Supporting Information

C-H Benzylation of Quinoxalin-2(1*H*)-ones via Visible-Light Riboflavin Photocatalysis

Qiuli Yan,^a Wenwen Cui,^a Junxin Li,^a Guiyun Xu,^a Xiuyan Song,^a Jian Lv,^a and Daoshan Yang^{*a,b}

^aKey Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

^bKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Table of Contents

Ι.	General considerations	S2
II.	Experimental procedures	S2
III.	Mechanistic Experiments	S4
IV.	Characterization of products	S6
V.	References	S14
VI.	NMR spectra of the products	S15

I. General considerations

All reagents and solvents were obtained from commercial suppliers and used without further purification. Flash chromatography was performed on silica gel (200~300 mesh). ¹H and ¹³C NMR data were recorded at 500 and 125 MHz on a BRUKER 500 spectrometer. Chemical shifts (δ) are expressed in parts per million (ppm), coupling constants (J) are in Hz. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded using tetramethylsilane (TMS) as the internal standard in DMSO- d_6 or in CDCl₃. Mass analyses and HRMS were obtained by ESI on a TOF mass analyzer. The fluorescenceemission intensity of reaction solution was recorded on a HITACHI F-2700 spectrofluorimeter. The reactor was 3.0 cm from 10W blue LED.

II. Experimental procedures

1. Preparation of quinoxalin-2 (1H)-one^[1]

Ethyl-2-oxoacetate (22.1 mL, 111.11 mmol) was added to a solution of 1,2-diaminobenzene (10.0 g, 92.59 mmol) in ethanol (200 mL). The mixture was heated and maintained at 45 °C for 8 h. The resulting precipitate was filtered, thoroughly washed with water and dried under vacuum to afford quinoxalin-2 (1*H*) -ones.

Quinoxalin-2(1*H*)-one derivatives were prepared according to the reported methods^[1]

General procedure: To a 100 mL round-bottomed flask with a stir bar was added quinoxalin-2(1*H*)-one (5.0 mmol), DMF (15.0 mL), then was added potassium carbonate (828 mg, 6.0 mmol), followed by the dropwise addition of R_2 -X (8.0 mmol). The reaction mixture was then stirred for 1~12h at room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over Na₂SO₄,

filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired quinoxalin-2(1H)-ones.

2. General procedure for synthesis of quinoxalin-2(1H)-ones

General procedure: To a 25 mL Schlenk tube equipped with a magnetic stir bar, added quinoxalin-2(1*H*)-ones 1 (0.2 mmol), benzyl bromides 2 (0.4 mmol), K_3PO_4 (2.0 equiv.) and VB₂ (0.004 mmol, 2 mol%) in NMP (2.0 mL). The tube was evacuated and backfilled with nitrogen (three times), Then the mixture was stirred and irradiated by the a 10 W blue LED at room temperature for 24 h. The residue was added water (10 mL) and extracted with ethyl acetate (5 mL × 3). The combined organic phase was dried over Na₂SO₄. The resulting crude residue was purified via column chromatography on silica gel to afford the desired products.

3. Other alkylation reagents scope investigation

4. Gram scale

General procedure: To an oven-dried 50 mL Schlenk Tube with a stirring bar was added quinoxalin-2(1*H*)-ones 1a (5.0 mmol), followed by the addition of benzyl bromide 2a (10.0 mmol), K₃PO₄ (2.0 equiv.) and VB₂ (2 mol%). Then, air was withdrawn and backfilled with N₂ (three times) NMP (25 mL) was added and the mixture was irradiated under two 10W blue LEDs for 24 h. When the reaction is completed, The residue was added water and extracted with CH₂Cl₂, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography to afford the product **3a** (1.08 g, 82%).

5. Sunlight-driven experiment

General procedure: 1a (0.20 mmol), 2a (0.40 mmol), VB₂ (2 mol %), K₃PO₄ (2.0 equiv.) and a magnetic stir bar were added to an oven dried 25 mL Schlenk tube. The tube was evacuated twice and backfilled with nitrogen. 2.0 mL NMP was then added to the mixture in the presence of a flow of nitrogen. The solution was stirred under solar light for three days (A total of 24 hours of sunlight irradiation, Location: $36^{\circ}8'54''$ N, $120^{\circ}23'3''$ E). Afterward, the residue was added water (10 mL) and extracted with ethyl acetate (5 mL × 3). The combined organic phase was dried over Na₂SO₄, The resulting crude residue was purified via column chromatography on silica gel to afford **3a** in 74% yield.

