.14 (dd, J = 18.8, 8.0 Hz, 3H), 7.01 (d, J = 8.2 Hz, 1H), 6.57 (s, 1H), 2.36 (s, 3H), 1.40 (s, 12H).

¹³C NMR (CDCl₃) δ 166.73, 144.65, 141.46, 137.76, 133.74, 129.27, 129.21, 127.13, 121.66, 119.27, 117.57, 84.90, 25.08, 21.32.

¹¹B NMR (CDCl₃) δ 31.47.

HRMS Calcd for C₂₂H₂₆B₂N₂O₃: [M+Na]⁺, 411.2022. Found: *m*/*z* 411.2025

(*E*)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(*o*-tolyl)vinyl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3d)

A pale yellow solid: mp 142-143 °C (52.4 mg)

¹H NMR (CDCl₃) δ 8.23 (dd, J = 7.9, 1.6 Hz, 1H), 8.12 (s, 1H), 7.94 (s, 1H), 7.52 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.21 – 7.06 (m, 5H), 7.02 (d, J = 8.1 Hz, 1H), 6.34 (s, 1H), 2.28 (s, 3H), 1.36 (s, 12H).

¹³C NMR (CDCl₃) δ 166.86, 146.26, 144.69, 134.37, 133.73, 129.79, 129.23, 128.09, 127.23, 126.13, 121.69, 119.31, 117.67, 84.75, 25.04, 20.42.

¹¹B NMR (CDCl₃) δ 29.24.

HRMS Calcd for C₂₂H₂₆B₂N₂O₃: [M+Na]⁺, 411.2022. Found: *m*/*z* 411.2024

(E)-2-(2-(4-bromophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2,3-

dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (3e)

A pale yellow solid: mp 175-176 °C (62.2 mg)

¹H NMR (CDCl₃) δ 8.22 (dd, J = 8.0, 1.6 Hz, 1H), 8.04 (s, 1H), 7.62 (s, 1H), 7.52 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 7.17 – 7.11 (m, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.58 (s, 1H), 1.39 (s, 12H).

¹³C NMR (CDCl₃) δ 166.68, 144.53, 143.39, 133.82, 131.54, 129.29, 128.96, 122.00, 121.84, 119.31, 117.61, 85.07, 25.05.

¹¹B NMR (CDCl₃) δ 30.00.

HRMS Calcd for C₂₁H₂₃B₂BrN₂O₃: [M+Na]⁺, 475.0970. Found: *m*/*z* 475.0971

(*E*)-4-(2-(4-oxo-3,4-dihydrobenzo[*d*][1,3,2]diazaborinin-2(1*H*)-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzonitrile (3f)

A pale yellow solid: mp 229-230 °C (48.7 mg)

¹H NMR (CDCl₃) δ 8.23 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.03 (s, 1H), 7.64 (d, *J* = 8.1 Hz, 3H), 7.52 (dd, *J* = 8.7, 3.2 Hz, 3H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.64 (s, 1H), 1.39 (s, 12H).

¹³C NMR (CDCl₃) δ 166.64, 149.26, 144.41, 133.91, 132.23, 129.30, 128.05, 122.03, 119.35, 119.13, 117.67, 111.16, 85.27, 25.03.

¹¹B NMR (CDCl₃) δ 29.95.

HRMS Calcd for C₂₂H₂₃B₂N₃O₃: [M+Na]⁺, 422.1818. Found: *m*/*z* 422.1818

methyl (*E*)-4-(2-(4-oxo-3,4-dihydrobenzo[*d*][1,3,2]diazaborinin-2(1*H*)-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate (3g)

A pale yellow solid: mp 159-160 °C (50.9 mg)

¹H NMR (CDCl₃) δ 8.23 (dd, *J* = 8.1, 1.6 Hz, 1H), 8.05 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.62 (s, 1H), 7.56 – 7.46 (m, 3H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 1H), 6.66 (s, 1H), 3.92 (s, 3H), 1.39 (s, 12H).

