Supporting Information

Regioselectively Switchable Alkyne Cyclotrimerization Catalyzed by the System of $\mathbf{N i}(\mathrm{II}) /$ Bidentate \boldsymbol{P}-Ligand/ $\mathbf{Z n}$ with $\mathbf{Z n I}_{\mathbf{2}}$ as Additive
Jiang-Tao Fan, ${ }^{, b}$ Xin-Heng Fan, *,a Cai-Yan Gao, ${ }^{a}$ Jinchao Wei, ${ }^{c}$ and Lian-Ming Yang*,a
${ }^{a}$ Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100049, P. R. China
${ }^{c}$ National Center for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Fax: +8610-62559373; E-mail: xinxin9968@iccas.ac.cn; yanglm@iccas.ac.cn

Table of Contents

1. General considerations S2
2. General procedures S3-S7
3. Synthesis of starting materials S8-S11
4. Optimization of reaction conditions S12-S15
5. Control experiments S16-S19
6. Characterization data of products S20-S36
7. Copies of the ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra S37-S104
8. References S105-S106

1. General Considerations

All manipulations were performed using standard Schlenk techniques and all reactions performed on a parallel reactor (WATTECS WP-TEC-1020) under argon atmosphere with oven-dried glassware. Acetonitrile, toluene, THF, DMF and dioxane were dried and distilled by the standard method. Zinc powder was activated with 30% dilute hydrochloric acid and stored in a dry box. Unless otherwise stated, starting materials were purchased from reagent suppliers (Innochem, Aldrich, Alfa, and so on) and used without further purification. Reactions were monitored by thin layer chromatography (TLC) and GC-MS analysis. Products on TLC were visualized by exposure to ultraviolet light (254 or 365 nm). GC-MS analysis was performed on a gas chromatography mass spectrometry (SHIMADZU GCMS-QP2010-Ultra) using a Rxi-5Sil MS column ($30 \mathrm{~m} \times 0.32 \mathrm{mmID}, 0.25 \mu \mathrm{~m} \mathrm{df}$) with n-dodecane as an internal standard. Column chromatography was performed on silica gel (200-300 mesh) and the solvent eluents used were noted in brackets. All yields referred to were isolated yields (average of two runs) of compounds estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ spectra were recorded on a Bruker AVANCE $400(400 \mathrm{MHz})$, Bruker AVANCE III 400HD (400 MHz) and Bruker AVANCE III 500WB (500 MHz) spectrometer. Chemical shifts (δ) are recorded in ppm and coupling constants (J) are given in Hertz (Hz). Multiplicities are abbreviated as follows: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=\operatorname{triplet} ; \mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet; $\mathrm{dd}=$ doublet of doublet; $\mathrm{dt}=$ doublet of triplet. High-resolution mass spectra (HRMS) were recorded by National Center for Mass Spectrometry in Beijing, Institute of Chemistry Chinese Academy of Sciences, on Thermo Fisher Scientific Exactive GC Orbitrap mass spectrometer.

Solvent abbreviation: petroleum ether $=$ PE; dichloromethane $=\mathrm{DCM}$; ethyl acetate $=$ EA; tetrahydrofuran $=$ THF; dimethylformamide $=$ DMF; triethylamine $=$ TEA

2. General Procedures

2.1 Synthesis of 1,2,4-trisubstituted benzenes 2 (Condition A)

1
2
An oven-dried $25-\mathrm{mL}$ flask charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol\%, $0.1 \mathrm{mmol}, 66$ mg), dppb ($10 \mathrm{~mol} \%, 0.1 \mathrm{mmol}, 43 \mathrm{mg}$) and zinc dust ($20 \mathrm{~mol} \%$, $0.2 \mathrm{mmol}, 13 \mathrm{mg}$) was evacuated and backfilled with argon, with the operation being repeated twice. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added and the mixture stirred at $80^{\circ} \mathrm{C}$ for about 7 minutes until the solution turned yellow. The mixture was allowed to cool to ambient temperature $\left(20-25^{\circ} \mathrm{C}\right)$ immediately and a solution of alkyne $1(1 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was slowly added via syringe. The reaction mixture was stirred on WATTECS WP-TEC-1020 parallel reactor at room temperature for 12 hours until the reaction was complete (monitored by TLC and GC-MS). The resulting mixture was filtered through a pad of silica using ethyl acetate as eluent and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluents noted in brackets) to afford the desired product 2. The spectroscopic characterizations of known products were compared with published data.

2.2 Synthesis of 1,3,5-trisubstituted benzenes 3 (Condition B)

$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ dppm (10 mol\%)

1

3

An oven-dried $25-\mathrm{mL}$ flask charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol\%, $0.1 \mathrm{mmol}, 66$ mg), $\operatorname{dppm}(10 \mathrm{~mol} \%, 0.1 \mathrm{mmol}, 39 \mathrm{mg})$, zinc dust ($20 \mathrm{~mol} \%, 0.2 \mathrm{mmol}, 13 \mathrm{mg}$) and anhydrous $\mathrm{ZnI}_{2}(20 \mathrm{~mol} \%, 0.2 \mathrm{mmol}, 64 \mathrm{mg})$ was evacuated and backfilled with argon, with the operation being repeated twice. A solution of alkyne $\mathbf{1}(1 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was slowly added via syringe. The reaction mixture was stirred on WATTECS WP-TEC-1020 parallel reactor at $40^{\circ} \mathrm{C}$ for 3 hours until the
reaction was complete (monitored by TLC and GC-MS). The resulting mixture was filtered through a pad of silica using ethyl acetate as eluent and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluents noted in brackets) to afford the desired product 3. The spectroscopic characterizations of known products were compared with published data.

2.3 General procedure for cross-cyclotrimerization of alkynes

2.3.1 Synthesis of 1,2,4-heterotrisubstituted benzenes 5 (Condition A)

An oven-dried $25-\mathrm{mL}$ flask charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), dppb (10 $\mathrm{mol} \%$) and zinc dust ($20 \mathrm{~mol} \%$) was evacuated and backfilled with argon, with the operation being repeated twice. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{ml})$ was added and the mixture stirred at $80^{\circ} \mathrm{C}$ for about 7 minutes until the solution turned yellow. The mixture was allowed to cool to room temperature $\left(25^{\circ} \mathrm{C}\right)$ immediately. A mixture of alkyne $\mathbf{1}(0.9$ mmol) and alkyne $\mathbf{1}^{\prime}(0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was slowly added via syringe. The reaction mixture was stirred on WATTECS WP-TEC-1020 parallel reactor at room temperature for 12 hours until the reaction was complete (monitored by TLC and GC-MS). The resulting mixture was filtered through a pad of silica using ethyl acetate as eluent and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluents noted in brackets) to afford the desired product 5. The spectroscopic characterizations of known products were compared with published data.

2.3.2 Synthesis of 1,3,5-trisubstituted benzenes 6 (Condition B)

An oven-dried $25-\mathrm{mL}$ flask charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol\%), dppm (10 $\mathrm{mol} \%$), zinc dust ($20 \mathrm{~mol} \%$) and anhydrous ZnI_{2} ($20 \mathrm{~mol} \%$) was evacuated and backfilled with argon, with the operation being repeated twice. A mixture of alkyne 1
(0.9 mmol) and alkyne $\mathbf{1}^{\prime}$ (0.3 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was slowly added via syringe. The reaction mixture was stirred on WATTECS WP-TEC-1020 parallel reactor at $40^{\circ} \mathrm{C}$ for 3 hours until the reaction was complete (monitored by TLC and GC-MS). The resulting mixture was filtered through a pad of silica using ethyl acetate as eluent and concentrated under reduced pressure. The residue was purified by silicagel column chromatography (eluents noted in brackets) to afford the desired product 6 The spectroscopic characterizations of known products were compared with published data.

2.3.3 Synthesis of 1,2,3,4-tetrasubstituted benzenes 7 (Condition A)

The procedure to synthesize products 7 was the same as the procedure 2.3.1 except that a mixture of alkyne $\mathbf{1}(0.9 \mathrm{mmol})$ and alkyne $\mathbf{2}^{\prime}(0.3 \mathrm{mmol})$ was used in place of the previous alkyne combination.

2.3.4 Synthesis of 1,2,3,5-tetrasubstituted benzenes 8 (Condition B)

The procedure to synthesize products $\mathbf{8}$ was the same as the procedure 2.3.2 except that a mixture of alkyne $\mathbf{1}(0.9 \mathrm{mmol})$ and alkyne $\mathbf{2}^{\prime}(0.3 \mathrm{mmol})$ was used in place of the previous alkyne combination.

2.3.5 Synthesis of 1,2,3,4,5-pentasubstituted benzenes 9 (Condition A)

The procedure to synthesize products 9 was the same as the procedure 2.3.1 except that a mixture of alkyne $\mathbf{2}^{\mathbf{2}}(0.9 \mathrm{mmol})$ and alkyne $\mathbf{1}(0.3 \mathrm{mmol})$ was used in place of the previous alkyne combination.

2.3.6 Synthesis of $\mathbf{1 , 2 , 3 , 4 , 5 , 6}$-hexasubstituted benzenes 10 (Condition A)

The procedure to synthesize products $\mathbf{1 0}$ was the same as the procedure 2.3.1 except that a mixture of alkyne $\mathbf{2}^{\prime}(0.9 \mathrm{mmol})$ and alkyne $\mathbf{3}^{\prime}(0.3 \mathrm{mmol})$ was used in place of the previous alkyne combination.

2.4 General procedure for 10 mmol -scale reaction

2.4.1 Synthesis of 2a (Condition A)

An oven-dried $100-\mathrm{mL}$ flask charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol\%), dppb (10 $\mathrm{mol} \%$) and zinc dust ($20 \mathrm{~mol} \%$) was evacuated and backfilled with argon, with the operation being repeated twice. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was added and the mixture stirred at $80^{\circ} \mathrm{C}$ (oil bath) for about 7 minutes until the solution turned yellow. The mixture was allowed to cool to room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$ immediately and a solution of alkyne $\mathbf{1 a}(10 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was slowly added via syringe. The reaction mixture was stirred at room temperature for 12 hours until the reaction was complete (monitored by TLC). The resulting mixture was filtered through a pad of silica using ethyl acetate as eluent and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography $(\mathrm{PE} / \mathrm{EA}=$ $10: 1$) to afford the corresponding product $\mathbf{2 a}(1.05 \mathrm{~g}, 90 \%)$.

2.4.2 Synthesis of 3a (Condition B)

An oven-dried $100-\mathrm{mL}$ flask charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), $\operatorname{dppm}(10$ $\mathrm{mol} \%$), zinc dust ($20 \mathrm{~mol} \%$) and anhydrous ZnI_{2} ($20 \mathrm{~mol} \%$) was evacuated and backfilled with argon, with the operation being repeated twice. A solution of alkyne 1a (10 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was slowly added via syringe. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 3 hours until the reaction was complete (monitored by TLC). The resulting mixture was filtered through a pad of silica using ethyl acetate as eluent and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1)$ to afford the corresponding product $\mathbf{3 a}(0.95 \mathrm{~g}, 82 \%)$.