III. Mechanistic studies

1. Investigation on the effect of TEMPO

The reaction was completely suppressed in the presence of TEMPO (2,2,6,6-tetra-methyl-1-piperidinyloxy, a well-known radical inhibitor), indicating a radical process might be involved in the present transformation.

2. Fluorescence quenching experiments

The fluorescence emission intensities were recorded on a HITACHI F-2700 spectrofluorimeter. The excitation wavelength was fixed at 446 nm. The samples were prepared by mixing Riboflavin (10⁻⁴ mol/L) and different amount of quencher in NMP in a light path quartz fluorescence cuvette. The concentration of quencher is 10⁻⁴ mol/L in NMP. For each quenching experiment, 0.02 ml of quencher solution was titrated to a mixed solution of Riboflavin. Then the emission intensity was collected and the results were presented in Figure S1 and Figure S2.

Figure S1. The emission quenching of Riboflavin in NMP by various concentrations of quencher 1a.

Figure S2. The emission quenching of Riboflavin in NMP by various concentrations of quencher 2a.

3. Effect of Visible Light Irradiation

The reaction between **1a** and **2a** was conducted under the standard conditions on a 0.2mmol scale. The mixture was subjected to sequential periods of stirring under visible light irradiation (10 W blue LED) followed by stirring in the absence of light. At each time point, one reaction system was suspended, which was then purified with chromatography column on silica gel (EtOAc: petroleum ether=10:1) to give the corresponding products **3a**. The yield of **3a** was measured by weight of the product.

Figure S3. Visible light irradiation on/off experiment

IV. Characterization of products

(S)-1-Methyl-3-(1-phenylethyl)quinoxalin-2(1*H*)-one (3a):^[2] Eluent petroleum ether/ethyl acetate (10:1). 42.4 mg, 80% yield. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 1H), 7.52 (dd, J = 11.3, 4.3 Hz, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.28 (dd, J = 7.9, 6.2 Hz, 3H), 7.19 (t, J = 7.3 Hz, 1H), 4.84 (q, J = 7.1 Hz, 1H), 3.64 (s, 3H), 1.70 (d, J

= 7.1 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 161.9, 154.49, 143.19, 133.1, 132.7, 130.1, 129.7, 128.3, 128.1, 126.5, 123.4, 113.5, 41.8, 29.1, 19.6.HRMS calcd for C₁₇H₁₇N₂O⁺ [M+H]⁺: 265.1335; found 265.1340.

3-Benzyl-1-methylquinoxalin-2(1*H***)-one (3b):**^[3] Eluent petroleum ether/ethyl acetate (5:1). 35.1 mg, 70%. White solid. ¹H NMR (500 MHz, CDCl3) δ 7.86 (dd, J = 8.1, 1.0 Hz, 1H), 7.54-7.50 (m, 1H), 7.47 (d, J = 7.5 Hz, 2H), 7.36-7.26 (m, 4H), 7.21 (t, J = 7.4 Hz, 1H), 4.27 (s, 2H), 3.66 (s, 3H).¹³C NMR (125 MHz, CDCl3) δ 159.3, 154.7, 137.0, 133.3, 132.7, 129.9, 129.9, 129.5, 128.4, 126.6, 123.6, 113.5, 40.7, 29.1.HRMS calcd for C₁₆H₁₅N₂O⁺ [M+H]+: 251.1179; found 251.1181.

1-Methyl-3-(4-methylbenzyl)quinoxalin-2(1*H***)-one (3c):^[3] Eluent petroleum ether/ethyl acetate (10:1). 45.1 mg, 85%. White solid. ¹H NMR (500 MHz, CDCl₃) \delta 7.87 (d,** *J* **= 6.3 Hz, 1H), 7.52 (s, 1H), 7.36 (s, 3H), 7.27 (s, 1H), 7.12 (s, 2H), 4.24 (s, 2H), 3.65 (s, 3H), 2.30 (s, 3H).¹³C NMR (125 MHz, CDCl₃) \delta 159.5, 154.7, 136.1, 133.9, 133.3, 132.7, 129.9, 129.8, 129.4, 129.1, 123.5, 113.5, 40.3, 29.06, 21.02. HRMS calcd for C₁₇H₁₇N₂O⁺[M+H]⁺: 265.1335; found 265.1338.**

