Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Direct synthesis of N2-unprotected five-membered cyclic guanidines by regioselective [3+2] annulation of aziridines and cyanamides

Chuan-Chuan Wang,^{a,b} Xin-Lu Wang,^a Qing-Ling Zhang,^a Juntao Liu,^b Zhi-Wei Ma,^b Zhi-Jing Liu^b and Ya-Jing Chen^{a,*}

^a School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.

^b Faculty of Science, Livestock Product Quality Inspection Institute, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China.

Table of Contents

1. General Information	
2. General Procedures and Analytical Data of the Products	
3. References	
4. Copies of NMR Spectra	
5. HPLC Chromatograms	
6. Single-Crystal X-Ray Diffraction Data	

1. General Information

All reactions were performed in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. NMR spectra were recorded on a Bruker AM400 (400 MHz) spectrometer or Agilent DD2 (600 MHz) spectrometer. Chemical shifts are reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR and chloroform-d (δ 77.16) for ¹³C NMR. Data for ¹H NMR are recorded as follows: chemical shift (\delta ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz) and integration. Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectra (HRMS) were recorded on a Thermo Q-Exactive Spectrometer (ESI source). Reactions were monitored through thin layer chromatography (TLC) on silica gel-precoated glass plates. Flash column chromatography was performed using silica gel (300-400 mesh). CCDC-2129607 (4aa), CCDC 2129608 (3ai) and CCDC 2129609 (4oh) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Aziridines 1 were synthesized employing literature procedure.¹

N-tosyl-N-aryl cyanamides 2 were synthesized employing literature procedure.²

2. General Procedures and Analytical Data of the Products

2.1 General Procedures for [3+2] cycloaddition

In a 20 mL test tube was sequentially added aziridines 1 (0.20 mmol, 1 eq), N-tosyl-cyanamides 2 (0.24 mmol, 1.2 eq), CsF (0.40 mmol, 2.0 eq), 18-crown-6 (0.40 mmol, 2.0 eq), 4Å MS (100 mg) and MeCN (2.0 mL). The reaction mixture was stirred at room temperature. Upon complete consumption of 1 as monitored by TLC, the reaction mixture was concentrated under reduced pressure to obtain the crude product which was purified by flash column chromatography (hexane/EA) on silica gel to afford the pure products 3 or 4.

3,4-diphenyl-1-tosylimidazolidin-2-imine (3aa)

White solid (59 mg, 75% yield), purified by ethyl acetate:hexane = 1:6. m. p. 116-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2H), 7.31-7.18 (m, 9H), 7.03-7.02 (m, 3H), 4.98 (dd, J = 7.2 Hz, 5.2 Hz, 1H), 4.23-4.19 (m, 1H), 3.62 (dd, J = 9.2 Hz, 5.2 Hz, 1H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 145.2, 139.0, 138.8, 133.9, 130.0, 129.0, 128.9, 128.4, 127.9, 126.3, 125.0, 123.5, 59.5, 52.3, 21.8 ppm; HRMS (ESI) m/z: $[M + H]^+$ Calcd. for

C₂₂H₂₂N₃O₂S 392.1427, Found 392.1435. **1,4-diphenyl-3-tosylimidazolidin-2-imine (4aa)**

White solid (19 mg, 24% yield), purified by ethyl acetate:hexane = 1:6. m. p. 146-148 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 7.2 Hz, 2H), 7.35-7.31 (m, 7H), 7.21 (d, J = 7.8 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 5.19-5.18 (m, 1H), 4.10-4.07 (m, 1H), 3.60 (dd, J = 9.0 Hz, 3.6 Hz, 1H), 2.40 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.4, 144.9, 140.2, 139.9, 135.5, 129.8, 129.1, 129.0, 128.6, 127.8, 126.6, 124.3, 121.0, 58.4, 53.5, 21.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₂N₃O₂S 392.1427, Found 392.1433.