¹³C NMR (CDCl₃) δ 167.37, 166.97, 149.36, 144.76, 134.10, 130.02, 129.55, 127.56, 126.98, 122.15, 119.58, 117.89, 85.38, 52.51, 25.42.

¹¹B NMR (CDCl₃) δ 30.07.

HRMS Calcd for C₂₃H₂₆B₂N₂O₅: [M+Na]⁺, 455.1920. Found: *m*/*z* 455.1919

(*E*)-2-(2-(4-acetylphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3h)

A pale yellow solid: mp 146-147 °C (43.1 mg)

¹H NMR (CDCl₃) δ 8.23 (dd, J = 8.0, 1.6 Hz, 1H), 8.04 (s, 1H), 7.94 (d, J = 8.3 Hz, 2H), 7.63 (s, 1H), 7.52 (dd, J = 7.6, 4.4 Hz, 3H), 7.18 – 7.12 (m, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.67 (s, 1H), 2.61 (s, 3H), 1.40 (s, 12H).

¹³C NMR (CDCl₃) δ 166.65, 149.30, 144.50, 136.17, 133.84, 129.29, 128.58, 127.51, 121.90, 119.34, 117.64, 85.14, 26.80, 25.02.

¹¹B NMR (CDCl₃) δ 30.77.

HRMS Calcd for C₂₃H₂₆B₂N₂O₄: [M+Na]⁺, 439.1971. Found: *m/z* 439.1970

(*E*)-2-(2-(cyclohex-1-en-1-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2,3-dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3i)

A pale yellow solid: mp 122-123 °C (55.4 mg)

¹H NMR (CDCl₃) δ 8.19 (dd, J = 8.0, 1.6 Hz, 1H), 7.78 (s, 1H), 7.49 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.14 – 7.07 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H), 6.17 (s, 1H), 6.03 (d, J = 3.8 Hz, 1H), 2.22 (t, J = 5.3 Hz, 4H), 1.71 (dd, J = 6.1, 2.5 Hz, 2H), 1.61 (dd, J = 6.0, 2.6 Hz, 2H), 1.38 (s, 12H).

¹³C NMR (CDCl₃) δ 166.65, 144.63, 140.29, 133.72, 132.21, 129.25, 121.54, 119.10, 117.41, 84.78, 26.60, 25.34, 25.20, 22.79, 22.27.

¹¹B NMR (CDCl₃) δ 29.77, 23.01.

HRMS Calcd for C₂₁H₂₈B₂N₂O₃: [M+Na]⁺, 401.2178. Found: *m/z* 401.2180

2,2'-((1*E*,1'*E*)-1,4-phenylenebis(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)ethene-2,1-diyl))bis(2,3-dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one) (3j)

A reaction tube equipped with a magnetic stirring bar was charged with $Pt(dba)_2$ (4.5 µmol), $P(BFPy)_3$ (4.95 µmol), (pin)B–B(aam) (0.165 mmol), 1,4-diethynylbenzene (0.075 mmol) and toluene (2 mL), and the mixture was stirred at 180 °C for 30 min under microwave irradiation. The mixture was diluted with ethyl acetate and filtered through a Celite plug. The organic solution was washed with brine, dried over Na₂SO₄, and evaporated. Purification of the residue by boric acid impregnated silica gel-column chromatography (hexane/ethyl acetate as an eluent) gave the product **3j**.

A pale yellow solid: mp >300 $^{\circ}$ C (Melting point of **3j** could not be determined, because it is out of the measurable range of the melting point apparatus.) (41.0 mg)

¹H NMR (DMSO-*d*₆) δ 9.12 (s, 2H), 9.01 (s, 2H), 7.98 (dd, *J* = 7.9, 1.6 Hz, 2H), 7.55 (dd, *J* = 7.6, 2.1 Hz, 2H), 7.44 (s, 4H), 7.24 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.08 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 2H), 6.84 (s, 2H), 1.25 (s, 24H).

¹³C NMR (DMSO-*d*₆) δ 165.60, 145.29, 142.37, 133.32, 127.95, 126.78, 120.70, 118.64, 117.96, 84.11, 24.62.