3-(4-Methoxybenzyl)-1-methylquinoxalin-2(1*H***)-one (3d):^[4] Eluent petroleum ether/ethyl acetate (5:1). 37.7mg, 67%. White solid. ¹H NMR (500 MHz, CDCl₃) \delta 7.84 (dd,** *J* **= 8.1 Hz, 1H), 7.52-7.48 (m, 1H), 7.38 (d,** *J* **= 8.5 Hz, 2H), 7.32 (t,** *J* **= 7.6 Hz, 1H), 7.25 (d,** *J* **= 3.2 Hz, 1H), 6.82 (d,** *J* **= 8.6 Hz, 2H), 4.19 (s, 2H), 3.75 (s, 3H), 3.65 (s, 3H).¹³C NMR (125 MHz, CDCl₃) \delta 159.5, 158.4, 133.4, 132.8, 130.5, 130.3, 129.9, 129.8, 129.0, 123.5, 113.8, 113.5, 55.2, 39.9, 29.1.HRMS calcd for C₁₇H₁₇N₂O₂⁺ [M+H]⁺: 281.1285; found 281.1281.**

1-Methyl-3-(3-methylbenzyl)quinoxalin-2(1*H***)-one (3e):^[3] Eluent petroleum ether/ethyl acetate (10:1). 41.9 mg, 79%. White solid. ¹H NMR (500 MHz, CDCl₃) \delta 7.87 (d,** *J* **= 8.0 Hz, 1H), 7.52 (dd,** *J* **= 11.3, 4.2 Hz, 1H), 7.35 (s, 1H), 7.27 (d,** *J* **= 6.5 Hz, 3H), 7.18 (t,** *J* **= 7.8 Hz, 1H), 7.02 (d,** *J* **= 7.4 Hz, 1H), 4.23 (s, 2H), 3.66 (s, 3H), 2.32 (s, 3H).¹³C NMR (125 MHz, CDCl₃) \delta 159.4, 154.8, 137.9, 136.9, 133.4, 132.8, 130.2, 130.0, 129.8, 128.3, 127.3, 126.5, 123.5, 113.5, 40.7, 29.1, 21.4.HRMS calcd for C₁₇H₁₇N₂O⁺[M+H]⁺: 265.1335; found 265.1338.**

Ethyl (*S*)-2-(2-oxo-3-(1-phenylethyl)quinoxalin-1(2H)-yl)acetate (3f): Eluent petroleum ether/ethyl acetate (5:1). 40.4 mg, 60%. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 7.9 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 7.5 Hz, 2H), 7.18 (t, *J* = 7.1 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 5.07 (d, *J* = 17.3 Hz, 1H), 4.84-4.79 (m, 2H), 4.20 (dd, *J* = 9.7, 3.8 Hz, 2H), 1.69 (d, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.0 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 167.1, 161.7, 154.0, 142.9, 132.8, 132.2, 130.5, 129.9, 128.4, 128.1, 126.5, 123.7, 112.9, 61.9, 43.6, 41.9, 19.7, 14.0.HRMS calcd for C₂₀H₂₁N₂O₃⁺ [M+H]⁺:337.1547; found 337.1549.

Ethyl 2-(3-benzyl-2-oxoquinoxalin-1(2H)-yl)acetate (3g):^[2] Eluent petroleum ether/ethyl acetate (5:1). 55.2mg, 80%. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.1, 0.9 Hz, 1H), 7.47 (dd, J = 16.0, 7.3 Hz, 3H), 7.30 (dd, J = 16.5, 9.1 Hz, 3H), 7.21 (t, J = 7.3 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 4.98 (s, 2H), 4.28 (s, 2H), 4.22 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 167.0, 159.1, 154.3, 136.8, 132.7, 132.4, 130.2, 129.9, 129.5, 128.4, 126.6, 123.8, 112.9, 62.0, 43.5, 40.6, 14.1.HRMS calcd for C₁₉H₁₈N₂NaO₃⁺ [M+Na]⁺: 345.1210 ; found 345.1211.