4-(2-chlorophenyl)-3-phenyl-1-tosylimidazolidin-2-imine (3ba)

White solid (64 mg, 75% yield), purified by ethyl acetate:hexane = 1:3. m. p. 139-141 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 7.2 Hz, 2H), 7.37-7.34 (m, 3H), 7.24-7.21 (m, 4H), 7.17-7.15 (m, 1H), 7.02-7.00 (m, 1H), 6.95-6.90 (m, 2H), 5.41 (dd, J = 8.4 Hz, 3.6 Hz, 1H), 4.23-4.19 (m, 1H), 3.70 (dd, J = 10.2 Hz, 3.6 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 145.2, 139.0, 136.6, 134.0, 132.1, 130.1, 130.0, 129.3, 129.0, 127.7, 127.5, 127.1, 124.2, 121.3, 56.1, 50.9, 21.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁N₃O₂S 426.1038, Found 426.1044.

3-phenyl-4-(o-tolyl)-1-tosylimidazolidin-2-imine (3ca)

White solid (73 mg, 90% yield), purified by ethyl acetate:hexane = 1:2. m. p. 145-147 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz, 2H), 7.29-7.25 (m, 4H), 7.21-7.18 (m, 2H), 7.10-7.08 (m, 2H), 7.01-6.98 (m, 1H), 6.88-6.83 (m, 2H), 5.20 (dd, J = 8.4 Hz, 4.8 Hz, 1H), 4.23-4.20 (m, 1H), 3.56 (dd, J = 9.0 Hz, 4.2 Hz, 1H), 2.43 (s, 3H), 2.28 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 145.2, 139.2, 137.0, 134.4, 134.1, 131.1, 130.0, 128.9, 127.9, 127.8, 126.8, 126.5, 124.4, 122.2, 59.1, 51.2, 21.7, 19.1 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₂S 406.1584, Found 406.1589.

4-(3-chlorophenyl)-3-phenyl-1-tosylimidazolidin-2-imine (3da)

White solid (50 mg, 59% yield), purified by ethyl acetate:hexane = 1:7. m. p. 104-106 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 7.27-7.26 (m, 2H), 7.22-7.21 (m, 2H), 7.19-7.17 (m, 1H), 7.14-7.11 (m, 1H), 7.05-7.03 (m, 1H), 6.95-6.93 (m, 2H), 4.95 (dd, *J* = 7.8 Hz, 4.8 Hz, 1H), 4.23-4.20 (m, 1H), 3.61 (dd, *J* = 10.2 Hz, 4.8 Hz, 1H), 2.45 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.8, 145.4, 141.6, 138.8, 135.1, 133.9, 130.4, 130.1, 129.1, 128.7, 127.8, 126.4, 125.1, 124.5, 123.0, 59.0, 52.0, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁ClN₃O₂S 426.1038, Found 426.1042.

4-(3-bromophenyl)-3-phenyl-1-tosylimidazolidin-2-imine (3ea)

White solid (53 mg, 56% yield), purified by ethyl acetate:hexane = 1:7. m. p. 134-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.35-7.31 (m, 3H), 7.27-7.21 (m, 4H), 7.13 (s, 1H), 7.08-7.04 (m, 2H), 6.98-6.96 (m, 1H), 4.95 (dd, *J* = 8.0 Hz, 4.8 Hz, 1H), 4.24-4.20 (m, 1H), 3.61 (dd, *J* = 10.0 Hz, 4.8 Hz, 1H), 2.46 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 145.4, 141.7, 138.7, 133.8, 131.6, 130.7, 130.1, 129.3, 129.1, 127.8, 125.2, 125.0, 123.2, 123.1, 58.9, 52.1, 21.9 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁⁷⁹BrN₃O₂S 470.0532, Found 470.0547.

3-phenyl-4-(m-tolyl)-1-tosylimidazolidin-2-imine (3fa)

White solid (60 mg, 74% yield), purified by ethyl acetate:hexane = 1:7. m. p. 116-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.0 Hz, 2H), 7.32-7.26 (m, 4H), 7.23-7.19 (m, 2H), 7.09-7.00 (m, 3H), 6.83-6.81 (m, 2H), 4.94 (dd, J = 8.0 Hz, 5.2 Hz, 1H), 4.22-4.18 (m, 1H), 3.63 (dd, J = 9.6 Hz, 5.2 Hz, 1H), 2.45 (s, 3H), 2.21 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 145.1, 139.3, 139.0, 138.9, 134.0, 130.0, 129.2, 129.0 (3C), 127.9, 126.9, 124.9, 123.4, 123.2, 59.5, 52.4, 21.8, 21.5 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₂S 406.1584, Found 406.1592.