¹¹B NMR (DMSO-*d*₆) δ 28.59, 21.72.

HRMS Calcd for C₃₆H₄₂B₄N₄O₆: [M+H]⁺, 671.3549. Found: *m/z* 671.3563

(*E*)-2-(3,3-dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-1-yl)-2,3-dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3k)

A pale yellow solid: mp 129-130 °C (51.5 mg)

¹H NMR (CDCl₃) δ 8.19 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.69 (s, 1H), 7.48 (ddd, *J* = 8.4, 7.1, 1.6 Hz, 1H), 7.14 – 7.06 (m, 2H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.15 (s, 1H), 1.33 (s, 12H), 1.15 (s, 9H).

¹³C NMR (CDCl₃) δ 166.62, 144.62, 133.68, 129.22, 121.45, 119.03, 117.38, 84.35, 38.07, 29.74, 25.18.

¹¹B NMR (CDCl₃) δ 30.60, 28.56.

HRMS Calcd for C₁₉H₂₈B₂N₂O₃: [M+Na]⁺, 377.2178. Found: *m/z* 377.2184

(*E*)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oct-1-en-1-yl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3l)

A pale yellow oil (51.7 mg)

¹H NMR (CDCl₃) δ 8.19 (dd, J = 8.0, 1.6 Hz, 1H), 7.95 (s, 1H), 7.86 (s, 1H), 7.48 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 7.10 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.96 (dd, J = 8.2, 1.3 Hz, 1H), 6.19 (s, 1H), 2.33 (td, J = 7.5, 1.4 Hz, 2H), 1.37 (s, 12H), 1.29 (d, J = 2.8 Hz, 8H), 0.89 (d, J = 6.8 Hz, 3H).

¹³C NMR (CDCl₃) δ 166.83, 144.73, 133.50, 129.08, 121.18, 119.02, 117.32, 84.26, 41.65, 31.75, 29.63, 28.99, 24.90, 22.58, 14.11.

¹¹B NMR (CDCl₃) δ 30.06.

HRMS Calcd for C₂₁H₃₂B₂N₂O₃: [M+Na]⁺, 405.2491. Found: *m*/*z* 405.2494

(*E*)-6-(4-oxo-3,4-dihydrobenzo[*d*][1,3,2]diazaborinin-2(1*H*)-yl)-5-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-enenitrile (3m)

A pale yellow oil (45.3 mg)

¹H NMR (CDCl₃) δ 8.20 (dd, J = 7.9, 1.6 Hz, 1H), 8.05 (s, 1H), 7.83 (s, 1H), 7.50 (td, J = 8.0, 7.2, 1.7 Hz, 1H), 7.16 – 7.08 (m, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.30 (s, 1H), 2.48 (t, J = 7.5 Hz, 2H), 2.35 (t, J = 7.1 Hz, 2H), 1.85 (t, J = 7.4 Hz, 2H), 1.37 (s, 12H).

¹³C NMR (CDCl₃) δ 166.95, 144.68, 133.74, 129.19, 121.65, 119.82, 119.18, 117.63, 84.70, 40.39, 25.31, 25.02, 16.72.

¹¹B NMR (CDCl₃) δ 30.36.

HRMS Calcd for C₁₉H₂₅B₂N₃O₃: [M+Na]⁺, 388.1974. Found: *m/z* 388.1975

(*E*)-2-(5-chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3n)

A pale yellow oil (46.9 mg)

¹H NMR (CDCl₃) δ 8.20 (d, J = 6.8 Hz, 1H), 7.99 (s, 1H), 7.83 (s, 1H), 7.50 (ddd, J = 8.6, 7.2, 1.7 Hz, 1H), 7.16 – 7.07 (m, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.28 (s, 1H), 3.55 (t, J = 6.7 Hz, 2H), 2.48 (t, J = 7.8 Hz, 2H), 1.94 (t, J = 7.2 Hz, 2H), 1.38 (s, 12H).

¹³C NMR (CDCl₃) δ 167.03, 144.77, 133.76, 129.18, 121.58, 119.09, 117.61, 84.59, 44.57, 38.68, 32.47, 25.03.