3. Synthesis of Starting Materials

3.1 Synthesis of 4-ethynylacetophenone 1 h .

Step 1: An oven-dried $100-\mathrm{mL}$ flask charged with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57.8 \mathrm{mg}, 0.5$ $\mathrm{mol} \%), \mathrm{CuI}(9.5 \mathrm{mg}, 0.5 \mathrm{~mol} \%)$ and 4-bromoacetophenone ($1.99 \mathrm{~g}, 10 \mathrm{mmol}$) was evacuated and backfilled with argon, with the operation being repeated twice. A solution of trimethylsilylacetylene ($1.56 \mathrm{ml}, 11 \mathrm{mmol}$) in triethylamine (60 ml) was slowly added via syringe. The reaction mixture was performed at $60^{\circ} \mathrm{C}$ for 24 hours until the reaction was complete (monitored by TLC). After complete conversion the reaction mixture was allowed to cool to room temperature and washed with brine (25 $\mathrm{ml})$. The aqueous layer was extracted with ether $(2 \times 50 \mathrm{ml})$ and the combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography ($\mathrm{PE} / \mathrm{EA}=$ 10:1) to afford the corresponding product 1-(4-((trimethylsilyl)ethynyl)phen yl)ethan-1-one (brown oil, $2.15 \mathrm{~g}, 99 \%$).

Step 2: An oven-dried $100-\mathrm{mL}$ flask was charged with $\mathrm{K}_{2} \mathrm{CO}_{3}(4.14 \mathrm{~g}, 30 \mathrm{mmol})$, 1-(4-((trimethylsilyl)ethynyl)phenyl)ethan-1-one ($2.15 \mathrm{~g}, 9.9 \mathrm{mmol}$) and methanol (60 $\mathrm{ml})$ under argon. The reaction mixture was stirred at room temperature until the reaction was complete (monitored by GCMS). The solvent was removed under reduced pressure and the residue was dissolved with water (50 ml). The aqueous layer was extracted with ether ($3 \times 50 \mathrm{ml}$) and the combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1$) to afford the corresponding product $\mathbf{1 h}$ (white solid, $1.22 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$.

3.2 Synthesis of 4 fa and $\mathbf{4 f b}$.

(\boldsymbol{E})-but-1-en-3-yne-1,4-diyldibenzene (4fa). An oven-dried 100-mL flask charged with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.156 \mathrm{~g}, 5 \mathrm{~mol} \%), \mathrm{CuI}(0.19 \mathrm{~g}, 5 \mathrm{~mol} \%)$ was evacuated and backfilled with argon, with the operation being repeated twice. A mixture of (E)-(2bromovinyl)benzene ($3.77 \mathrm{~g}, 20 \mathrm{mmol}$) and ethynylbenzene ($2.09 \mathrm{~g}, 21 \mathrm{mmol}$) in triethylamine (50 ml) was slowly added via syringe. The reaction mixture was performed at $70{ }^{\circ} \mathrm{C}$ for 12 hours until the reaction was complete (monitored by GCMS). The solvent was removed under reduced pressure and the residue was filtered through a silica-gel pad using ethyl acetate as eluent. The ethyl acetate was evaporated under reduced pressure and the residue was purified by silica-gel column chromatography $(\mathrm{PE} / \mathrm{DCM}=10: 1)$ to give the desired product $\mathbf{4 f a}$ (white solid, 3.42 $\mathrm{g}, 84 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$.

But-3-en-1-yne-1,3-diyldibenzene (4fb). The procedure to synthesize products $\mathbf{4 f b}$ was the same as the procedure to prepare compound 4fa except that (1bromovinyl)benzene (3.77 g, 20 mmol$)$ was used instead of (E)-(2bromovinyl)benzene. The residue was purified by silica-gel column chromatography $(\mathrm{PE} / \mathrm{DCM}=10: 1)$ to give the desired product $\mathbf{4 f b}$ (yellow liquid, $3.21 \mathrm{~g}, 79 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 6 \mathrm{H})$, $6.00(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$.

3.3 Synthesis of d-phenylacetylene $1 \mathrm{f}-[\mathrm{D}]$.

An oven-dried $100-\mathrm{mL}$ flask charged with a solution of phenylacetylene $\mathbf{1 f}$ (1.53 $\mathrm{g}, 15 \mathrm{mmol}$) in THF (30 ml) under argon atmosphere. n-BuLi 1.6 M in hexane (10.3 $\mathrm{ml}, 16.5 \mathrm{mmol}$) was slowly added via syringe and the reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1 hour until total consumption of starting material. The resulting mixture was quenched with $\mathrm{D}_{2} \mathrm{O}(4 \mathrm{ml}, 100 \%-\mathrm{D})$ and stirred at room temperature for 1 hour until the reaction was complete (monitored by GC-MS). The mixture was extracted with diethyl ether ($2 \times 30 \mathrm{ml}$), and the combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to give a pale yellow liquid d-phenylacetylene $\mathbf{1 f}$ [D] ($1.31 \mathrm{~g}, 85 \%$ yield, $96 \% \mathrm{D}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.29 (m, 3H), 3.08 (s, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 132.14, 128.77, 128.31, 122.18, 83.32, 83.24, 83.17. MS (EI, m/z, rel.\%): $103\left(\mathrm{M}^{+}, 100 \%\right), 77$ $\left(\mathrm{M}^{+}-26,66 \%\right)$.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 f}$-[D]

CDCl_{3}

4. Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions for the synthesis of $\mathbf{2 a}{ }^{[a]}$

	$\begin{aligned} & 3 \mathrm{R}= \\ & \mathrm{R}=p \text { } \mathbf{1 \mathbf { a }} \overline{=} \end{aligned}$	$\xrightarrow[\substack{\text { reductant }(20 \mathrm{~mol} \%) \\ \text { solvent, } \mathrm{rt}, 12 \mathrm{~h}}]{\stackrel{\substack{\text { catalyst }(10 \mathrm{~mol} \%) \\ \text { ligand }(10 \mathrm{~mol} \%)}}{\longrightarrow}}$				
Entry	Catalyst	Ligand	Reductant	Solvent	$(2 a+3 a)$ Yield $[\%]^{[b]}$	(2a: 3a)
1	NiCl_{2}	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	trace	-
2	C1	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	34	27:73
3	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	56	69:31
4	$\mathrm{Ni}(\mathrm{dppm}) \mathrm{Cl}_{2}$	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	40	$43: 57$
5	$\mathrm{Ni}($ dppe $) \mathrm{Cl}_{2}$	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	46	46:54
6	$\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	49	49 : 51
7	$\mathrm{Ni}(\mathrm{dppb}) \mathrm{Cl}_{2}$	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	41	71:29
8	$\mathrm{Ni}\left(\right.$ dppf) Cl_{2}	-	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	trace	-
9	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	Zn	dioxane	26	47: 53
10	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	Zn	toluene	trace	-
11	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	Zn	THF	41	44:56
12	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	Zn	DMF	29	$52: 48$
13	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	Mg	$\mathrm{CH}_{3} \mathrm{CN}$	trace	-
14	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	Fe	$\mathrm{CH}_{3} \mathrm{CN}$	trace	-
15	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	NaH	$\mathrm{CH}_{3} \mathrm{CN}$	trace	-
16	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	NaBH_{4}	$\mathrm{CH}_{3} \mathrm{CN}$	70	28:72
17	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	LiAlH_{4}	$\mathrm{CH}_{3} \mathrm{CN}$	73	81:19
18	$\mathbf{N i}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$	L6	Zn	$\mathrm{CH}_{3} \mathbf{C N}$	94(91)	97:3
19	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L10	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	77	87: 13
20	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L11	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	78	87: 13
21	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L12	Zn	$\mathrm{CH}_{3} \mathrm{CN}$	74	85: 15
	 L10			 L12		

[a] Conditions: All reactions were run with $10 \mathrm{~mol} \%$ catalyst, $10 \mathrm{~mol} \%$ ligand and 4 mL solvent on an 1 mmol scale at room temperature for 12 hours in the same as the procedure 2.1 (Condition A). [b] Total yields and the regioisomer ratio of $\mathbf{2 a}: \mathbf{3 a}$ were determined by GC-MS analysis using dodecane as an internal standard, and isolated yields in parenthesis.

Table S2. Optimization of conditions for the selective synthesis of $\mathbf{3 a}{ }^{[a]}$

	$\begin{gathered} 3 \mathrm{R} \overline{=} \\ \mathbf{1 a} \\ (\mathrm{R}=p \text { - } \mathrm{Colyl}) \end{gathered}$	Catalyst (10 mol\%) Ligand (10 mol\%) $\mathrm{Zn} \mathrm{(20} \mathrm{~mol} \%)$ $\mathbf{Z n X} \mathbf{2}(20 \mathrm{~mol} \%)$ $\mathrm{CH}_{3} \mathrm{CN}, 40^{\circ} \mathrm{C}, 3 \mathrm{~h}$	\rightarrow	 2a	
Entry	Catalyst	Ligand	Additive	(2a+3a) Yield [\%] ${ }^{[\mathbf{b}]}$	2a: 3a
1	$\mathrm{Ni}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	ZnCl_{2}	78	14:86
2	$\mathrm{Ni}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	ZnBr_{2}	76	14:86
3	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	ZnI_{2}	80	13:87
4	$\mathrm{Ni}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	ZnSO_{4}	66	75:25
5	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	-	MgI_{2}	80	$75: 25$
6	$\mathrm{Ni}(\mathrm{dppm}) \mathrm{Cl}_{2}$	-	ZnI_{2}	67	40: 60
7	Ni (dppe) Cl_{2}	-	ZnI_{2}	49	34:66
8	$\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$	-	ZnI_{2}	59	24:76
9	$\mathrm{Ni}(\mathrm{dppb}) \mathrm{Cl}_{2}$	-	ZnI_{2}	60	28:72
10	$\mathrm{Ni}(\mathrm{dppf}) \mathrm{Cl}_{2}$	-	ZnI_{2}	trace	-
$11^{[\mathrm{cc}}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L1	ZnI_{2}	76	22:78
$12{ }^{[\mathrm{cc]}}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L2	ZnI_{2}	65	43:57
13	$\mathbf{N i}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L3	ZnI_{2}	91(85)	6 : 94
14	$\mathrm{Ni}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Cl}_{2}$	L4	ZnI_{2}	85	10:90
15	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L5	ZnI_{2}	78	18:82
16	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L6	ZnI_{2}	44	23:77
17	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L7	ZnI_{2}	81	17:83
18	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L8	ZnI_{2}	90	23:77
19	$\mathrm{Ni}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Cl}_{2}$	L9	ZnI_{2}	86	19:81
20	$\mathrm{Ni}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Cl}_{2}$	L13	ZnI_{2}	90	23:77
21	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L14	ZnI_{2}	69	35:65
$22^{[d]}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L3	ZnI_{2}	80	2:98
$23{ }^{[\mathrm{c}]}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L3	ZnI_{2}	88	18:82
$24{ }^{[f]}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	L3	ZnI_{2}	82	$17: 83$
	Ph $\mathrm{P}_{\mathrm{P}}-\mathrm{Ph}$ Ph $\mathrm{PPh}_{3}(\mathbf{L 1})$ dppf(L7)	 Xantphos (L8)	 (\pm)-BIN		

[a] Conditions: All reactions were run with $10 \mathrm{~mol} \%$ catalyst, $10 \mathrm{~mol} \%$ ligand, $20 \mathrm{~mol} \%$ addtitive
and $2 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ on an 1 mmol scale at $40{ }^{\circ} \mathrm{C}$ for 3 hours as described in the procedure 2.2 (Condition B). [b] Total yields and the ratio of 2a:3a were determined by GC-MS analysis using dodecane as an internal standard, and isolated yields in parenthesis. [c] Ligand (20 mol\%). [d] 25 ${ }^{\circ} \mathrm{C}$. [e] $55^{\circ} \mathrm{C}$. [f] $70{ }^{\circ} \mathrm{C}$.

Table S3. Optimizing the ratio of starting materials for synthesis of $\mathbf{5 a}{ }^{[a]}$

[a] Conditions: All reactions were run with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.1 \mathrm{mmol}, 65.7 \mathrm{mg})$, dppb $(0.1 \mathrm{mmol}, 43$ $\mathrm{mg}), \mathrm{Zn}(0.2 \mathrm{mmol}, 13 \mathrm{mg}), \mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$, and a mixture of $\mathbf{1 y}$ and $\mathbf{1 a}$ at room temperature for 12 hours under the Condition A. [b] Isolated yields.