4-(4-fluorophenyl)-3-phenyl-1-tosylimidazolidin-2-imine (3ga)

White solid (60 mg, 73% yield), purified by ethyl acetate:hexane = 1:6. m. p. 135-136 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 7.26-7.20 (m, 4H), 7.04-6.99 (m, 3H), 6.88-6.85 (m, 2H), 4.98-4.96 (m, 1H), 4.22-4.19 (m, 1H), 3.60 (dd, J = 9.6 Hz, 5.4 Hz, 1H), 2.46 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 162.6 (d, J = 247.6 Hz), 151.0,

145.3, 138.8, 134.9 (d, J = 3.9 Hz), 134.1, 130.0, 129.1, 128.1 (d, J = 4.5 Hz), 127.9, 125.1, 123.3, 116.1 (d, J = 22.7 Hz), 58.9, 52.3, 21.8 ppm; ¹⁹F NMR (565 MHz, CDCl₃) δ -113.2 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁FN₃O₂S 410.1333, Found 410.1338.

4-(4-chlorophenyl)-3-phenyl-1-tosylimidazolidin-2-imine (3ha)

White solid (60 mg, 71% yield), purified by ethyl acetate:hexane = 1:7. m. p. 136-137 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.26-7.20 (m, 4H), 7.13 (d, J = 8.4 Hz, 2H), 7.04-7.02 (m, 1H), 6.95 (d, J = 8.4 Hz, 2H), 4.96 (dd, J = 7.8 Hz, 5.4 Hz, 1H), 4.25-4.20 (m, 1H), 3.59 (dd, J = 9.6 Hz, 4.8 Hz, 1H), 2.47 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 145.4, 138.8, 137.8, 134.3, 134.1, 130.1, 129.3, 129.1, 127.8, 127.6, 125.1, 123.0, 58.9, 52.2, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁ClN₃O₂S 426.1038, Found 426.1038.

4-(4-bromophenyl)-3-phenyl-1-tosylimidazolidin-2-imine (3ia)

White solid (70 mg, 75% yield), purified by ethyl acetate:hexane = 1:7. m. p. 143-146 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz, 2H), 7.29-7.28 (m, 4H), 7.26-7.25 (m, 2H), 7.23-7.21 (m, 2H), 7.05-7.02 (m, 1H), 6.89-6.88 (m, 2H), 4.95 (dd, J = 7.8 Hz, 5.4 Hz, 1H), 4.23-4.20 (m, 1H), 3.59 (dd, J = 9.6 Hz, 4.8 Hz, 1H), 2.47 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 145.4, 138.8, 138.4, 134.1, 132.3, 130.1, 129.1, 127.9, 127.8, 125.0, 123.0, 122.4, 59.0, 52.1, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁⁷⁹BrN₃O₂S 470.0532, Found 470.0536.

3-phenyl-4-(p-tolyl)-1-tosylimidazolidin-2-imine (3ja)

White solid (69 mg, 85% yield), purified by ethyl acetate:hexane = 1:6. m. p. 94-95 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 7.25-7.23 (m, 2H), 7.21-7.19 (m, 2H), 7.03-6.98 (m, 3H), 6.92-6.90 (m, 2H), 4.95 (dd, J = 7.8 Hz, 6.0 Hz, 1H), 4.20-4.17 (m, 1H), 3.59 (dd, J = 9.6 Hz, 5.4 Hz, 1H), 2.46 (s, 3H), 2.27 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.3, 145.1, 139.0, 138.2, 136.0, 134.1, 130.0, 129.7, 129.0, 127.9, 126.3, 125.0, 123.4, 59.4, 52.4, 21.8, 21.2 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₂S

406.1584, Found 406.1599. 4-(4-(*tert*-butyl)phenyl)-3-phenyl-1-tosylimidazolidin-2-imine (3ka)

White solid (73 mg, 82% yield), purified by ethyl acetate:hexane = 1:8. m. p. 206-208 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 2H), 7.33-7.27 (m, 4H), 7.24-7.19 (m, 4H), 7.05-7.01 (m, 1H), 6.95 (d, J = 8.0 Hz, 2H), 4.97 (dd, J = 8.0 Hz, 5.2 Hz, 1H), 4.20-4.15 (m, 1H), 3.60 (dd, J = 9.6 Hz, 5.2 Hz, 1H), 2.47 (s, 3H), 1.25 (s, 9H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.5, 151.3, 145.1, 139.1, 136.0, 134.2, 130.0, 129.0, 128.1, 125.99, 125.97, 124.9, 123.4, 59.3, 52.4, 34.7, 31.4, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₆H₃₀N₃O₂S 448.2053, Found 448.2066.