¹¹B NMR (CDCl₃) δ 29.95, 19.90.

HRMS Calcd for C₁₈H₂₅B₂ClN₂O₃: [M+Na]⁺, 397.1632. Found: *m/z* 397.1632

(*E*)-4-(4-oxo-3,4-dihydrobenzo[*d*][1,3,2]diazaborinin-2(1*H*)-yl)-3-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 4-methylbenzenesulfonate (30)

A pale yellow solid: mp 116-117 °C (53.7 mg)

¹H NMR (CDCl₃) δ 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 7.97 (s, 1H), 7.84 (s, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.22 (s, 1H), 4.17 (t, J = 6.5 Hz, 2H), 2.65 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H), 1.32 (s, 12H).

¹³C NMR (CDCl₃) δ 166.87, 144.84, 144.65, 133.75, 133.32, 129.89, 129.18, 128.09, 121.67, 119.20, 117.62, 84.71, 70.00, 40.64, 24.97, 21.72.

¹¹B NMR (CDCl₃) δ 28.71.

HRMS Calcd for C₂₄H₃₀B₂N₂O₆S: [M+Na]⁺, 519.1903. Found: *m*/*z* 519.1901

(*E*)-2-(3-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)-2,3-dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3p)

A pale yellow oil (40.3 mg)

¹H NMR (CDCl₃) δ 8.20 (dd, J = 7.9, 1.6 Hz, 1H), 8.04 (s, 1H), 7.84 (s, 1H), 7.49 (ddd, J = 8.2, 7.2, 1.6 Hz, 1H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.97 (dd, J = 8.1, 1.2 Hz, 1H), 6.53 (t, J = 2.0 Hz, 1H), 4.16 (d, J = 2.0 Hz, 2H), 3.41 (s, 3H), 1.37 (s, 12H).

¹³C NMR (CDCl₃) δ 166.86, 144.74, 133.65, 129.21, 128.37, 121.56, 119.29, 117.59, 84.61, 58.58, 25.01.

¹¹B NMR (CDCl₃) δ 28.87, 22.47.

HRMS Calcd for C₁₇H₂₄B₂N₂O₄: [M+Na]⁺, 365.1814. Found: *m*/*z* 365.1818

(*E*)-2-(4-bromo-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-1-yl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3q)

A pale yellow solid: mp 91-92 °C (19.0 mg)

¹H NMR (CDCl₃) δ 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 8.01 (s, 1H), 7.94 (s, 1H), 7.50 (ddd, J = 8.3, 7.2, 1.6 Hz, 1H), 7.12 (t, J = 7.1 Hz, 1H), 6.98 (dd, J = 8.1, 1.0 Hz, 1H), 6.33 (s, 1H), 3.53 (t, J = 7.2 Hz, 2H), 2.89 (td, J = 7.3, 1.2 Hz, 2H), 1.38 (s, 12H).

¹³C NMR (CDCl₃) δ 166.87, 144.68, 133.71, 129.20, 121.64, 119.26, 117.62, 84.73, 44.47, 32.75, 25.03.

¹¹B NMR (CDCl₃) δ 29.31.

HRMS Calcd for C₁₇H₂₃B₂BrN₂O₃: [M+Na]⁺, 427.0970. Found: *m/z* 427.0972

(*E*)-4-methyl-8-(2-(4-oxo-3,4-dihydrobenzo[*d*][1,3,2]diazaborinin-2(1*H*)-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)dihydro- $4\lambda^4$, $8\lambda^4$ -

[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (3*r*)

A pale yellow solid: mp 213-214 °C (28.9 mg)

1H NMR (Acetone-*d*6) δ 8.74 (s, 1H), 8.42 (s, 1H), 8.09 (dd, J = 7.9, 1.6 Hz, 1H), 7.54 (ddd, J = 8.2, 7.2, 1.6 Hz, 1H), 7.25 (dd, J = 8.0, 1.0 Hz, 1H), 7.18 (s, 1H), 7.11 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 4.28 (d, J = 16.9 Hz, 2H), 4.12 (d, J = 16.8 Hz, 2H), 2.97 (s, 3H), 1.33 (s, 12H).