Table S4. Optimizing activation time at $80^{\circ} \mathrm{C}$ for Condition $\mathrm{A}^{[a]}$

Entry	Activation time [min]	$\left(\mathbf{2 a + 3 a)} \mathbf{Y i e l d}[\mathbf{\%}]^{[\mathbf{b}]}\right.$	$\mathbf{2 a}: \mathbf{3 a}$
1	0	48	$79: 21$
2	2	78	$90: 10$
3	3	85	$90: 10$
4	5	90	$91: 9$
$\mathbf{5}$	7	$\mathbf{9 4}$	$\mathbf{9 7}: \mathbf{3}$
6	10	81	$94: 6$
7	15	63	$84: 16$

[a] Conditions: All reactions were run with $10 \mathrm{~mol} \% \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, 10 \mathrm{~mol} \% \mathrm{dppb}, 20 \mathrm{~mol} \% \mathrm{Zn}$ and $4 \mathrm{mLCH}_{3} \mathrm{CN}$ on an 1 mmol scale at room temperature for 12 hours as described in the procedure 2.1 (Condition A). [b] Total yields and the ratio of $\mathbf{2 a} \mathbf{a} \mathbf{3 a}$ were determined by GC-MS analysis using dodecane as an internal standard.

Figure S1. The effect of reaction temperatures on the catalytic efficiency and selectivity. All reactions were run under standard Condition A or Condition B. The total heights of the bars were the total yields of $\mathbf{2 a}$ and $\mathbf{3 a}$. The product fraction corresponding to 1,2,4-isomer (2a, red block) and 1,3,5-isomer ($\mathbf{3 a}$, blue block) were plotted.

5. Control Experiments

5.1 The formation of head-to-head and head-to-tail dimers using the sterically hindered substrate

The hindered substrate $\mathbf{1 p}$ (1 mmol) was subjected to standard Condition A (procedure 2.1). After 12 hours, the mixture was analyzed by GC-MS and dodecane was used as the internal standard. 4pa as the main product was isolated in 43% yield.

The hindered substrate $\mathbf{1 p}$ (1 mmol) was subjected to standard Condition B (procedure 2.2) at $40^{\circ} \mathrm{C}$ for 3 hours. The product fraction of dimers and trimers were determined by GC-MS analysis using dodecane as an internal standard. $\mathbf{4 p b}$ as the main product was isolated in 38% yield.
5.2 Knowing about the intermediate property of dimers in the reaction

The $\mathbf{4 f a}(0.3 \mathrm{mmol})$ and $\mathbf{4 f b}(0.3 \mathrm{mmol})$ without steric hindrance were subjected to standard Conditions A and B in the presence of the third alkyne $\mathbf{1 a}(0.3 \mathrm{mmol})$, respectively, As a result, the corresponding heterotrisubstitued benzenes were not observed.

5.3 Deuterium labeling experiments

The $\mathbf{1 f}-[\mathbf{D}](1 \mathrm{mmol})$ was subjected respectively to standard Conditions A and B until the reaction was complete (monitored by GC-MS). The resulting mixture was filtered through a pad of silica using ethyl acetate as eluent and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography $(\mathrm{PE} / \mathrm{DCM}=10: 1)$ to afford the desired product $\mathbf{2 f}-[\mathrm{D}]$ and $\mathbf{3 f}-[\mathbf{D}]$, respectively.

1,2,4-Triphenyl-3,5,6-trideuterobenzene (2f-[D]). Yield: 94\%. White solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.56,141.19$, $141.00,140.62,140.28,139.56,129.98,129.94,128.90,128.00,127.97,127.49$, 127.19, 126.66, 126.59; MS (EI, m/z, rel.\%): 309 ($\mathrm{M}^{+}, 100 \%$), $292\left(\mathrm{M}^{+}-17,18 \%\right)$.

1,3,5-Triphenyl-2,4,6-trideuterobenzene (3f-[D]). Yield: 96\%. White solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 6 H), 7.43-7.39 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.22,141.14,128.87$, 127.56, 127.37; MS (EI, m/z, rel.\%): 309 ($\mathrm{M}^{+}, 100 \%$), 291 ($\mathrm{M}^{+}-18,11 \%$).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 f}$-[D] and 3 f -[D]
1,2,4-Triphenyl-3,5,6-trideuterobenzene (2f-[D])

CDCl_{3}

$\xrightarrow{280}$

CDCl_{3}

1,3,5-Triphenyl-2,4,6-trideuterobenzene (3f-[D])

CDCl_{3}

6. Characterization Data of the Products

1,2,4-Tris(4-tolyl)benzene (2a, Table 2). ${ }^{[1]}$ Isolated by column chromatography (PE : $\mathrm{DCM}=10: 1$) to afford a white solid in 91% yield, mp 121-123 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[30]} 122-$ $123{ }^{\circ} \mathrm{C}$). The regioisomer ratio of 2a:3a was $97: 3$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.59-7.52 (m, 4H), 7.43 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 8 \mathrm{H})$, 2.37 ($\mathrm{s}, 3 \mathrm{H}$), 2.293 ($\mathrm{s}, 3 \mathrm{H}$), $2.290(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.83$, 140.07, 139.19, 138.80, 138.41, 137.85, 137.15, 136.13, 136.04, 131.12, 129.76, 129.72, 129.55, 129.28, 128.70, 128.67, 126.97, 125.73, 21.15; MS (EI, m/z, rel.\%): $348\left(\mathrm{M}^{+}, 100 \%\right), 333\left(\mathrm{M}^{+}-15,19 \%\right), 318\left(\mathrm{M}^{+}-30,19 \%\right), 303\left(\mathrm{M}^{+}-45,11 \%\right), 151$ $\left(\mathrm{M}^{+}-197,12 \%\right)$.

1,2,4-Tris(4-methoxyphenyl)benzene (2b, Table 2). ${ }^{[1]}$ Isolated by column chromatography (n-pentane : EA $=10: 1$) to afford a white solid in 98% yield, mp $115-116{ }^{\circ} \mathrm{C}$ (lit. $.^{[7]} 116-117{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 b}: \mathbf{3 b}$ was $98: 2 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=11.2$, $8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 3.81 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.28,158.39,158.32,140.45,139.64$, $138.52,134.21,133.80,133.28,131.04,130.97,130.92,128.95,128.13,125.40$, 114.31, 113.49, 113.47, 55.37, 55.21, 55.20; MS (EI, m/z, rel.\%): 396 ($\mathrm{M}^{+}, 100 \%$), 381 ($\left.\mathrm{M}^{+}-15,11 \%\right), 281\left(\mathrm{M}^{+}-115,10 \%\right), 207\left(\mathrm{M}^{+}-189,13 \%\right)$.

1,2,4-Tris[4-(phenyl)phenyl]benzene (2c, Table 2). ${ }^{[2]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=5: 1$) to afford a yellow solid in 93% yield, $\mathrm{mp} 263-$ $264{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[2]} 170-172{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 c}: \mathbf{3 c}$ was $94: 6 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.73(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 2H), 7.63-7.61 (m, 5H), 7.54-7.38 (m, 11H), 7.33 (dd, $J=10.8,8.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 140.68,140.65,140.64,140.49,140.37,140.10,139.99$, 139.46, 139.40, 139.29, 139.19, 131.28, 130.37, 130.32, 129.39, 128.86, 128.77, 127.62, 127.51, 127.42, 127.29, 127.09, 127.00, 126.99, 126.74, 126.70, 126.16; MS (EI, m/z, rel.\%): 534 ($\mathrm{M}^{+}, 100 \%$), 443 ($\mathrm{M}^{+}-91,26 \%$).

1,2,4-Tris(4-aminophenyl)benzene (2d, Table 2). ${ }^{[3]}$ Isolated by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to afford a yellow solid in 82% yield, mp
$183-184{ }^{\circ} \mathrm{C}$. The regioisomer ratio of 2d:3d was $94: 6 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.55(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01 (dd, $J=10.6,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{dd}, J=8.4,3.8 \mathrm{~Hz}$, 4 H), 3.66 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 145.81, 144.81, 144.71, 140.56, 139.61, 138.37, 132.43, 132.00, 131.24, 130.84, 130.79, 128.51, 127.97, 124.77, 115.43, 114.76; MS (ESI, m/z, rel.\%): 352.3 ([M+H] ${ }^{+}$, 100\%).

1,2,4-Tris(4-dimethylaminophenyl)benzene (2e, Table 2). ${ }^{[4]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=7: 1$) to afford a yellow solid in 78% yield, mp $200-201{ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{2 e}: \mathbf{3 e}$ was $95: 5 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.59 (d, $J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.54$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=12.4,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 4 \mathrm{H})$, 3.01 (s, 6H), $2.950(\mathrm{~s}, 6 \mathrm{H}), 2.946(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.90$, 149.04, 148.93, 140.51, 139.49, 138.12, 130.92, 130.61, 130.55, 130.52, 130.06, 129.15, 128.53, 127.66, 124.53, 112.83, 112.18, 40.64, 40.61; MS (EI, m/z, rel.\%): $435\left(\mathrm{M}^{+}, 100 \%\right), 420\left(\mathrm{M}^{+}-15,6 \%\right), 405\left(\mathrm{M}^{+}-30,10 \%\right), 210\left(\mathrm{M}^{+}-225,7 \%\right)$.

1,2,4-Triphenylbenzene (2f, Table 2). ${ }^{[1]}$ Isolated by column chromatography (PE : $\mathrm{DCM}=10: 1$) to afford a white solid in 96% yield, $\mathrm{mp} 98-99{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[30]} 93-94$ ${ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 f : 3 f}$ was $98: 2 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-$ $7.63(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1H), 7.24-7.16 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.56,141.19,141.06$, $140.66,140.41,139.62,131.12,129.95,129.91,129.45,128.86,127.96,127.93$, 127.46, 127.18, 126.63, 126.55, 126.15; MS (EI, m/z, rel.\%): 306 (${ }^{+}$, 100\%), 289 $\left(\mathrm{M}^{+}-17,24 \%\right), 228\left(\mathrm{M}^{+}-78,15 \%\right), 215\left(\mathrm{M}^{+}-91,13 \%\right)$.

1,2,4-Tris(4-methoxycarbonylphenyl)benzene (2g, Table 2). ${ }^{[5]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=4: 1$) to afford a white solid in 92% yield, mp $224-225{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[5]} 224-225{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 g} \mathbf{2 g}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.07$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (dd, $J=7.9,5.8 \mathrm{~Hz}, 4 \mathrm{H}$), $7.73-$ 7.68 (m, 4H), 7.51 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (dd, $J=11.0,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.86$ (s, 3H), $3.81(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 166.62, 166.61, 145.61, 145.27, 144.40, 140.32, 139.79, 139.44, 131.17, 130.08, 129.94, 129.87, 129.51, 129.31, 129.24,
129.21, 128.85, 128.78, 127.01, 126.88, 52.00, 51.93; MS (EI, m/z, rel.\%): $480\left(\mathrm{M}^{+}\right.$, 100%), 449 ($\mathrm{M}^{+}-31,30 \%$), 302 ($\mathrm{M}^{+}-178,21 \%$), 209 ($\mathrm{M}^{+}-271,8 \%$).