4-([1,1'-biphenyl]-4-yl)-3-phenyl-1-tosylimidazolidin-2-imine (3la)

White solid (74 mg, 79% yield), purified by ethyl acetate:hexane = 1:7. m. p. 209-211 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 2H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.42-7.39 (m, 4H), 7.35-7.27 (m, 5H), 7.23-7.21 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.04-7.01 (m, 1H), 5.03 (dd, *J* = 7.8 Hz, 4.8 Hz, 1H), 4.25-4.22 (m, 1H), 3.67 (dd, *J* = 9.6 Hz, 4.8 Hz, 1H), 2.38 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.1, 145.2, 141.3, 140.3, 139.0, 138.1, 134.1, 130.0, 129.01, 128.95, 127.9, 127.74, 127.72, 127.1, 126.7, 124.9, 123.2, 59.3, 52.4, 21.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₈H₂₆N₃O₂S 468.1740, Found 468.1745.

4-(naphthalen-2-yl)-3-phenyl-1-tosylimidazolidin-2-imine (3ma)

White solid (72 mg, 82% yield), purified by ethyl acetate:hexane = 1:8. m. p. 162-164 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.78-7.76 (m, 1H), 7.73-7.69 (m, 3H), 7.60-7.58 (m, 1H), 7.46-7.44 (m, 2H), 7.41 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.20-7.17 (m, 2H), 7.15-7.12 (m, 3H), 7.00-6.97 (m, 1H), 5.13 (dd, *J* = 8.4 Hz, 4.8 Hz, 1H), 4.30 (dd, *J* = 9.6 Hz, 8.4 Hz, 1H), 3.75 (dd, *J* = 10.2 Hz, 4.8 Hz, 1H), 2.30 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.0, 145.2, 139.1, 136.7, 134.0, 133.2, 129.9, 129.4, 129.0, 128.1, 127.8, 127.7, 126.64, 126.55, 125.7, 124.8, 123.3, 122.8 (2C), 59.7, 52.2, 21.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₆H₂₄N₃O₂S 442.1584, Found

442.1585. 3,4-diphenyl-1-(phenylsulfonyl)imidazolidin-2-imine (3na)

White solid (50 mg, 66% yield), purified by ethyl acetate:hexane = 1:7. m. p. 134-136 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 2H), 7.68-7.65 (m, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.26-7.24 (m, 2H), 7.21-7.17 (m, 5H), 7.02-7.01 (m, 3H), 4.99 (dd, J = 7.8 Hz, 5.4 Hz, 1H), 4.25-4.22 (m, 1H), 3.64 (dd, J = 9.6 Hz, 5.4 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.1, 139.1, 138.9, 137.1, 134.1, 129.4, 129.2, 129.0, 128.5, 127.9, 126.3, 125.1, 123.5, 59.6, 52.4 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₁H₂₀N₃O₂S 378.1271, Found 378.1286.

3-(2-fluorophenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3ab)

White solid (57 mg, 70% yield), purified by ethyl acetate:hexane = 1:2. m. p. 170-172 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.21-7.18 (m, 3H), 7.14-7.09 (m, 2H), 7.06-7.05 (m, 2H), 7.02-6.96 (m, 2H), 4.98-4.96 (m, 1H), 4.27-4.24 (m, 1H), 3.63-3.60 (m, 1H), 2.50 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 158.4 (d, J = 252.2 Hz), 151.7, 145.3, 138.1, 133.9, 130.1, 129.8, 129.0, 128.9 (d, J = 7.6 Hz), 128.8, 128.0, 127.1, 125.7 (d, J = 10.6 Hz), 124.5 (d, J = 4.5 Hz), 116.7 (d, J = 19.6 Hz), 59.9, 52.6, 21.8 ppm; ¹⁹F NMR (565 MHz, CDCl₃) δ -119.0 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁FN₃O₂S 410.1333, Found 410.1348.