Ethyl 2-(3-(3-methylbenzyl)-2-oxoquinoxalin-1(2*H*)-yl)acetate (3h): Eluent petroleum ether/ethyl acetate (5:1). 56.0 mg, 83%. White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 6.3 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.7 Hz, 2H), 4.98 (s, 2H), 4.24 (s, 2H), 4.22 (d, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.24 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 167.1, 159.2, 154.4, 137.9, 136.7, 132.8, 132.5, 130.3, 130.2, 129.9, 128.3, 127.4, 126.5, 123.8, 112.9, 62.0, 43.6, 40.5, 21.4, 14.1.HRMS calcd for C₂₀H₂₁N₂O₃+[M+H]⁺: 337.1547; found 337.1542.

Ethyl 2-(3-(4-methylbenzyl)-2-oxoquinoxalin-1(2*H*)-yl)acetate (3i): Eluent petroleum ether/ethyl acetate (5:1). 48.6 mg, 72%. White solid. ¹H NMR (500 MHz, DMSO-d₆) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 5.08 (s, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 4.11 (s, 2H), 2.24 (s, 3H), 1.19 (s, 3H).¹³C NMR (126 MHz, DMSO-d₆) δ 167.4, 158.7, 153.8, 135.4, 133.9, 132.4, 131.9, 131.7, 130.2, 128.9, 128.9, 128.5, 126.4, 123.7, 114.5, 61.3, 43.7, 39.2, 38.9, 20.6, 13.9.HRMS calcd for C₂₀H₂₁N₂O₃⁺ [M+H]⁺: 337.1547; found 337.1543.

(*S*) -1-allyl-3-(1-phenylethyl)quinoxalin-2(1H)-one (3j): Eluent petroleum ether/ethyl acetate (5:1). 43.4mg, 73%. Yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.52 -7.46 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.30 (dd, *J* = 14.4, 6.0 Hz, 3H), 7.21 (t, *J* = 7.3 Hz, 1H), 5.95-5.86 (m, 1H), 5.25 (d, *J* = 10.5 Hz, 1H), 5.14 (d, *J* = 17.3 Hz, 1H), 4.98-4.93 (m, 1H), 4.87 (q, *J* = 7.1 Hz, 1H), 4.79-4.74 (m, 1H), 1.72 (d, *J* = 7.1 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 162.0, 154.0, 143.2, 132.9, 132.3, 130.8, 130.2, 129.6, 128.4, 128.1, 126.5, 123.4, 118.0, 114.0, 44.6, 41.8, 19.7.HRMS calcd for C₁₉H₁₉N₂O⁺ [M+H]⁺: 291.1492; found 291.1495.

1-Allyl-3-(4-methylbenzyl)quinoxalin-2(1*H***)-one (3k): Eluent petroleum ether/ethyl acetate (5:1). 47.7 mg, 82%. White solid. ¹H NMR (500 MHz, CDCl₃) \delta 7.88 (d,** *J* **= 8.0 Hz, 1H), 7.50 (t,** *J* **= 7.8 Hz, 1H), 7.38 (d,** *J* **= 7.8 Hz, 2H), 7.34 (t,** *J* **= 7.6 Hz, 1H), 7.28 (d,** *J* **= 3.8 Hz, 1H), 7.13 (d,** *J* **= 7.7 Hz, 2H), 5.97-5.88 (m, 1H), 5.27 (d,** *J* **= 10.4 Hz, 1H), 5.17 (d,** *J* **= 17.2 Hz, 1H), 4.88 (d,** *J* **= 5.0 Hz, 2H), 4.27 (s, 2H), 2.32 (s, 3H).¹³C NMR (125 MHz, CDCl₃) \delta 159.5, 154.3, 136.1, 133.9, 132.9, 132.5, 130.7, 130.0, 129.7, 129.4, 129.1, 123.5, 118.1, 114.1, 44.6, 40.2, 21.0.HRMS calcd for C₁₉H₁₉N₂O⁺ [M+H]⁺: 291.1492; found 291.1495.**