1,2,4-Tris(4-acetylphenyl)benzene (2h, Table 2). ${ }^{[1]}$ Isolated by column chromatography (n-pentane : $\mathrm{EA}=2: 1$) to afford a yellow solid in 91% yield, mp $258-259{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[5]} 258-259{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 h} \mathbf{3} \mathbf{3 h}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (dd, $J=8.2,5.6 \mathrm{~Hz}, 4 \mathrm{H}$), $7.69-$ 7.62 (m, 4H), 7.48 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.17 (m, 4H), 2.56 (s, 3H), $2.50(\mathrm{~s}, 3 \mathrm{H})$, 2.49 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.64, 197.57, 145.71, 145.37, 144.56, $140.22,139.93,139.36,136.32,135.71,135.64,131.29,130.05,129.99,129.43$, 129.07, 128.31, 128.26, 127.25, 127.05, 26.68, 26.60, 26.59; MS (EI, m/z, rel.\%): 432 $\left(\mathrm{M}^{+}, 54 \%\right), 417\left(\mathrm{M}^{+}-15,89 \%\right)$.

1,2,4-Tris(4-formylphenyl)benzene (2i, Table 2). ${ }^{[5]}$ Isolated by column chromatography (PE:EA=2:1) to afford a yellow solid in 75\% yield, mp 216-217 ${ }^{\circ} \mathrm{C}$ (lit. $.^{[5]} 216-217{ }^{\circ} \mathrm{C}$). The regioisomer ratio of 2i:3i was $99: 1$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=11.3,8.2 \mathrm{~Hz}$, 4 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 191.71, 146.91, 146.60, 146.58, 145.82, 140.18, $140.04,139.44,135.69,135.07,131.36,130.51,130.44,129.65,129.61,129.54$, 127.97, 127.74, 127.36; MS (EI, m/z, rel.\%): 390 ($\mathrm{M}^{+}, 100 \%$), 362 ($\mathrm{M}^{+}-28,15 \%$).

1,2,4-Tris(4-nitrophenyl)benzene ($\mathbf{2 j}$, Table 2). ${ }^{[6]}$ Isolated by column chromatography (PE : EA = 2:1) to afford a yellow solid in 48\% yield, mp 260-262 ${ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{2 j} \mathbf{j} \mathbf{3 j}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.37-8.35$ $(\mathrm{m}, 2 \mathrm{H}), 8.17-8.14(\mathrm{~m}, 4 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37-7.32 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 147.68, 147.19, $147.14,146.79,146.51,145.90,139.68,139.40,138.86,131.56,130.62,130.55$, 129.60, 127.95, 127.88, 124.37, 123.76, 123.71; HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}$ 441.0955, found 441.0952.

1,2,4-Tris(4-fluorophenyl)benzene (2k, Table 2). ${ }^{[1]}$ Isolated by column chromatography (PE: DCM = $10: 1$) to afford a white solid in 92% yield, $\mathrm{mp} 140-$ $141{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[7]} 138-140{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 k}: 3 \mathbf{k}$ was $97: 3$. ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 6 \mathrm{H}), 6.95$ (td, $J=8.7,3.4 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.89,163.13,163.09$, $161.44,160.68,160.64,140.06,139.66,138.54,137.17,137.14,136.81,136.77$, $136.52,136.49,131.41,131.37,131.33,131.29,131.09,129.19,128.72,128.64$, $126.18,115.89,115.68,115.17,115.14,114.96,114.93 ;{ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-115.17, -115.64, -115.77; MS (EI, m/z, rel.\%): $360\left(\mathrm{M}^{+}, 100 \%\right), 338\left(\mathrm{M}^{+}-22,15 \%\right)$, $264\left(\mathrm{M}^{+}-96,7 \%\right), 159\left(\mathrm{M}^{+}-201,7 \%\right)$.

1,2,4-Tris(4-chlorophenyl)benzene (21, Table 2). ${ }^{[1]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a white solid in 98% yield, $\mathrm{mp} 157-$ $158{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[2]} 159-161{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 1}: 31$ was $98: 2 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.06$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.87, 139.64, 139.43, 139.08, 138.68, 138.56, 133.84, 133.10, 133.01, 131.18, 131.10, 131.06, 129.14, 129.10, 128.44, 128.40, 128.35, 126.39; MS (EI, m/z, rel.\%): 410 ([M+2] $\left.{ }^{+}, 100 \%\right), 408\left(\mathrm{M}^{+}, 100 \%\right)$, $372\left(\mathrm{M}^{+}-36,14 \%\right), 338\left(\mathrm{M}^{+}-70,79 \%\right), 302\left(\mathrm{M}^{+}-106,45 \%\right), 169\left(\mathrm{M}^{+}-239,25 \%\right)$, 151 ($\mathrm{M}^{+}-257,52 \%$).

1,2,4-Tris(4-bromophenyl)benzene (2m, Table 2). ${ }^{[1]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a white solid in 91% yield, $\mathrm{mp} 161-$ $162{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[2]} 158-160{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{2 m} \mathbf{~} \mathbf{3 m}$ was $96: 4 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41-7.38 (m, 4H), $7.03(\mathrm{t}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.86$, 139.84, 139.70, 139.52, 139.13, 138.55, 132.06, 131.43, 131.40, 131.38, 131.37, 131.16, 129.06, 128.68, 126.39, 122.02, 121.32, 121.24; MS (EI, m/z, rel.\%): 545 ([M+6] $\left.{ }^{+}, 31 \%\right), 543\left([\mathrm{M}+4]^{+}, 95 \%\right), 541\left([\mathrm{M}+2]^{+}, 100 \%\right), 539\left(\mathrm{M}^{+}, 33 \%\right), 382$ $\left(\mathrm{M}^{+}-157,49 \%\right), 302\left(\mathrm{M}^{+}-237,34 \%\right)$.

1,2,4-Tris(3-methylphenyl)benzene (2n, Table 2). ${ }^{[1]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a yellow oil in 97% yield. The regioisomer ratio of $\mathbf{2 n}: \mathbf{3 n}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.73-7.69(\mathrm{~m}$, 2H), 7.59 (s, 1H), 7.56-7.53 (m, 2H), $7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1H), 7.19-7.09 (m, 6H), 7.01 (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.49 (s, 3H), 2.35 (s, 3H), 2.34 (s,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 141.70, 141.30, 141.20, 140.56, 140.24, 139.72, $138.61,137.64,137.59,131.06,130.63,130.57,129.28,128.79,128.24,127.84$, 127.63, 127.62, 127.30, 127.24, 127.14, 127.08, 125.91, 124.16, 21.34, 21.18; MS (EI, m / z, rel. $\%$): $348\left(\mathrm{M}^{+}, 100 \%\right), 333\left(\mathrm{M}^{+}-15,27 \%\right), 348\left(\mathrm{M}^{+}-30,25 \%\right), 303\left(\mathrm{M}^{+}-45\right.$, $15 \%), 239\left(\mathrm{M}^{+}-109,7 \%\right), 151\left(\mathrm{M}^{+}-197,11 \%\right)$.

1,2,4-Tris(3-fluorophenyl)benzene (2o, Table 2). ${ }^{[1]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=5: 1$) to afford a yellow oil in 99% yield. The regioisomer ratio of $\mathbf{2 0 : 3 0}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.59(\mathrm{~m}$, 2H), 7.47-7.45 (m, 1H), 7.43-7.32 (m, 3H), 7.21-7.14 (m, 2H), 7.07-7.02 (m, 1H), 6.94-6.86 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.55,163.81,163.80,162.11$, $161.364,161.355,143.24,143.17,142.92,142.84,142.56,142.49,140.00,139.98$, 139.70, 139.67, 138.92, 138.90, 131.17, 130.48, 130.40, 129.68, 129.63, 129.60, 129.54, 129.26, 126.60, 125.64, 125.61, 125.60, 125.57, 122.80, 122.77, 116.83, 116.76, 116.61, 116.54, 114.64, 114.43, 114.17, 114.06, 113.98, 113.95, 113.85, 113.77; ${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-112.59, -113.613, -113.21; MS (EI, m/z, rel.\%): $360\left(\mathrm{M}^{+}, 100 \%\right), 340\left(\mathrm{M}^{+}-20,18 \%\right), 318\left(\mathrm{M}^{+}-42,5 \%\right), 264\left(\mathrm{M}^{+}-96,9 \%\right)$, 159 ($\left.\mathrm{M}^{+}-201,12 \%\right)$.

1,2,4-Tris(2-fluorophenyl)benzene (2q, Table 2). ${ }^{[7]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=5: 1$) to afford a white solid in 92% yield, mp $101-102{ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{2 q}: \mathbf{3 q}$ was $97: 3 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.65 (d, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54-7.47 (m, 2H), 7.33-7.25 (m, 1H), 7.22-7.10 (m, 6H), 6.98 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.91 (td, $J=9.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.19,160.85,160.82,158.73,158.40,158.37,135.91,135.512,135.506,135.10$, 131.93, 131.92, 131.88, 131.84, 131.37, 131.34, 130.89, 130.88, 130.84, 129.36, $129.28,129.17,129.15,129.09,129.07,128.79,128.62,128.61,128.54,128.51$, $128.43,128.30,124.54,124.50,123.67,123.66,116.36,116.14,115.54,115.32 ;{ }^{19} \mathrm{~F}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-115.17,-115.64,-115.77$; MS (EI, m/z, rel. \%): $360\left(\mathrm{M}^{+}\right.$, $100 \%), 340\left(\mathrm{M}^{+}-20,94 \%\right), 318\left(\mathrm{M}^{+}-42,33 \%\right), 264\left(\mathrm{M}^{+}-96,20 \%\right), 159\left(\mathrm{M}^{+}-201\right.$, 56\%).

1,2,4-Tris(2-thienyl)benzene (2r, Table 2). ${ }^{[26]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=5: 1$) to afford a white solid in 96% yield, mp $80-81{ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{2 r}: \mathbf{3 r}$ was $98: 2 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.75 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (dd, $J=5.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (dd, $J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=4.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.91(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.29,142.27,142.25,134.17,133.96,132.98$, 131.41, 128.53, 128.20, 127.42, 127.09, 127.03, 126.24, 126.12, 125.38, 123.67; MS (EI, m/z, rel.\%): $324\left(\mathrm{M}^{+}, 100 \%\right)$, $291\left(\mathrm{M}^{+}-33,23 \%\right), 279\left(\mathrm{M}^{+}-45,26 \%\right), 258$ $\left(\mathrm{M}^{+}-66,11 \%\right), 245\left(\mathrm{M}^{+}-79,13 \%\right)$.

1,2,4-Tris(3-thienyl)benzene (2s, Table 2). ${ }^{[1]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=5: 1$) to afford a white solid in 99% yield, $\mathrm{mp} 129-130$ ${ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{2 s}: \mathbf{3 s}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=5.0,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=9.2,5.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}$, $J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{ddd}, J=10.8,5.0,1.3 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.04,141.70,141.65,135.82,135.07,134.22$, 130.64, 128.97, 128.86, 128.30, 126.37, 126.30, 125.52, 124.87, 124.73, 123.01, 122.87, 120.53; MS (EI, m/z, rel.\%): 324 ($\mathrm{M}^{+}, 100 \%$), $290\left(\mathrm{M}^{+}-34,32 \%\right), 279$ $\left(\mathrm{M}^{+}-45,17 \%\right), 258\left(\mathrm{M}^{+}-66,17 \%\right), 245\left(\mathrm{M}^{+}-79,13 \%\right)$.

1,2,4-Tris(4-pyridyl)benzene (2t, Table 2). Isolated by column chromatography $\left(\mathrm{CHCl}_{3}:\right.$ TEA $\left.=10: 1\right)$ to afford a yellow solid in 94% yield, $\mathrm{mp} 253-254{ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{2 t : 3 t}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{dd}, J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.52(\mathrm{td}, J=5.3,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.79(\mathrm{dd}$, $J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{ddd}, J=10.0$, $4.5,1.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.52,149.87,149.82,148.02$, $147.73,146.93,139.03,138.77,138.43,131.35,129.08,127.48,124.49,124.41$, 121.59; MS (EI, m/z, rel.\%): 309 (${ }^{+}, 100 \%$), 281 (${ }^{+}-43,28 \%$); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} 309.1260$, found 316.1258 .