4-phenyl-3-(o-tolyl)-1-tosylimidazolidin-2-imine (3ac)

White solid (56 mg, 69% yield), purified by ethyl acetate:hexane = 1:3. m. p. 185-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.22-7.17 (m, 3H), 7.13-6.99 (m, 5H), 6.89-6.78 (m, 1H), 4.86-4.81 (m, 1H), 4.30-4.26 (m, 1H), 3.71-3.67 (m, 1H), 2.50 (s, 3H), 2.05 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.6, 145.1, 138.2, 136.7, 136.4, 134.1, 131.4, 129.9, 128.9 (3C), 128.8, 128.2, 127.9, 127.3, 126.8, 60.5, 52.4, 21.8, 18.1 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₂S 406.1584, Found 406.1595.

3-(2-methoxyphenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3ad)

White solid (66 mg, 78% yield), purified by ethyl acetate:hexane = 1:2. m. p. 138-139 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.8 Hz, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.19-7.17 (m, 3H), 7.15-7.13 (m, 1H), 7.05-7.04 (m, 2H), 6.95-6.93 (m, 1H), 6.84-6.83 (m, 1H), 6.77-6.73 (m, 1H), 5.02-4.99 (m, 1H), 4.30-4.27 (m, 1H), 3.75 (s, 3H), 3.62-3.59 (m, 1H), 2.49 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 155.8, 153.0, 144.9, 138.9, 134.4, 131.1, 129.9, 129.2, 128.7, 128.5, 128.2, 127.3, 126.4, 120.9, 112.3, 59.7, 55.7, 52.7, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₃S 422.1533, Found 422.1549.

3-(3-nitrophenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3ae)

White solid (54 mg, 62% yield), purified by ethyl acetate:hexane = 1:7. m. p. 162-164 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.76-7.75 (m, 3H), 7.36-7.31 (m, 3H), 7.24-7.19 (m, 3H), 7.01 (d, *J* = 7.8 Hz, 2H), 5.08 (dd, *J* = 7.8 Hz, 4.2 Hz, 1H), 4.23-4.20 (m, 1H), 3.66 (dd, *J* = 9.6 Hz, 4.8 Hz, 1H), 2.46 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.0, 148.5, 145.6, 140.3, 138.2, 133.6, 130.3, 129.5, 129.4, 128.8, 127.7, 127.5, 126.0, 118.6, 116.7, 58.7, 52.0, 21.8 pm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁N₄O₄S 437.1278, Found 437.1271.

4-phenyl-3-(m-tolyl)-1-tosylimidazolidin-2-imine (3af)

White solid (54 mg, 67% yield), purified by ethyl acetate:hexane = 1:7. m. p. 165-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.21-7.16 (m, 3H), 7.13 (s, 1H), 7.10-7.02 (m, 3H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 4.97 (dd, *J* = 8.0 Hz, 5.6 Hz, 1H), 4.24-4.19 (m, 1H), 3.62 (dd, *J* = 9.6 Hz, 5.2 Hz, 1H), 2.46 (s, 3H), 2.23 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 145.2, 139.2, 138.9, 138.7, 134.1, 130.0, 129.1, 128.8, 128.4, 128.0, 126.4, 126.2, 124.4, 120.7, 59.8, 52.3, 21.8, 21.6 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₂S 406.1584, Found 406.1599.

3-(4-fluorophenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3ag)

White solid (61 mg, 75% yield), purified by ethyl acetate:hexane = 1:9. m. p. 150-151 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 7.24-7.18 (m, 5H), 7.01 (d, *J* = 6.6 Hz, 2H), 6.90-6.87 (m, 2H), 4.91 (dd, *J* = 7.8 Hz, 6.0 Hz, 1H), 4.23-4.20 (m, 1H), 3.60 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 2.47 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 160.0 (d, *J* = 247.6 Hz), 151.5 (d, *J* = 7.6 Hz), 145.3, 138.7, 134.9 (d, *J* = 3.0 Hz), 133.9, 130.1, 129.2, 128.6, 127.9, 126.5, 125.8, 115.8 (d, *J* = 22.7 Hz), 59.9, 52.2, 21.8 ppm; ¹⁹F NMR (565 MHz, CDCl₃) δ -116.9 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁FN₃O₂S 410.1333, Found 410.1339. **3-(4-chlorophenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3ah)**