1-Allyl-3-(4-fluorobenzyl)quinoxalin-2(1*H***)-one (3l): Eluent petroleum ether/ethyl acetate (5:1). 44.9 mg, 76%. Yellow liquid. ¹H NMR (500 MHz, CDCl₃) \delta 7.87-7.83 (m, 1H), 7.51-7.47 (m, 1H), 7.42 (dd,** *J* **= 8.3, 5.6 Hz, 2H), 7.32 (t,** *J* **= 7.6 Hz, 1H), 7.26-7.24 (m, 1H), 6.97 (t,** *J* **= 8.7 Hz, 2H), 5.90 (m,** *J* **= 5.1 Hz, 1H), 5.24 (d,** *J* **= 10.4 Hz, 1H), 5.13 (d,** *J* **= 17.3 Hz, 1H), 4.88-4.85 (m, 2H), 4.24 (s, 2H).¹³C NMR (125 MHz, CDCl₃) \delta 162.7, 160.8, 159.1, 154.2, 132.9, 132.6, 132.5, 131.0, 130.5, 130.0, 129.9, 123.6, 118.1, 115.2, 115.1, 114.1, 44.6, 39.8.HRMS calcd for C₁₈H₁₆FN₂O⁺ [M+H]⁺: 295.1241; found 295.1249.**

(*S*)-1-(3-bromopropyl)-3-(1-phenylethyl)quinoxalin-2(1*H*)-one (3m): Eluent petroleum ether/ethyl acetate (5:1). 60.1 mg, 81%. Yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.93 (m, 1H), 7.56-7.51 (m, 1H), 7.43 (d, *J* = 7.4 Hz, 2H), 7.38-7.34 (m, 2H), 7.28 (d, *J* = 7.5 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 4.82 (q, *J* = 7.1 Hz, 1H), 4.41-4.34 (m, 1H), 4.32-4.26 (m, 1H), 3.48 (t, *J* = 6.2 Hz, 2H), 2.26 (m, 2H), 1.69 (d, *J* = 7.2 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 161.7, 154.2, 143.1, 133.0, 132.1, 130.5, 129.9, 128.4, 128.1, 126.5, 123.5, 113.2, 41.7, 41.2, 30.4, 29.9, 19.7.HRMS calcd for C₁₉H₂₀BrN₂O⁺ [M+H]⁺: 371.0754; found 371.0760.

1-Butyl-3-(4-methylbenzyl)quinoxalin-2(1*H***)-one (3n): Eluent petroleum ether/ethyl acetate (10:1). 44.2 mg, 72%. Yellow liquid. ¹H NMR (500 MHz, CDCl₃) \delta 7.86-7.82 (m, 1H), 7.48 (dd,** *J* **= 11.4, 4.2 Hz, 1H), 7.34 (d,** *J* **= 7.9 Hz, 2H), 7.30 (t,** *J* **= 7.6 Hz, 1H), 7.25 (s, 1H), 7.09 (d,** *J* **= 7.8 Hz, 2H), 4.21 (s, 2H), 4.20-4.17 (m, 2H), 2.29 (s, 3H), 1.68 (dd,** *J* **= 15.5, 7.9 Hz, 2H), 1.45 (dd,** *J* **= 15.0, 7.5 Hz, 2H), 0.96 (d,** *J* **= 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 159.5, 154.4, 136.0, 134.0, 133.0, 132.5, 130.1, 129.7, 129.4, 129.1, 123.3, 113.5, 42.2, 40.3, 29.2, 21.0, 20.3, 13.7.HRMS calcd for C₂₀H₂₃N₂O⁺ [M+H]⁺: 307.1805; found 307.1801.**

(*S*)-1-Butyl-6,7-dimethyl-3-(1-phenylethyl)quinoxalin-2(1*H*)-one (30): Eluent petroleum ether/ethyl acetate (10:1). 53.6 mg, 75%. Yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.73 (s, 1H), 7.46 (d, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.21 (d, *J* = 7.4 Hz, 1H), 7.05 (s, 1H), 4.85 (q, *J* = 7.1 Hz, 1H), 4.29-4.23 (m, 1H), 4.12-4.06 (m, 1H), 2.44 (s, 3H), 2.39 (s, 3H), 1.71 (d, *J* = 6.9 Hz, 3H), 1.69 (s, 2H), 1.46 (dd, *J* = 15.1, 7.5 Hz, 2H), 0.99 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 160.7, 154.2, 143.5, 139.2, 132.1, 131.4, 130.4, 130.2, 128.3, 128.0, 126.3, 113.9, 42.0, 41.6, 29.3, 20.6, 20.2, 19.8, 19.0, 13.7. HRMS calcd for C₂₂H₂₆N₂NaO⁺ [M+Na]⁺: 357.1937; found 357.1938.