1,2,4-Tris(1-cyclohexenyl)benzene (2w, Table 2). ${ }^{[7]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a colorless oil in 90% yield. The regioisomer ratio of $\mathbf{2 w}: \mathbf{3 w}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19$ (dd, $J=$ $7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13-6.11(\mathrm{~m}, 1 \mathrm{H})$, 5.68-5.66 (m, 2H), 2.43-2.40 (m, 2H), 2.24-2.13 (m, 10H), $1.80-1.62(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.50,141.04,140.65,139.83,139.14,136.36,128.46$, $125.80,125.76,125.32,124.22,122.85,29.69,29.62,29.56,27.40,25.89,25.77$, 25.74, 23.32, 23.12, 22.24, 22.23, 22.22; MS (EI, m/z, rel.\%): 318 ($\mathrm{M}^{+}, 100 \%$), 275 $\left(\mathrm{M}^{+}-43,100 \%\right), 261\left(\mathrm{M}^{+}-57,38 \%\right), 233\left(\mathrm{M}^{+}-85,16 \%\right), 195\left(\mathrm{M}^{+}-123,17 \%\right), 165$ $\left(\mathrm{M}^{+}-153,16 \%\right), 81\left(\mathrm{M}^{+}-237,16 \%\right)$.
(E)-1,4-bis(trimethylsilyl)but-3-en-1-yne (4xa, Table 2). ${ }^{[8]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a yellow oil in 87% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.51(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.19(\mathrm{~s}$, 9H), 0.08 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.08,123.42,105.40,94.81$, 0.00, -1.62; MS (EI, m/z, rel.\%): $196\left(\mathrm{M}^{+}, 12 \%\right), 181\left(\mathrm{M}^{+}-15,87 \%\right), 155\left(\mathrm{M}^{+}-41\right.$, $21 \%), 123\left(\mathrm{M}^{+}-73,19 \%\right), 97\left(\mathrm{M}^{+}-99,14 \%\right), 73\left(\mathrm{M}^{+}-123,100 \%\right)$.

Benzene-1,2,4-tricarboxylic acid trimethyl ester (2y, Table 2). ${ }^{[4]}$ Isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=5: 1)$ to afford a yellow oil in 99% yield. The regioisomer ratio of $\mathbf{2 y}: \mathbf{3 y}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32$ (d, $J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, 3H), 3.85 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.47,166.70,165.21,136.16$, 132.37, 132.18, 131.54, 130.15, 128.82, 52.81, 52.75, 52.52; MS (EI, m/z, rel.\%): 252 $\left(\mathrm{M}^{+}, 4 \%\right), 221\left(\mathrm{M}^{+}-31,100 \%\right)$.

1,2,4-Triacetylphenylbenzene (2z, Table 2). ${ }^{[9]}$ Isolated by column chromatography (PE : EA = 2:1) to afford a white solid in 90% yield, $\mathrm{mp} 75-76^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{2 z}: \mathbf{3 z}$ was $96: 4 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12(\mathrm{~s}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.82$, 200.18, 196.38, 143.98, 138.75, 138.39, 131.32, 127.73, 127.69, 29.16, 28.25, 26.71; MS (EI, m/z, rel.\%): 204 ($\mathrm{M}^{+}, 1 \%$), 189 $\left(\mathrm{M}^{+}-15,100 \%\right), 161\left(\mathrm{M}^{+}-43,3 \%\right)$.

1,3,5-Tris(4-tolyl)benzene (3a, Table 3). ${ }^{[10]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to afford a white solid in 85% yield, $\mathrm{mp} 174-175$ ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 173-175{ }^{\circ} \mathrm{C}$). The regioisomer ratio of 3a:2a was 94:6. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.82$ (s, 3H), 7.67 (d, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$), 7.35 (d, $J=7.7 \mathrm{~Hz}, 6 \mathrm{H}$), 2.49 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.19,138.44,137.27,129.55,127.20,124.59$, 21.14; MS (EI, m/z, rel.\%): 348 ($\mathrm{M}^{+}, 100 \%$), 333 ($\mathrm{M}^{+}-15,2 \%$), 318 ($\mathrm{M}^{+}-30,3 \%$), 303 ($\mathrm{M}^{+}-45,3 \%$), 151 ($\mathrm{M}^{+}-197,3 \%$).

1,3,5-Tris(4-methoxyphenyl)benzene (3b, Table 3). ${ }^{[10]}$ Isolated by column chromatography (n-pentane : $\mathrm{EA}=10: 1$) to afford a white solid in 97% yield, mp 140-141 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 136-139{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 b} \mathbf{2} \mathbf{2 b}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (s, 3H), 7.64 (d, $\left.J=8.8 \mathrm{~Hz}, 6 \mathrm{H}\right), 7.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 6 \mathrm{H})$, 3.88 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.35,141.87,133.89,128.38,123.87$, 114.29, 55.39; MS (EI, m/z, rel.\%): 396 ($\mathrm{M}^{+}, 100 \%$), 381 ($\mathrm{M}^{+}-15,11 \%$), 207 ($\mathrm{M}^{+}-189,22 \%$).

1,3,5-Tris[4-(phenyl)phenyl]benzene (3c, Table 3). ${ }^{[11]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=5: 1$) to afford a yellow solid in 89% yield, mp 233$234{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[11]} 232-234{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 c}: \mathbf{2 c}$ was $96: 4 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(\mathrm{~s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.68$ (d, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}$), 7.49 (t, $J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.00,140.67,140.52,140.03,128.87,127.75,127.64,127.45$, 127.11, 125.03; MS (EI, m/z, rel.\%): 534 ($\mathrm{M}^{+}, 100 \%$), 267 ($\mathrm{M}^{+}-267,15 \%$).

1,3,5-Tris(4-aminophenyl)benzene (3d, Table 3). ${ }^{[3]}$ Isolated by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to afford a yellow solid in 94% yield, mp $227-228^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{3 d}: \mathbf{2 d}$ was $98: 2 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.60(\mathrm{~s}, 3 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.96,140.07,130.02,126.30,121.01,113.46$; MS (ESI, m/z, rel.\%): 352.2 ([M+H] $\left.{ }^{+}, 100 \%\right)$.

1,3,5-Tris(4-dimethylaminophenyl)benzene (3e, Table 3). ${ }^{[12]}$ Isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=5: 1)$ to afford a yellow solid in 92% yield, mp $231-232{ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{3 e}: \mathbf{2 e}$ was $99: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
7.65 (s, 3H), 7.62 (d, $J=8.7 \mathrm{~Hz}, 6 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.02(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 150.03,142.05,129.87,127.96,122.62,112.83,40.67$; MS (EI, m/z, rel.\%): 435 ($\mathrm{M}^{+}, 100 \%$), 419 ($\left.\mathrm{M}^{+}-16,12 \%\right), 208\left(\mathrm{M}^{+}-227,13 \%\right)$.

1,3,5-Triphenylbenzene (3f, Table 3). ${ }^{[10]}$ Isolated by column chromatography (PE:EA $=10: 1$) to afford a white solid in 99% yield, $\mathrm{mp} 175-176{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[10]} 176.7-$ $178.4{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 f : 2 f}$ was $98: 2 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.80(\mathrm{~s}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.38,141.18,128.88,127.58,127.39,125.21 ; \mathrm{MS}$ (EI, m/z, rel.\%): 306 ($\mathrm{M}^{+}, 100 \%$), $289\left(\mathrm{M}^{+}-17,12 \%\right), 228\left(\mathrm{M}^{+}-78,8 \%\right), 215\left(\mathrm{M}^{+}-91\right.$, $2 \%)$.

1,3,5-Tris(4-methoxycarbonylphenyl)benzene (3g, Table 3). ${ }^{[10]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=4: 1$) to afford a white solid in 78% yield, mp $171-172{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[10]} 170.4-172.1^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 g}: \mathbf{2 g}$ was $95: 5 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16$ (d, $J=8.3 \mathrm{~Hz}, 6 \mathrm{H}$), $7.86(\mathrm{~s}, 3 \mathrm{H}), 7.77$ (d, $J=8.3 \mathrm{~Hz}$, 6 H), 3.96 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.86, 145.00, 141.65, 130.28, 129.52, 127.31, 126.07, 52.22; MS (EI, m/z, rel.\%): $480\left(\mathrm{M}^{+}, 100 \%\right), 449\left(\mathrm{M}^{+}-31\right.$, $76 \%), 302\left(\mathrm{M}^{+}-178,13 \%\right), 209\left(\mathrm{M}^{+}-271,20 \%\right)$.

1,3,5-Tris(4-acetylphenyl)benzene (3h, Table 3). ${ }^{[13]}$ Isolated by column chromatography (n-pentane : $\mathrm{EA}=2: 1$) to afford a yellow solid in 89% yield, mp $254-255{ }^{\circ} \mathrm{C}$ (lit..$^{[31]} 256{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 h}: \mathbf{2 h}$ was $95: 5 .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.87(\mathrm{~s}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.67$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 197.62, 145.13, 141.67, 136.51, 129.14, 127.56, 126.17, 26.74; MS (EI, m/z, rel.\%): 432 ($\mathrm{M}^{+}, 48 \%$), 417 ($\mathrm{M}^{+}-15,100 \%$); HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} 432.1720$, found 432.1718.

1,3,5-Tris(4-formylphenyl)benzene (3i, Table 3). ${ }^{[14]}$ Isolated by column chromatography (PE : EA = 2:1) to afford a yellow solid in 90\% yield, mp 234-235 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[32]} 230-232{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 i} \mathbf{i} \mathbf{2 i}$ was $97: 3$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 10.10(\mathrm{~s}, 3 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.91(\mathrm{~s}, 3 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.69,146.28,141.60,135.80,130.42,127.98$, 126.47; HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{3} 390.1250$, found 390.1245.

1,3,5-Tris(4-fluorophenyl)benzene (3k, Table 3). ${ }^{[15]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a white solid in 78% yield, $\mathrm{mp} 241-$ $242{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 234-236{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 k} \mathbf{k} \mathbf{2 k}$ was 91:9. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (s, 3H), 7.64 (dd, $J=8.6,5.5 \mathrm{~Hz}, 6 \mathrm{H}$), 7.17 (t, $J=8.6 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.94,161.48,141.56,137.05,137.02,128.95$, 128.87, 124.87, 115.90, 115.68; ${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-115.02$; MS (EI, m/z, rel.\%): $360\left(\mathrm{M}^{+}, 100 \%\right), 338\left(\mathrm{M}^{+}-22,8 \%\right), 264\left(\mathrm{M}^{+}-96,5 \%\right), 159\left(\mathrm{M}^{+}-201,4 \%\right)$.

1,3,5-Tris(4-chlorophenyl)benzene (31, Table 3). ${ }^{[10]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a white solid in 87% yield, mp 244 $245{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 243-246{ }^{\circ} \mathrm{C}$). The regioisomer ratio of 31:21 was 91:9. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~s}, 3 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 141.46,139.20,133.95,129.11,128.58,125.05$; MS (EI, m / z, rel.\%): 410 ([M+2] $\left.{ }^{+}, 100 \%\right), 408\left(\mathrm{M}^{+}, 99 \%\right), 372\left(\mathrm{M}^{+}-36,4 \%\right), 338\left(\mathrm{M}^{+}-70\right.$, 20%), 302 ($\mathrm{M}^{+}-106,26 \%$), 169 ($\mathrm{M}^{+}-239,20 \%$), 151 ($\mathrm{M}^{+}-257,34 \%$).