White solid (61 mg, 72% yield), purified by ethyl acetate:hexane = 1:13. m. p. 146-148 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.23-7.18 (m, 5H), 7.15-7.13 (m, 2H), 7.00-6.98 (m, 2H), 4.94 (dd, J = 7.8 Hz, 5.4 Hz, 1H), 4.23-4.20 (m, 1H), 3.61 (dd, J = 10.2 Hz, 5.4 Hz, 1H), 2.47 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.2, 145.5, 138.6, 137.4, 133.8, 130.2, 129.2, 129.1, 128.7, 127.8, 126.3, 124.6, 116.7, 59.5, 52.2, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁ClN₃O₂S 426.1038, Found 426.1049.

3-(4-bromophenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3ai)

White solid (70 mg, 75% yield), purified by ethyl acetate:hexane = 1:15. m. p. 179-181 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 7.8 Hz, 2H), 7.31-7.29 (m, 4H), 7.24-7.17 (m, 5H), 6.99 (d, *J* = 7.2 Hz, 2H), 4.95 (dd, *J* = 8.4 Hz, 5.4 Hz, 1H), 4.21-4.18 (m, 1H), 3.60 (dd, *J* = 9.6 Hz, 4.8 Hz, 1H), 2.46 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.7, 145.4, 138.7, 138.1, 133.8, 131.9, 130.1, 129.2, 128.6, 127.8, 126.2, 124.5, 117.7, 59.1, 52.2, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁⁷⁹BrN₃O₂S 470.0532, Found 470.0535.

methyl 4-(2-imino-5-phenyl-3-tosylimidazolidin-1-yl)benzoate (3aj)

White solid (68 mg, 76% yield), purified by ethyl acetate:hexane = 1:7. m. p. 208-210 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 7.2 Hz, 2H), 7.50-7.49 (m, 2H), 7.26 (d, J = 7.8 Hz, 2H), 7.22-7.20 (m, 1H), 7.18-7.15 (m, 2H), 6.98 (d, J = 7.2 Hz, 2H), 5.06 (dd, J = 10.8 Hz, 3.6 Hz, 1H), 4.20-4.17 (m, 1H), 3.82 (s, 3H), 3.66 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 2.43 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 166.6, 150.0, 145.4, 143.3, 138.9, 133.8, 130.3, 130.1, 129.3, 128.4, 127.6, 125.8, 125.0, 120.7, 58.6, 52.1, 52.0, 21.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₄H₂₄N₃O₄S 450.1482, Found 450.1486.

White solid (64 mg, 70% yield), purified by ethyl acetate:hexane = 1:13. m. p. 160-162 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.2 Hz, 2H), 7.53-7.52 (m, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.28-7.26 (m, 2H), 7.24-7.22 (m, 1H), 7.19-7.17 (m, 2H), 6.99 (d, *J* = 7.2 Hz, 2H), 5.03 (dd, *J* = 7.2 Hz, 3.6 Hz, 1H), 4.20-4.17 (m, 1H), 3.65 (dd, *J* = 10.2 Hz, 3.6 Hz, 1H), 2.44 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.1 (q, *J* = 4.5 Hz), 145.5, 142.3, 138.8, 133.8, 130.2, 129.4, 128.6, 127.7, 126.5, 125.90, 125.86, 124.2 (q, *J* = 271.8 Hz), 121.5, 58.7, 52.2, 21.8 ppm; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.3 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₀F₃N₃O₂S 460.1301, Found 460.1310.

4-phenyl-3-(p-tolyl)-1-tosylimidazolidin-2-imine (3al)

White solid (60 mg, 74% yield), purified by ethyl acetate:hexane = 1:9. m. p. 134-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.20-7.19 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.04-6.99 (m, 4H), 4.97-4.93 (m, 1H), 4.24-4.20 (m, 1H), 3.60 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 2.46 (s, 3H), 2.21 (s. 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 145.1, 139.0, 136.1, 135.1, 134.0, 130.0, 129.7, 129.0, 128.4, 128.0, 126.5, 123.9, 59.8, 52.3, 21.8, 21.0 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₂S 406.1584, Found 406.1591.