¹³C NMR (Acetone-*d*6) δ 169.29, 166.40, 146.14, 134.13, 129.25, 121.82, 120.34, 118.78, 85.11, 63.78, 48.47, 25.05.

¹¹B NMR (Acetone-*d*6) δ 31.11, 23.49, 21.21.

HRMS Calcd for C₂₀H₂₆B₃N₃O₇: [M+H]⁺, 454.2123. Found: *m*/*z* 454.2120

(*E*)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(trimethylsilyl)vinyl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3's)

A pale yellow solid: mp 121-122 °C (46.8 mg)

¹H NMR (CDCl₃) δ 8.21 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.50 (ddd, *J* = 8.0, 7.2, 1.6 Hz, 1H), 7.12 (ddd, *J* = 8.1, 7.2, 1.0 Hz, 1H), 7.00 – 6.94 (m, 1H), 6.92 (s, 1H), 6.70 (s, 1H), 6.30 (s, 1H), 1.12 (s, 13H), 0.13 (s, 9H).

¹³C NMR (CDCl₃) δ 166.42, 144.61, 133.69, 129.26, 121.38, 118.66, 117.30, 83.91, 24.85, -1.18.

¹¹B NMR (CDCl₃) δ 31.47, 28.37.

HRMS Calcd for C₁₈H₂₈B₂N₂O₃Si: [M+Na]⁺, 393.1948. Found: *m/z* 393.1950

(Z)-2-(1,2-diphenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2,3dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (3t)

A pale yellow solid: mp 216-217 °C (57.7 mg)

¹H NMR (CDCl₃) δ 8.22 (dd, J = 8.0, 1.6 Hz, 1H), 7.51 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.36 (s, 1H), 7.16 – 7.06 (m, 8H), 7.04 – 6.99 (m, 2H), 6.98 – 6.90 (m, 3H), 6.79 (s, 1H), 1.23 (s, 12H).

¹³C NMR (CDCl₃) δ 166.33, 144.16, 141.32, 140.75, 133.70, 129.46, 129.20, 129.18, 128.20, 127.81, 126.55, 126.32, 121.72, 118.93, 117.47, 84.55, 24.77.

¹¹B NMR (CDCl₃) δ 30.39.

HRMS Calcd for C₂₇H₂₈B₂N₂O₃: [M+Na]⁺, 473.2178. Found: *m/z* 473.2183

(*Z*)-2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oct-4-en-4-yl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3u)

A pale yellow solid: mp 163-164 °C (39.7 mg)

¹H NMR (CDCl₃) δ 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 7.49 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.15 – 7.03 (m, 2H), 6.95 (dd, J = 8.1, 1.0 Hz, 1H), 6.50 (s, 1H), 2.32 – 2.20 (m, 4H), 1.44 – 1.31 (m, 4H), 1.11 (s, 12H), 0.92 (dt, J = 13.3, 7.3 Hz, 6H).

¹³C NMR (CDCl₃) δ 166.65, 144.59, 133.65, 129.22, 121.34, 118.78, 117.36, 83.64, 33.97, 32.78, 24.82, 23.34, 23.06, 14.59, 14.48.

¹¹B NMR (CDCl₃) δ 30.41.

HRMS Calcd for C₂₁H₃₂B₂N₂O₃: [M+Na]⁺, 405.2491. Found: *m*/*z* 405.2501

(Z)-2-(1-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)-2,3-

dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (3v)

A pale yellow solid: mp 136-137 °C (53.0 mg)

¹H NMR (CDCl₃) δ 8.24 (dd, J = 8.0, 1.6 Hz, 1H), 7.57 – 7.42 (m, 2H), 7.38 – 7.32 (m, 2H), 7.25 – 7.17 (m, 1H), 7.19 – 7.10 (m, 3H), 7.02 (dt, J = 8.2, 1.5 Hz, 1H), 6.89 (s, 1H), 1.87 (s, 3H), 1.14 (s, 12H).