1,3,5-Tris(4-bromophenyl)benzene ($\mathbf{3 m}$, Table 3). ${ }^{[15]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a white solid in 85% yield, $\mathrm{mp} 255-$ $256{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 255-256{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 m}$:2m was $91: 9 .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~s}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 141.53,139.63,132.07,128.91,125.00$, 122.13; MS (EI, m / z, rel.\%): 545 ([M+6] $\left.{ }^{+}, 31 \%\right), 543\left([\mathrm{M}+4]^{+}, 95 \%\right), 541\left([\mathrm{M}+2]^{+}, 100 \%\right), 539\left(\mathrm{M}^{+}\right.$, $33 \%), 382\left(\mathrm{M}^{+}-157,7 \%\right), 302\left(\mathrm{M}^{+}-237,17 \%\right)$.

1,3,5-Tris(3-methylphenyl)benzene (3n, Table 3). ${ }^{[15]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a white solid in 94% yield, $\mathrm{mp} 106-$ $107{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 110-111^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 n}: \mathbf{2 n}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.80(\mathrm{~s}, 3 \mathrm{H}), 7.56(\mathrm{~s}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}$), 7.23 (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $2.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 142.31, 141.02, 138.60, 128.71, 128.27, 128.03, 124.90, 124.32, 21.26; MS (EI, m/z, rel.\%): 348 ($\mathrm{M}^{+}, 100 \%$), $333\left(\mathrm{M}^{+}-15,2 \%\right), 348\left(\mathrm{M}^{+}-30,3 \%\right), 303\left(\mathrm{M}^{+}-45,3 \%\right), 239$ $\left(\mathrm{M}^{+}-109,4 \%\right), 174\left(\mathrm{M}^{+}-174,5 \%\right)$.

1,3,5-Tris(3-fluorophenyl)benzene (30, Table 3). ${ }^{[16]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=5: 1$) to afford a white solid in 82% yield, mp $173-174{ }^{\circ} \mathrm{C}$ (lit. $.^{[16]} 169-171{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 0} \mathbf{2 0} \mathbf{2}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(\mathrm{~s}, 3 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 9 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 164.48,162.04,143.01,142.93,141.44,141.42,130.47,130.39$, $125.51,122.98,122.95,114.71,114.50,114.38,114.16 ;{ }^{19} \mathrm{~F}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-112.69$; MS (EI, m/z, rel.\%): $360\left(\mathrm{M}^{+}, 100 \%\right), 338\left(\mathrm{M}^{+}-22,7 \%\right), 264\left(\mathrm{M}^{+}-96,7 \%\right)$, $159\left(\mathrm{M}^{+}-201,6 \%\right)$.

1,3,5-Tris(2-methylphenyl)benzene (3p, Table 3). ${ }^{[10]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=5: 1$) to afford a white solid in 75% yield, mp $129-130{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 129-130{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 p : 2 p}$ was $96: 4 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.36-7.24(\mathrm{~m}, 15 \mathrm{H}), 2.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 141.73,141.55,135.46,130.34,129.79,128.49,127.29,125.77,20.34 ;$ MS (EI, m/z, rel.\%): $348\left(\mathrm{M}^{+}, 100 \%\right), 333\left(\mathrm{M}^{+}-15,14 \%\right), 318\left(\mathrm{M}^{+}-30,5 \%\right), 303$ $\left(\mathrm{M}^{+}-45,5 \%\right), 257\left(\mathrm{M}^{+}-91,33 \%\right)$.

1,3,5-Tris(2-fluorophenyl)benzene (3q, Table 3). ${ }^{[27]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=5: 1$) to afford a white solid in 90% yield, mp $121-122{ }^{\circ} \mathrm{C}$. The regioisomer ratio of $\mathbf{3 q}: \mathbf{2 q}$ was $96: 4 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~s}, 3 \mathrm{H}), 7.45(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.29-7.21$ (m, 3H), 7.16-7.07 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.12,158.65,136.25$, $130.95,130.91,129.33,129.25,129.10,129.07,129.04,128.75,128.62,124.48$, 124.44, 116.31, 116.09; ${ }^{19} \mathrm{~F}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-117.65$; MS (EI, m/z, rel.\%): $360\left(\mathrm{M}^{+}, 100 \%\right), 338\left(\mathrm{M}^{+}-22,9 \%\right), 318\left(\mathrm{M}^{+}-42,4 \%\right), 264\left(\mathrm{M}^{+}-96,3 \%\right), 159$ ($\left.\mathrm{M}^{+}-201,8 \%\right)$.

1,3,5-Tris(2-thienyl)benzene (3r, Table 3). ${ }^{[10]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=5: 1$) to afford a yellow solid in 92% yield, mp $156-157{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[10]} 155.6-157.1^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 r}: 2 \mathrm{r}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.75$ (s, 3H), 7.42 (dd, $\left.J=3.6,1.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.34$ (dd, $J=$ $5.1,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
143.55, 135.72, 128.10, 125.40, 123.88, 122.79; MS (EI, m/z, rel.\%): 324 (${ }^{+}, 100 \%$), $279\left(\mathrm{M}^{+}-45,3 \%\right), 258\left(\mathrm{M}^{+}-66,4 \%\right), 245\left(\mathrm{M}^{+}-79,5 \%\right)$.

1,3,5-Tris(3-thienyl)benzene (3s, Table 3). ${ }^{[16]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=5: 1$) to afford a white solid in 89% yield, mp 129-130 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[16]} 129-130{ }^{\circ} \mathrm{C}$). The regioisomer ratio of 3s:2s was $92: 8 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.74(\mathrm{~s}, 3 \mathrm{H}), 7.55(\mathrm{dd}, J=2.9,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (d, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=4.9,2.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 142.17, 137.01, 126.52, 126.42, 123.70, 120.85; MS (EI, m/z, rel.\%): 324 ($\mathrm{M}^{+}, 100 \%$), $290\left(\mathrm{M}^{+}-34,8 \%\right), 279\left(\mathrm{M}^{+}-45,4 \%\right), 258\left(\mathrm{M}^{+}-66,4 \%\right), 245\left(\mathrm{M}^{+}-79,5 \%\right)$.

1,3,5-Tris(4-pyridyl)benzene (3t, Table 3). ${ }^{[17]}$ Isolated by column chromatography $\left(\mathrm{CHCl}_{3}:\right.$ TEA $\left.=10: 1\right)$ to afford a white solid in 89% yield. The regioisomer ratio of $\mathbf{3 t}: \mathbf{2 t}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 6 \mathrm{H}), 7.92(\mathrm{~s}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 150.58$, 147.41, 140.44, 126.37, 121.83; MS (EI, m/z, rel.\%): 309 ($\mathrm{M}^{+}, 100 \%$), $281\left(\mathrm{M}^{+}-43,5 \%\right)$.

1,3,5-Tributylbenzene (3u, Table 3). ${ }^{[9]}$ Isolated by column chromatography (n pentane : $\mathrm{DCM}=500: 1$) to afford a yellow oil in 93% yield. The regioisomer ratio of $\mathbf{3 u}: \mathbf{2 u}$ was $96: 4 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.85(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $6 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.40(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.69,125.86,35.72,33.82,22.56,14.01$; MS (EI, m/z, rel.\%): $246\left(\mathrm{M}^{+}, 41 \%\right), 204\left(\mathrm{M}^{+}-42,100 \%\right), 161\left(\mathrm{M}^{+}-85,35 \%\right), 147\left(\mathrm{M}^{+}-99,65 \%\right)$, $119\left(\mathrm{M}^{+}-127,30 \%\right), 105\left(\mathrm{M}^{+}-141,44 \%\right), 91\left(\mathrm{M}^{+}-155,30 \%\right)$.

1,3,5-Tricyclopropylbenzene (3v, Table 3). ${ }^{[1]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=10: 1$) to afford a colorless oil in 97% yield. The regioisomer ratio of $\mathbf{3 v}: \mathbf{2 v}$ was 96:4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.61(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{tt}, J=8.4,5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{ddd}, J=8.4,6.4,4.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.70(\mathrm{dt}, J=6.5,4.5$ $\mathrm{Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.88,120.37,15.38,8.95$; MS (EI, m/z, rel.\%): $198\left(\mathrm{M}^{+}, 68 \%\right), 183\left(\mathrm{M}^{+}-15,20 \%\right), 169\left(\mathrm{M}^{+}-29,17 \%\right), 157\left(\mathrm{M}^{+}-41,43 \%\right)$, $141\left(\mathrm{M}^{+}-57,45 \%\right), 129\left(\mathrm{M}^{+}-69,100 \%\right), 115\left(\mathrm{M}^{+}-83,49 \%\right)$.

1,3,5-Tris(1-cyclohexenyl)benzene (3w, Table 3). ${ }^{[9]}$ Isolated by column chromatography $(\mathrm{PE}: \mathrm{DCM}=10: 1)$ to afford a colorless oil in 81% yield. The regioisomer ratio of $\mathbf{3 w}: \mathbf{2 w}$ was $82: 18 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23(\mathrm{~s}, \mathbf{3 H})$, 6.09 (ddd, $J=5.5,3.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.42$ (ddd, $J=6.2,5.1,2.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.20(\mathrm{qd}, J=$ $6.2,2.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 142.62,137.26,124.55,120.47,27.75,25.87,23.14,22.23 ;$ MS (EI, m/z, rel.\%): $318\left(\mathrm{M}^{+}, 100 \%\right), 275\left(\mathrm{M}^{+}-43,8 \%\right), 264\left(\mathrm{M}^{+}-54,13 \%\right), 237\left(\mathrm{M}^{+}-81,23 \%\right), 195$ $\left(\mathrm{M}^{+}-123,8 \%\right), 165\left(\mathrm{M}^{+}-153,16 \%\right), 141\left(\mathrm{M}^{+}-177,20 \%\right), 81\left(\mathrm{M}^{+}-237,31 \%\right)$.

1,3,5-Tris(trimethylsilyl)benzene (3x, Table 3). ${ }^{[3]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a yellow oil in 92% yield. The regioisomer ratio of $\mathbf{3 x}: \mathbf{2 x}$ was $96: 4 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~s}, 3 \mathrm{H}), 0.29$ (s, 27H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 139.87, 139.36, -0.00; MS (EI, m/z, rel.\%): $294\left(\mathrm{M}^{+}, 10 \%\right), 279\left(\mathrm{M}^{+}-15,100 \%\right), 132\left(\mathrm{M}^{+}-162,11 \%\right), 73\left(\mathrm{M}^{+}-221,20 \%\right)$.

Benzene-1,3,5-tricarboxylic acid trimethyl ester (3y, Table 3). ${ }^{[9]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$) to afford a white solid in 80% yield, mp $146-147{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[33]} 144{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 y} \mathbf{2} \mathbf{2 y}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.30$, 134.47, 131.17, 77.38, 52.54; MS (EI, m/z, rel.\%): $252\left(\mathrm{M}^{+}, 14 \%\right), 221\left(\mathrm{M}^{+}-31\right.$, 100\%).

1,3,5-Triacetylphenylbenzene (3z, Table 3). ${ }^{[9]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford a white solid in 90% yield, $\mathrm{mp} 160-161$ ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[34]} 160.5-161.7{ }^{\circ} \mathrm{C}$). The regioisomer ratio of $\mathbf{3 z}: \mathbf{2 z}$ was $91: 9 .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.60, 137.94, 131.72, 26.81; MS (EI, m/z, rel.\%): 204 (${ }^{+}, 12 \%$), 189 ($\left.{ }^{+}-15,85 \%\right), 161$ $\left(\mathrm{M}^{+}-43,14 \%\right)$.
(E)-1,4-bis(2-methylphenyl)but-1-en-3-yne (4pa, Scheme 2). ${ }^{[28]}$ Isolated by column chromatography (n-pentane : $\mathrm{DCM}=10: 1$) to afford a white solid in 43% yield, mp 56-57 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{[28]} 54-57{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.37$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.03$ (m, 6H), 6.25 (d, J $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.15$,
$138.69,135.86,135.39,131.94,130.62,129.52,128.51,128.30,126.31,125.65$, 125.01, 123.26, 109.40, 93.12, 90.43, 20.83, 19.88; MS (EI, m/z, rel.\%): $232\left(\mathrm{M}^{+}\right.$, $100 \%), 217\left(\mathrm{M}^{+}-15,88 \%\right), 202\left(\mathrm{M}^{+}-30,67 \%\right), 115\left(\mathrm{M}^{+}-117,38 \%\right)$.