3-(4-methoxyphenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3am)

White solid (59 mg, 70% yield), purified by ethyl acetate:hexane = 1:4. m. p. 139-141 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.22-7.18 (m, 3H), 7.07 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 6.6 Hz, 2H), 6.73 (d, J = 9.0 Hz, 2H), 4.89-4.87 (m, 1H), 4.24-4.21 (m, 1H), 3.69 (s, 3H), 3.60 (dd, J = 9.6 Hz, 6.6 Hz, 1H), 2.47 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 157.4, 152.2, 145.1, 138.9, 134.1, 131.5, 130.0, 129.0, 128.5, 128.1, 126.8, 126.3, 114.4, 60.4, 55.5, 52.3, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₃S 422.1533, Found 422.1538.

3-(2,4-dimethylphenyl)-4-phenyl-1-tosylimidazolidin-2-imine (3an)

White solid (56 mg, 67% yield), purified by ethyl acetate:hexane = 1:3. m. p. 134-136 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.22-7.18 (m, 3H), 7.03-7.02 (m, 2H), 6.93 (s, 1H), 6.80-6.70 (m, 2H), 4.87-4.72 (m, 1H), 4.28-4.25 (m, 1H), 3.76-3.62 (m, 1H), 2.50 (s, 3H), 2.18 (s, 3H), 2.00 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.9, 145.1, 138.4, 137.7, 136.3, 134.1, 133.7, 132.1, 129.9, 128.84 (3C), 128.76, 128.2, 127.6, 127.4, 60.5, 52.4, 21.8, 21.0, 18.0 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₄H₂₆N₃O₂S 420.1740, Found 420.1747.

3-(naphthalen-2-yl)-4-phenyl-1-tosylimidazolidin-2-imine (3ao)

White solid (52 mg, 59% yield), purified by ethyl acetate:hexane = 1:8. m. p. 154-156 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 7.8 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 2H), 7.62-7.53 (m, 3H), 7.38-7.35 (m, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.19-7.16 (m, 3H), 7.08-7.07 (m, 2H), 5.11 (dd, *J* = 7.8 Hz, 5.4 Hz, 1H), 4.28-4.25 (m, 1H), 3.66 (dd, *J* = 9.6 Hz, 5.4 Hz, 1H), 2.46 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.3, 145.2, 139.0, 136.5, 134.1, 133.5, 131.0, 130.1, 129.1, 128.8, 128.5, 128.0, 127.7, 127.6, 126.4, 126.3, 125.6, 122.7, 120.9, 59.7, 52.4, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₆H₂₄N₃O₂S 442.1584, Found 442.1589.

4-benzyl-1-phenyl-3-tosylimidazolidin-2-imine (4oa)

White solid (80 mg, 99% yield), purified by ethyl acetate:hexane = 1:3. m. p. 127-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 2H), 7.33-7.24 (m, 11H), 7.07-7.02 (m, 1H), 4.36-4.31 (m, 1H), 3.51-3.46 (m, 1H), 3.41-3.37 (m, 2H), 3.00 (dd, J = 13.6 Hz, 9.6 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.0, 145.1, 140.0, 136.0, 135.6, 130.2, 129.6, 128.9 (3C), 127.5, 127.3, 124.0, 120.6, 56.2, 49.0, 41.8, 21.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₄N₃O₂S 406.1584, Found 406.1590.

4-butyl-1-phenyl-3-tosylimidazolidin-2-imine (4pa)

White solid (67 mg, 90% yield), purified by ethyl acetate:hexane = 1:3. m. p. 101-103 °C.¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 7.2 Hz, 2H), 7.33-7.30 (m, 4H), 7.06 (t, *J* = 7.2 Hz, 1H), 4.13-4.06 (m, 1H), 3.64-3.61 (m, 1H), 3.35 (dd, *J* = 9.0 Hz, 3.0 Hz, 1H), 2.42 (s, 3H), 1.98-1.91 (m, 1H), 1.83-1.78 (m, 1H), 1.39-1.34 (m, 4H), 0.93-0.91 (m, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.3, 145.0, 140.2, 135.5, 130.1, 129.0, 127.6, 123.9, 120.5, 55.3, 50.1, 35.6, 26.8, 22.6, 21.7, 14.1 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₀H₂₆N₃O₂S 372.1740, Found 372.1749.