¹³C NMR (CDCl₃) δ 166.78, 144.53, 141.23, 133.83, 129.28, 128.51, 128.21, 126.37, 121.64, 118.92, 117.50, 84.21, 24.77, 19.60.

¹¹B NMR (CDCl₃) δ 30.39, 22.40.

HRMS Calcd for C₂₂H₂₆B₂N₂O₃: [M+H]⁺, 389.2202. Found: *m/z* 389.2201

(Z)-2-(1-(dimethyl(phenyl)silyl)-2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)vinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1*H*)-one (3w)

A pale yellow solid: mp 177-178 °C (56.2 mg)

¹H NMR (CDCl₃) δ 8.18 (dd, J = 7.9, 1.5 Hz, 1H), 7.47 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.31 (ddd, J = 4.8, 2.0, 0.9 Hz, 3H), 7.26 – 7.20 (m, 3H), 7.14 – 7.07 (m, 3H), 6.95 (s, 1H), 6.82 (ddd, J = 8.1, 1.1, 0.5 Hz, 1H), 6.13 (s, 1H), 1.03 (s, 12H), 0.01 (s, 6H).

¹³C NMR (CDCl₃) δ 166.30, 144.67, 144.38, 139.77, 133.83, 133.67, 129.19, 129.15, 128.06, 128.00, 127.66, 126.97, 121.38, 118.51, 117.28, 84.30, 24.70, -0.83.
¹¹B NMR (CDCl₃) δ 29.73.

HRMS Calcd for C₂₉H₃₄B₂N₂O₃Si: [M+Na]⁺, 531.2417. Found: *m/z* 531.2416

(*Z*)-2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oct-2-en-2-yl)-2,3dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (3x + 3'x)

A pale yellow solid: mp 124-125 °C (45.7 mg)

¹H NMR (CDCl₃) δ 8.24 – 8.17 (m, 2H, **3x** + **3'x**), 7.49 (ddt, J = 8.1, 7.2, 1.6 Hz, 2H, **3x** + **3'x**), 7.24 (d, J = 6.8 Hz, 1H), 7.14 – 7.07 (m, 3H, **3x** + **3'x**), 6.96 (ddd, J = 8.2, 3.2, 1.1 Hz, 2H, **3x** + **3'x**), 6.71 (d, J = 5.8 Hz, 1H), 6.52 (s, 1H), 2.28 (q, J = 8.0 Hz, 4H), 1.92 – 1.78 (m, 6H), 1.38 – 1.25 (m, 14H), 1.16 (s, 13H), 1.12 (s, 11H), 0.92 – 0.85 (m, 6H).

¹³C NMR (CDCl₃) δ 166.79, 166.74, 144.63, 133.68, 133.66, 129.22, 121.37, 121.32, 118.80, 118.77, 117.40, 117.34, 83.78, 83.73, 32.31, 32.20, 32.12, 31.17, 30.12, 29.15, 28.88, 24.86, 24.82, 22.75, 22.66, 17.47, 16.22, 14.18.

¹¹B NMR (CDCl₃) δ 30.03.

HRMS Calcd for C₂₁H₃₂B₂N₂O₃: [M+Na]⁺, 405.2491. Found: *m*/*z* 405.2493

(*Z*)-2-(2,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1-yl)-2,3-dihydrobenzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (5)

A pale yellow oil (38.0 mg)

¹H NMR (CDCl₃) δ 8.18 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.64 (s, 1H), 7.48 (dd, *J* = 8.1, 7.2 Hz, 1H), 7.10 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 7.00 (dd, *J* = 8.1, 1.1 Hz, 1H), 6.60 (s, 1H), 1.95 (s, 2H), 1.76 – 1.70 (m, 5H), 1.65 (s, 3H), 1.27 (s, 12H).

¹³C NMR (CDCl₃) δ 167.03, 144.77, 133.73, 129.45, 124.84, 123.55, 121.71, 119.38, 117.60, 84.06, 25.09, 20.86, 20.75.