3-(3-Bromobenzyl)-1-butyl-6,7-dimethylquinoxalin-2(1*H***)-one (3p**): Eluent petroleum ether/ethyl acetate (10:1). 53.6 mg, 66%. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.57 (s, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.32 (s, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 7.03 (s, 1H), 4.18 (d, *J* = 12.4 Hz, 4H), 2.41 (s, 3H), 2.34 (s, 3H), 1.72 -1.68 (m, 2H), 1.45 (d, *J* = 7.6 Hz, 2H), 0.98 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 154.4, 139.8, 139.7, 132.4, 132.3, 131.4, 130.5, 130.3, 129.8, 129.6, 128.2, 122.3, 114.1, 42.1, 40.1, 29.3, 20.6, 20.3, 19.1, 13.8. HRMS calcd for C₂₁H₂₄BrN₂O⁺ [M+H]⁺: 399.1067; found 399.1064.

3-Benzyl-1-butyl-6,7-dimethylquinoxalin-2(1*H***)-one (3q**): Eluent petroleum ether/ethyl acetate (10:1). 40.5 mg, 63%. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.48 (d, *J* = 7.3 Hz, 2H), 7.32 (d, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 7.4 Hz, 1H), 7.05 (s, 1H), 4.27 (s, 2H), 4.23-4.19 (m, 2H), 2.43 (s, 3H), 2.37 (s, 3H), 1.73 (t, *J* = 7.7 Hz, 2H), 1.48 (dd, *J* = 15.1, 7.5 Hz, 2H), 1.01 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 158.1, 154.5, 139.5, 137.5, 132.3, 131.4, 130.6, 130.2, 129.5, 128.3, 126.4, 114.1, 42.1, 40.6, 29.3, 20.6, 20.3, 19.1, 13.8. HRMS calcd for C₂₁H₂₅N₂O⁺[M+H]⁺: 321.1961; found 321.1967.

(*S*)-6,7-Dichloro-1-methyl-3-(1-phenylethyl)quinoxalin-2(1H)-one (3r): Eluent petroleum ether/ethyl acetate (10:1). 40.6 mg, 61%. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.33 (d, *J* = 7.5 Hz, 2H), 7.20 (dd, *J* = 12.4, 4.6 Hz, 3H), 7.12 (d, *J* = 7.2 Hz, 1H), 4.72 (q, *J* = 7.1 Hz, 1H), 3.49 (s, 3H), 1.58 (d, *J* = 7.1 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 163.5, 153.8, 142.5, 133.7, 132.5, 131.8, 130.9, 128.5, 128.1, 127.2, 126.8, 114.9, 41.9, 29.4, 19.5.HRMS calcd for C₁₇H₁₅Cl₂N₂O⁺[M+H]⁺: 333.0556; found 333.0561.

(*S*)-7-Chloro-1-methyl-3-(1-phenylethyl)quinoxalin-2(1*H*)-one (3s): Eluent petroleum ether/ethyl acetate (5:1). 46.7 mg, 78%. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 2.4 Hz, 1H), 7.47-7.42 (m, 3H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.20-7.16 (m, 2H), 4.82 (m, *J* = 7.1 Hz, 1H), 3.60 (s, 3H), 1.67 (d, *J* = 7.2 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 163.3, 154.1, 142.7, 133.2, 131.7, 129.6, 129.4, 128.7, 128.4, 128.1, 126.6, 114.6, 41.9, 29.2, 19.5. HRMS calcd for C₁₇H₁₆ClN₂O⁺[M+H]⁺: 299.0946; found 299.0952.

(*S*)-7-Bromo-1-methyl-3-(1-phenylethyl)quinoxalin-2(1*H*)-one (3t): Eluent petroleum ether/ethyl acetate (5:1). 48.7 mg, 71%. White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 2.1 Hz, 1H), 7.68 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.51 (d, *J* = 7.3 Hz, 2H), 7.37 (d, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.4 Hz, 1H), 7.21 (d, *J* = 8.9 Hz, 1H), 4.91 (q, *J* = 7.1 Hz, 1H), 3.69 (s, 3H), 1.75 (d, *J* = 7.2 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 163.3, 154.1, 142.7,133.5, 132.5, 132.4, 132.2, 128.4, 128.1, 126.6, 115.9, 114.9, 41.9, 29.2, 19.5. HRMS calcd for C₁₇H₁₆BrN₂O⁺ [M+H]⁺: 343.0441; found 343.0441.