2,4-Bis(2-methylphenyl)but-1-en-3-yne (4pb, Scheme 2). ${ }^{[29]}$ Isolated by column chromatography (n-pentane $: ~ \mathrm{DCM}=10: 1$) to afford a yellow oil in 38% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.18 (m, 5H), 7.16-7.10 (m, 1H), $5.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.16, 139.43, $135.55,131.98,131.88,130.41,129.43,128.79,128.33,127.88$, $125.89,125.52$, 124.99, 122.99, 93.28, 89.60, 20.72, 20.31; MS (EI, m/z, rel.\%): 232 ($\left.{ }^{+}, 24 \%\right), 217$ $\left(\mathrm{M}^{+}-15,100 \%\right), 202\left(\mathrm{M}^{+}-30,62 \%\right), 115\left(\mathrm{M}^{+}-117,26 \%\right)$.

2,5-Dimethyl 4'-methyl[1,1'-biphenyl]-2,5-dicarboxylate (5a, Table 4). Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$) to afford a yellow oil in 56% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~s}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 168.70, 166.24, 142.42, 137.46, 137.27, 134.89, 132.37, 131.76, 129.64, 128.99, 128.16, 127.87, 52.39, 52.21, 21.21; MS (EI, m/z, rel.\%): 284 ($\mathrm{M}^{+}, 100 \%$), 253 ($\mathrm{M}^{+}-31,96 \%$); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$ 284.1043, found 316.1040.

Methyl 4,4"-dimethyl-[1, $1^{\prime}: 4^{\prime}, 1{ }^{\prime \prime}$-terphenyl]-2'-carboxylate (5b, Table 4). ${ }^{[18]}$

 Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$) to afford a yellow oil in 51% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.0,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 8 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.02,145.00,140.64,137.82,137.76,136.77,136.44,131.90$, 130.74, 129.63, 129.53, 128.95, 128.75, 128.24, 52.09, 21.13, 21.11; MS (EI, m/z, rel.\%): 316 ($\mathrm{M}^{+}, 100 \%$), $301\left(\mathrm{M}^{+}-15,23 \%\right), 257\left(\mathrm{M}^{+}-59,45 \%\right), 242\left(\mathrm{M}^{+}-74,99 \%\right)$; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2} 316.1458$, found 316.1455.(4,4'-dimethyl-[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-5'-yl)trimethylsilane (6a, Table 4). Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a colorless oil in 75% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 0.36(\mathrm{~s}, 9 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.47,141.01,138.77,137.06,130.76,129.48$, 127.24, 126.56, 21.10, -1.02; MS (EI, m/z, rel.\%): $330\left(\mathrm{M}^{+}, 39 \%\right), 315\left(\mathrm{M}^{+}-15\right.$, 100\%); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Si} 330.1798$, found 330.1796.
(4'-methyl-[1,1'-biphenyl]-3,5-diyl)bis(trimethylsilane) (6b, Table 4). Isolated by column chromatography ($\mathrm{PE}: \mathrm{DCM}=10: 1$) to afford a colorless oil in 70% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.27(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 139.92,139.70,139.19,136.87,136.85,132.74,129.42,127.30,21.09,-$ 1.04; MS (EI, m/z, rel.\%): 312 ($\mathrm{M}^{+}, 34 \%$), 297 ($\mathrm{M}^{+}-15,100 \%$); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{Si}_{2}$ 312.1724, found 312.1721.

Dimethyl [1, $\mathbf{1}^{\prime}: 4^{\prime}, \mathbf{1}^{\prime \prime}$-terphenyl]-2',3'-dicarboxylate (7a, Table 4). ${ }^{[19]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$) to afford a yellow oil in 67% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 4 \mathrm{H}), 3.94$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.83,143.45,139.60,131.25,130.77$, 129.63, 128.15, 127.41, 52.68; MS (EI, m/z, rel.\%): 346 ($\mathrm{M}^{+}, 94 \%$), $315\left(\mathrm{M}^{+}-31\right.$, $100 \%), 287\left(\mathrm{M}^{+}-59,14 \%\right)$.

Tetramethyl benzene-1,2,3,4-tetracarboxylate (7b, Table 4). ${ }^{[20]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford a white solid in 82% yield, mp $122-123{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{[35]} 129-131{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}$, 6 H), 3.89 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.84, 165.28, 133.76, 132.81, 131.03, 53.07, 53.01; MS (EI, m/z, rel.\%): 310 ($\mathrm{M}^{+}, 1 \%$), 279 ($\mathrm{M}^{+}-31,100 \%$).

Dimethyl [1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-4',5'-dicarboxylate (8a, Table 4). ${ }^{[21]}$ Isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=5: 1)$ to afford a yellow solid in 60% yield, mp 76-77 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[36]} 75-77{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 8 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 3.69$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.20, 166.22, 142.24, 141.24, $139.33,139.12,133.40,132.67,129.02,128.87,128.64,128.34,128.30,127.98$, 127.49, 127.24, 52.65, 52.31; MS (EI, m/z, rel.\%): 346 ($\left.{ }^{+}, 46 \%\right), 315\left(\mathrm{M}^{+}-31,89 \%\right)$.

Tetramethyl benzene-1,2,3,5-tetracarboxylate (8b, Table 4). ${ }^{[22]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford a white solid in 80% yield, mp

107-108 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[37]} 105-107{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.82$ (s, 2H), 4.00 (s, 3 H), $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.92, 164.68, 164.34, 140.35, 135.10, 131.26, 129.21, 53.00, 52.97, 52.81; MS (EI, m/z, rel.\%): 310 $\left(\mathrm{M}^{+}, 1 \%\right), 279\left(\mathrm{M}^{+}-31,100 \%\right)$.

Tetramethyl [1,1'-biphenyl]-2,3,4,5-tetracarboxylate (9a, Table 4). ${ }^{[23]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford a yellow solid in 78% yield, mp $155-156^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{[38]} 151^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~s}, 1 \mathrm{H})$, 7.43-7.41 (m, 3H), 7.34-7.32 (m, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 3.62 (s , $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.451,167.446,165.69,164.95,142.19$, $138.00,136.72,134.10,133.99,130.17,130.11,128.58,128.24,53.21,53.02,52.99$, 52.57; MS (EI, m/z, rel.\%): 386 ($\left.\mathrm{M}^{+}, 25 \%\right), 355\left(\mathrm{M}^{+}-31,100 \%\right), 323\left(\mathrm{M}^{+}-63,12 \%\right)$.

Pentamethyl benzene-1,2,3,4,5-pentacarboxylate (9b, Table 4). ${ }^{[24]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford a white solid in 85% yield, mp $150-151^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{[37]} 148-150{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 3.94$ (s, 6 H), 3.94 ($\mathrm{s}, 6 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.76, 164.69, 164.11, 138.76, 134.15, 130.22, 130.12, 53.38, 53.19, 53.15; MS (EI, m/z, rel.\%): 368 $\left(\mathrm{M}^{+}, 1 \%\right), 337\left(\mathrm{M}^{+}-31,100 \%\right)$.

Benzene-1,2,3,4,5,6-hexacarboxylic acid hexamethyl ester (10a, Table 4). ${ }^{[9]}$ Isolated by column chromatography ($\mathrm{PE}: \mathrm{EA}=1: 1$) to afford a white solid in 99% yield, mp 189-190 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[39]} 189-190{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.87$ (s, $18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 165.12, 133.91, 53.45; MS (EI, m/z, rel.\%): 426 $\left(\mathrm{M}^{+}, 1 \%\right), 395\left(\mathrm{M}^{+}-31,100 \%\right), 364\left(\mathrm{M}^{+}-62,4 \%\right), 349\left(\mathrm{M}^{+}-77,6 \%\right), 293\left(\mathrm{M}^{+}-133\right.$, $5 \%)$.

2-Ethyl-3,4,5,6-tetramethyl [1,1'-biphenyl]-2,3,4,5,6-pentacarboxylate (10b, Table 4). ${ }^{[25]}$ Isolated by column chromatography (PE : EA $=1: 1$) to afford a yellow solid in 72% yield, $m p 121-122{ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{[40]} 124-125^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87$ (s, 3H), 3.86 (s, 3H), 3.49 (s, 3H), $0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.49,166.12,165.99,165.57,165.51,140.65,136.86,136.68,135.91$, $132.26,131.52,131.27,128.63,128.39,128.15,61.94,53.30,53.23,53.21,52.56$,
13.43; MS (EI, m/z, rel.\%): 458 ($\mathrm{M}^{+}, 47 \%$), 427 ($\left.\mathrm{M}^{+}-31,27 \%\right), 413$ ($\left.\mathrm{M}^{+}-45,22 \%\right)$, $381\left(\mathrm{M}^{+}-77,54 \%\right), 335\left(\mathrm{M}^{+}-123,100 \%\right)$.

7. Copies of ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

1,2,4-Tris(4-methylphenyl)benzene (2a, Table 2).

1,2,4-Tris(4-methoxyphenyl)benzene (2b, Table 2).

1,2,4-Tris[4-(phenyl)phenyl]benzene (2c, Table 2).

1,2,4-Tris(4-aminophenyl)benzene (2d, Table 2).

1,2,4-Tris(4-dimethylaminophenyl)benzene (2e, Table 2).

1,2,4-Triphenylbenzene (2f, Table 2).

 cranchuring Sivicicition

CDCl_{3}

1,2,4-Tris(4-methoxycarbonylphenyl)benzene (2g, Table 2).

1,2,4-Tris(4-acetylphenyl)benzene (2h, Table 2).

1,2,4-Tris(4-formylphenyl)benzene (2i, Table 2).

1,2,4-Tris(4-nitrophenyl)benzene (2j, Table 2).

1,2,4-Tris(4-fluorophenyl)benzene (2 k , Table 2).

											1			1					
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{19}$ F NMR spectra of 1,2,4-Tris(4-fluorophenyl)benzene (2k, Table 2).

1,2,4-Tris(4-chlorophenyl)benzene (21, Table 2).

	1	1	1	1	T	1	1	1	1	1	1	1	1	1	T	1	,	T	
10	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10

1,2,4-Tris(4-bromophenyl)benzene (2 m , Table 2).

```
#G%%%%
```


10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1,2,4-Tris(3-methylphenyl)benzene (2n, Table 2).

	1	1	1	1	,	1	1	1	1	,	1	1	1	1	1	1	1	1	,
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1,2,4-Tris(3-fluorophenyl)benzene (20, Table 2).

CDCl_{3}
${ }^{19}$ F NMR spectra of 1,2,4-Tris(3-fluorophenyl)benzene (20, Table 2).

CDCl_{3}

1,2,4-Tris(2-fluorophenyl)benzene (2q, Table 2).

CDCl_{3}

${ }^{19}$ F NMR spectra of 1,2,4-Tris(2-fluorophenyl)benzene (2q, Table 2).

1,2,4-Tris(2-thienyl)benzene (2r, Table 2).

CDCl_{3}

CDCl_{3}

10	190	180	170	160	150	140	130	120	110	100	90	so	70	60	50	40	30	20	10

1,2,4-Tris(3-thienyl)benzene (2s, Table 2).