¹¹B NMR (CDCl₃) δ 22.24, 18.33.

HRMS Calcd for C₁₉H₂₈B₂N₂O₃: [M+H]⁺, 355.2359. Found: *m/z* 355.1994

3. NOE Experiments for Determining Stereochemistry

3b

3d

3f

3g

3h

3i

3r

3's

4. Chemoselective Cross-Coupling of 3a

(Z)-2-(2-phenyl-2-(p-tolyl)vinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (6)

A Schlenk tube equipped with a magnetic stirring bar was charged with $Pd(dppf) \cdot CH_2Cl_2$ (2.7 µmol), K₃PO₄ (0.27 mmol), **3a** (0.09 mmol), *p*-bromotoulene (0.135 mmol) and DMF (2 mL), and the mixture was stirred at 80 °C for 18 h. The mixture was diluted with ethyl acetate and filtered through a Celite plug. The organic solution was washed with brine, dried over Na₂SO₄, and evaporated. Purification of the residue by boric acid impregnated silica gel-column chromatography (hexane/ethyl acetate as an eluent) gave the product **6**.

A white solid: mp 140-141 °C (13.1 mg)

¹H NMR (CDCl₃) δ 8.12 (dd, J = 7.9, 1.6 Hz, 1H), 7.42 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.39 – 7.30 (m, 6H), 7.28 (s, 1H), 7.22 – 7.17 (m, 2H), 7.06 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.81 (s, 1H), 6.63 (dt, J = 8.1, 0.7 Hz, 1H), 6.21 (s, 1H), 5.89 (s, 1H), 2.46 (s, 3H). ¹³C NMR (CDCl₃) δ 166.81, 160.30, 145.00, 142.78, 138.91, 138.02, 134.48, 129.85, 129.77, 129.37, 129.03, 128.66, 128.03, 121.81, 119.19, 117.75, 22.28. ¹¹B NMR (CDCl₃) δ 28.01.

HRMS Calcd for C₂₂H₁₉BN₂O: [M+Na]⁺, 339.1663. Found: *m*/*z* 339.1668

(Z)-1-methoxy-4-(2-phenyl-2-(p-tolyl)vinyl)benzene (7)³

A reaction tube equipped with a magnetic stirring bar was charged with $Pd(OAc)_2$ (2.7 µmol), PPh₃ (5.4 µmol), **6** (0.09 mmol), *p*-bromoanisole (0.18 mmol), 1,4-dioxane (1 mL) and 6 M KOH aq. (0.54 mmol), and the mixture was stirred at 140 °C for 0.5 h under microwave irradiation. The mixture was diluted with ethyl acetate and filtered through a Celite plug. The organic solution was washed with brine, dried over Na₂SO₄, and evaporated. Purification of the residue by gel permeation chromatography (toluene as an eluent) gave the product **7**.

A brown oil (17.2 mg)

¹H NMR (CDCl₃) δ 7.33 – 7.27 (m, 5H), 7.15 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 8.3 Hz, 2H), 6.88 (s, 1H), 6.69 (d, *J* = 8.9 Hz, 2H), 3.76 (s, 3H), 2.39 (s, 3H).

¹³C NMR (CDCl₃) δ 158.44, 144.02, 140.74, 137.70, 137.05, 130.90, 130.54, 130.41, 129.55, 128.26, 127.59, 127.57, 127.27, 113.53, 55.29, 21.48.

5. References

1. T. Korenaga, A. Ko, K. Uotani, Y. Tanaka and T. Sakai, *Angew. Chem. Int. Ed.*, 2011, **50**, 10703.

2. S. Kamio, I. Kageyuki, I. Osaka, S. Hatano, A. Abe and H. Yoshida, *Chem. Commun.*, 2018, **54**, 9290.

3. W. Dai, J. Xiao, G. Jin, J. Wu and S. Cao, J. Org. Chem., 2014, 79, 10537.

6. ¹H and ¹³C and ¹¹B and Spectra of Products

3b

3c

S27

3e

3f

3g

3k

31

3m

3n

30

3p

3q

3r

3t

S61

3v

3w