Methyl-3-(thiophen-2-ylmethyl)quinoxalin-2(1H)-one (3u): Eluent petroleum ether/ethyl acetate (10:1). 31.3mg, 61%. white solid.¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.22 (dt, *J* = 7.8, 3.5 Hz, 3H), 7.16 (d, *J* = 4.7 Hz, 1H), 4.27 (s, 2H), 3.66 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 158.7, 154.7, 136.7, 133.3, 132.7, 129.9, 129.8, 129.0, 125.1, 123.6, 122.6, 113.6, 35.3, 29.1.

1-Butyl-6,7-dimethyl-3-(thiophen-2-ylmethyl)quinoxalin-2(1H)-one (3v): Eluent petroleum ether/ethyl acetate (10:1). 36.6 mg, 56%. white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.22 (d, *J* = 4.9 Hz, 2H), 7.17 (d, *J* = 4.6 Hz, 1H), 7.03 (s, 1H), 4.26 (s, 2H), 4.22- 4.18 (m, 2H), 2.40 (s, 3H), 2.33 (s, 3H), 1.71 (t, *J* = 7.6 Hz, 2H), 1.46 (dd, *J* = 15.0, 7.5 Hz, 2H), 0.99 (t, *J* = 7.3 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 157.4, 154.5, 139.5, 137.1, 132.3, 131.4, 130.5, 130.1, 129.0, 125.0, 122.4, 114.0,42.0, 35.1, 29.3, 20.6, 20.2, 19.1, 13.8.

Allyl-3-(thiophen-2-ylmethyl)quinoxalin-2(1H)-one (3w): Eluent petroleum ether/ethyl acetate (10:1). 26.5 mg, 47%. white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.28 (dd, *J* = 8.8, 4.0 Hz, 3H), 7.21 (d, *J* = 4.7 Hz, 1H), 5.97-5.90 (m, 1H), 5.28 (d, *J* = 10.4 Hz, 1H), 5.17 (d, *J* = 17.3 Hz, 1H), 4.92-4.90 (m, 2H), 4.33 (s, 2H).¹³C NMR (125 MHz, CDCl₃) δ 158.7, 154.3, 136.6, 132.8, 132.5, 130.6, 130.0, 129.8, 129.0, 125.1, 123.6, 122.6, 118.1, 114.1, 44.6, 35.2.

V. References

[1] P. Ghosh, N. Y. Kwon, S. Kim, S. Han, S. H. Lee, W. An, N. K. Mishra, S. B. Han and I. S. Kim, C–H Methylation of Iminoamido Heterocycles with Sulfur Ylides, *Angew. Chem., Int . Ed.*, 2021, **60**, 191-196.

[2]J. Xuan, X-K. He, J. Lu, A.-J. Zhang, Q.-Q. Zhang and G.-Y. Xu, BI-OAc-Accelerated C3-H Alkylation of Quinoxalin-2(1H)-ones under Visible-Light Irradiation. *Org. Lett.* 2020, **22**, 5984-5989.

[3]L.Qu, L. Hu, J. Yuan, J. Fu, T. Zhang, L. Gao, Y. Xiao and P. Mao, Copper-Catalyzed Direct C-3 Benzylation of Quinoxalin-2(1H)-ones with Methylarenes under Microwave Irradiation, *Eur. J. Org. Chem.*, 2018, 4113-4120.

[4] C. Jin,W. Su, J. Yang, X. Zhuang, B. Sun, Z. Yan and X. Zhang, Construction of $C(sp^2) - C(sp^3)$ Bond between Quinoxalin-2(1H)-ones and N-Hydroxyphthalimide Esters via Photocatalytic Decarboxylative Coupling, *Asian Journal of Organic Chemistry.*, 2019, **14**, 3344-3349.

VI. NMR spectra of the products

3a: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3b: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3c: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3e: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

f1 (ppm)

30 20

ò

3g: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3h: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3i:¹H NMR (500 MHz) and ¹³C NMR (125 MHz), DMSO-d₆

3j: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

31: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3m: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

110 100 90 f1 (ppm) 150 140 -10 ò

3n: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

30: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3q: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3r: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

110 100 90 f1 (ppm) ò -10

3t: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3u: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

3v: ¹H NMR (500 MHz) and ¹³C NMR (125 MHz), CDCl₃