1,2,4-Tris(4-pyridyl)benzene (2t, Table 2).

	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1,2,4-Tris(1-cyclohexenyl)benzene (2 w , Table 2).

CDCl_{3}

		1					1		1	1	1	1	1	1	1	,	1	1	
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

（E）－1，4－bis（trimethylsilyl）but－3－en－1－yne（4xa，Table 2）．

CDCl_{3}

$\begin{aligned} & \text { B } \\ & \text { ¢ } \\ & \text { T } \end{aligned}$		$\begin{aligned} & \text { ⿳亠丷厂犬土} \\ & \text { N } \\ & i \end{aligned}$	\％ \％ $\stackrel{1}{\circ}$		$\stackrel{\infty}{\omega}$	8% 8 if

Benzene-1,2,4-tricarboxylic acid trimethyl ester (2y, Table 2).

1,2,4-Triacetylphenylbenzene (2 z , Table 2).

1,3,5-Tris(4-methylphenyl)benzene (3a, Table 3).

1,3,5-Tris(4-methoxyphenyl)benzene (3b, Table 3).

앙
$\stackrel{8}{\infty}$

CDCl_{3}

n
\hat{n}
$\hat{\omega}$
1

10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1,3,5-Tris[4-(phenyl)phenyl]benzene (3c, Table 3).

1,3,5-Tris(4-aminophenyl)benzene (3d, Table 3).

	1		1	1	1	1	1	1	1	-	1		1		1	1	1		,
)0	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

1,3,5-Tris(4-dimethylaminophenyl)benzene (3e, Table 3).

(

1,3,5-Triphenylbenzene (3f, Table 3).

1,3,5-Tris(4-methoxycarbonylphenyl)benzene (3g, Table 3).

10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

1,3,5-Tris(4-acetylphenyl)benzene (3h, Table 3).

1,3,5-Tris(4-formylphenyl)benzene (3i, Table 3).

1,3,5-Tris(4-fluorophenyl)benzene (3 k , Table 3).

${ }^{19}$ F NMR spectra of $\mathbf{1 , 3 , 5 - T r i s}(4-f l u o r o p h e n y l) b e n z e n e ~(3 k, ~ T a b l e ~ 3) . ~$

CDCl_{3}

1,3,5-Tris(4-chlorophenyl)benzene (31, Table 3).

CDCl_{3}

CDCl_{3}

1,3,5-Tris(4-bromophenyl)benzene (3m, Table 3).

1,3,5-Tris(3-methylphenyl)benzene (3n, Table 3).

1,3,5-Tris(3-fluorophenyl)benzene (30, Table 3).

${ }^{19}$ F NMR spectra of 1,3,5-Tris(3-fluorophenyl)benzene (30, Table 3).
$\stackrel{\circ}{\stackrel{8}{4}}$

1,3,5-Tris(2-methylphenyl)benzene (3p, Table 3).

							1		1		1	1		1					
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

1,3,5-Tris(2-fluorophenyl)benzene (3q, Table 3).

CDCl_{3}

288
80
80

CDCl_{3}

	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	,	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{19}$ F NMR spectra of 1,3,5-Tris(2-fluorophenyl)benzene (3q, Table 3).
$\stackrel{\infty}{\stackrel{\infty}{8}} \stackrel{+}{=}$

1,3,5-Tris(2-thienyl)benzene (3r, Table 3).

CDCl_{3}

CDCl_{3}

1,3,5-Tris(3-thienyl)benzene (3s, Table 3).

CDCl_{3}

CDCl_{3}

1,3,5-Tris(4-pyridyl)benzene (3t, Table 3).

1,3,5-Tributylbenzene (3u, Table 3).

il
$\underbrace{\circ}$ कुज

CDCl_{3}

CDCl_{3}

		1	1	1	1		1	1	1	1	1	1	T	1	T	1	1		
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1,3,5-Tricyclopropylbenzene (3v, Table 3).

1,3,5-Tris(1-cyclohexenyl)benzene (3w, Table 3).

1,3,5-Tris(trimethylsilyl)benzene (3x, Table 3).

Benzene-1,3,5-tricarboxylic acid trimethyl ester (3y, Table 3).
ค

CDCl_{3}

1,3,5-Triacetylphenylbenzene (3z, Table 3).

(E)-1,4-bis(2-methylphenyl)but-1-en-3-yne (4pa, Scheme 2).

	1	1	1	16	15	1	1	1	11	1	1	1	1	6	1	1	1		10
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

2,4-Bis(2-methylphenyl)but-1-en-3-yne (4pb, Scheme 2).

2,5-Dimethyl 4'-methyl[1,1'-biphenyl]-2,5-dicarboxylate (5a, Table 4).

	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	,	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Methyl 4,4"-dimethyl-[1,1':4',1"-terphenyl]-2'-carboxylate (5b, Table 4).
$\stackrel{\circ}{\circ}$
푺

CDCl_{3}

(4,4'-dimethyl-[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$ '-terphenyl]-5'-yl)trimethylsilane (6a, Table 4).

(4'-methyl-[1,1'-biphenyl]-3,5-diyl)bis(trimethylsilane) (6b, Table 4).

Dimethyl [1,1':4',1'-terphenyl]-2',3'-dicarboxylate (7a, Table 4).

$\stackrel{\%}{i}$

CDCl_{3}

Tetramethyl benzene-1,2,3,4-tetracarboxylate (7b, Table 4).

Dimethyl [1,1':3',1'-terphenyl]-4',5'-dicarboxylate (8a, Table 4).

\#

CDCl_{3}

Tetramethyl benzene-1,2,3,5-tetracarboxylate (8b, Table 4).

Tetramethyl [1,1'-biphenyl]-2,3,4,5-tetracarboxylate (9a, Table 4).

CDCl_{3}

Pentamethyl benzene-1,2,3,4,5-pentacarboxylate (9b, Table 4).

CDCl_{3}

6%
607
60

CDCl_{3}

Benzene-1,2,3,4,5,6-hexacarboxylic acid hexamethyl ester (10a, Table 4).

CDCl_{3}

8. References

1 M. Neumeier, U. Chakraborty, D. Schaarschmidt, V. de la Pena O'Shea, R. Perez-Ruiz, A. Jacobi von Wangelin, Angew. Chem. Int. Ed., 2020, 59, 13473-13478.

6 J. García-Lacuna, G. Domínguez, J. Blanco-Urgoiti, J. Pérez-Castells, Org. Lett., 2018, 20, 5219-5223.
7 G. Siemiaszko, Y. Six, New J. Chem., 2018, 42, 20219-20226.
8 L. Rubio-Pérez, R. Azpíroz, A. Di Giuseppe, V. Polo, R. Castarlenas, J. J. Pérez-Torrente, L. A. Oro, Chem. Eur. J., 2013, 19, 15304-15314.
9 V. Cadierno, S. E. García-Garrido, J. Gimeno, J. Am. Chem. Soc., 2006, 128, 15094-15095.
10 K. Yang, P. Wang, Z.-Y. Sun, M. Guo, W. Zhao, X. Tang, G. Wang, Org. Lett., 2021, 23, 3933-3938.
11 A. L. Isfahani, I. Mohammadpoor-Baltork, V. Mirkhani, A. R. Khosropour, M. Moghadam, S. Tangestaninejad, R. Kia, Adv. Synth. Catal., 2013, 355, 957-972.
C. Xi, Z. Sun, Y. Liu, Dalton Trans., 2013, 42, 13327-13330.

13 Y. Matt, I. Wessely, L. Gramespacher, M. Tsotsalas, S. Bräse, Eur. J. Org. Chem., 2020, 2021, 239-245. Wang, H. Yang, Y. Xu, F. Feng, J. W. Ward, A. I. Cooper, J. Am. Chem. Soc., 2020, 142, 11131-11138.
G. D. Wagh, K. G. Akamanchi, Tetrahedron Lett., 2017, 58, 3032-3036.
Y. Ding, R. Ma, Y. Ma, Tetrahedron Lett., 2021, 70, 153016.
M. Schmittel, B. He, P. Mal, Org. Lett., 2008, 10, 2513-2516.
S. K. Avula, N. U. Rehman, M. U. Anwar, G. Aalthani, R. Csuk, A. AlHarrasi, Nat. Prod. Res., 2020, 1-5.
19 S. Li, M. Aljhdli, H. Thakellapalli, B. Farajidizaji, Y. Zhang, N. G. Akhmedov, C. Milsmann, B. V. Popp, K. K. Wang, Org. Lett., 2017, 19, 4078-4081.

20 C. Stephan, C. Munz, H. tom Dieck, J. Organomet. Chem., 1993, 452, 223-227.
M. Lang, Q. Jia, J. Wang, Chem. Asian. J., 2018, 13, 2427-2430.
I. Yavari, L. Moradi, A. Mirzaei, Helv. Chi. Acta., 2006, 89, 2918-2921.
R. Takeuchi, Y. Nakaya, Org. Lett., 2003, 5, 3659-3662.
Y. Shen, H. Jiang, Z. Chen, J. Org. Chem., 2010, 75, 1321-1324.
P. Mohammad, M. Loghman, S. Hiwa, Z. Kiomars, Z. Seyed Amir, Comb.

Chem. High Throughput Screen., 2012, 15, 571-575.
26 J. S. Doll, R. Eichelmann, L. E. Hertwig, T. Bender, V. J. Kohler, E. Bill, H. Wadepohl, D.-A. Roşca, ACS Catal., 2021, 11, 5593-5600.
A. Taheri, X. Pan, C. Liu, Y. Gu, ChemSusChem, 2014, 7, 2094-2098.
S. M. Weber, J. Queder, G. Hilt, Chem. Eur. J., 2020, 26, 12129-12133.
O. V. Zatolochnaya, E. G. Gordeev, C. Jahier, V. P. Ananikov, V. Gevorgyan, Chem. Eur. J., 2014, 20, 9578-9588.
J. Liu, D. K. Das, G. Zhang, S. Yang, H. Zhang and X. Fang, Org Lett., 2018, 20, 64-67.
C. A. Zentner, H. W. Lai, J. T. Greenfield, R. A. Wiscons, M. Zeller, C. F. Campana, O. Talu, S. A. FitzGerald and J. L. Rowsell, Chem Commun., 2015, 51, 11642-11645.
S. Jiang, J. Bacsa, X. Wu, J. T. Jones, R. Dawson, A. Trewin, D. J. Adams and A. I. Cooper, Chem Commun., 2011, 47, 8919-8921.
M. Kathiresan, L. Walder, F. Ye and H. Reuter, Tetrahedron Lett., 2010, 51, 2188-2192.
X. Zhu, Y. Liu, C. Liu, H. Yang and H. Fu, Green Chem., 2020, 22, 43574363.
P. F. Wiley, R. B. Kelly, E. L. Caron, V. H. Wiley, J. H. Johnson, F. A. MacKellar and S. A. Mizsak, J. Am. Chem. Soc., 1977, 99, 542-549.
J. Gaitzsch, V. Rogachev, M. Zahel, P. Metz, Synthesis, 2014, 46, 531-536.
B. A. Nagasampagi, S. Dev, C. Rai and K. L. Murthy, Tetrahedron, 1966, 22, 1949-1976.
G. Maier, R. Wilmes, H. Fuchs and M. Leinweber, K. Ringe, Chemische Berichte, 1993, 126, 1827-1833.
3 L. Shen, Y. Zhao, Q. Luo, Q. S. Li, B. Liu, C. Redshaw, B. Wu and X. J. Yang, Dalton Trans., 2019, 48, 4643-4649.
V. Nair, N. Vidya, A. T. Biju, A. Deepthi, K. G. Abhilash and E. Suresh, Tetrahedron, 2006, 62, 10136-10140.