4-isobutyl-1-phenyl-3-tosylimidazolidin-2-imine (4qa)

White solid (58 mg, 78% yield), purified by ethyl acetate:hexane = 1:2. m. p. 116-118 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 7.2 Hz, 2H), 7.33-7.31 (m, 4H), 7.06 (t, J = 7.2 Hz, 1H), 4.14-4.10 (m, 1H), 3.62-3.60 (m, 1H), 3.32 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 2.42 (s, 3H), 1.94-1.90 (m, 1H), 1.75-1.62 (m, 2H), 1.00 (d, J = 6.6 Hz, 6H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.2, 145.0, 140.3, 135.5, 130.2, 129.0, 127.6, 123.9, 120.5, 54.1, 50.6, 45.0, 24.9, 23.4, 22.1, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₀H₂₆N₃O₂S 372.1740, Found 372.1747.

4-(tert-butyl)-1-phenyl-3-tosylimidazolidin-2-imine (4ra)

White solid (34 mg, 46% yield), purified by ethyl acetate:hexane = 1:3. m. p. 172-174 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.30-7.28 (m, 4H), 7.04 (t, J = 7.2 Hz, 1H), 3.91-3.89 (m, 1H), 3.43-3.42 (m, 1H), 3.35-3.32 (m, 1H), 2.41 (s, 3H), 1.01 (s, 9H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.4, 145.0, 139.9, 135.5, 130.1, 129.0, 127.7, 123.9, 120.4, 63.5, 48.0, 35.5, 25.8, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₀H₂₆N₃O₂S 372.1740, Found 372.1749.

1-phenyl-3-tosyloctahydro-2*H*-benzo[*d*]imidazol-2-imine (4sa)

White solid (57 mg, 77% yield), purified by ethyl acetate:hexane = 1:2. m. p. 156-161 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2H), 7.38-7.35 (m, 4H), 7.22 (t, J = 7.8 Hz, 1H), 7.13-7.12 (m, 2H), 3.31-3.26 (m, 1H), 2.96-2.93 (m, 1H), 2.72-2.70 (m, 1H), 2.47 (s, 3H), 1.94-1.89 (m, 2H), 1.78-1.70 (m, 2H), 1.38-1.33 (m, 2H), 1.16-1.10 (m, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 154.4, 145.1, 138.8, 133.4, 130.0, 129.3, 128.2, 126.7, 126.3, 64.3, 62.9, 30.5, 28.7, 24.7, 23.8, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₀H₂₄N₃O₂S 370.1584, Found 370.1589

4-benzyl-1-(2-fluorophenyl)-3-tosylimidazolidin-2-imine (4ob)

White solid (75 mg, 89% yield), purified by ethyl acetate:hexane = 1:2. m. p. 132-134 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 7.8 Hz, 2H), 7.35-7.30 (m, 4H), 7.28-7.25 (m, 3H), 7.17-7.15 (m, 1H), 7.07-7.03 (m, 3H), 4.39-4.35 (m, 1H), 3.46-3.43 (m, 1H), 3.34-3.32 (m, 2H), 3.09 (dd, J = 13.8 Hz, 9.0 Hz, 1H), 2.44 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 157.8 (d, J = 250.7 Hz), 151.2, 145.1, 136.0, 135.7, 130.1, 129.8, 128.9, 128.5, 128.3 (d, J = 7.6 Hz), 127.6, 127.3, 126.8 (d, J = 10.6 Hz), 124.6 (d, J = 3.0 Hz), 116.7 (d, J = 19.6 Hz), 57.3, 50.0, 41.5, 21.8 ppm; ¹⁹F NMR (565 MHz, CDCl₃) δ -120.4 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₃FN₃O₂S 424.1490, Found 424.1498.

4-benzyl-1-(o-tolyl)-3-tosylimidazolidin-2-imine (4oc)

White solid (63 mg, 75% yield), purified by ethyl acetate:hexane = 1:2. m. p. 146-148 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 7.8 Hz, 2H), 7.35-7.31 (m, 4H), 7.29-7.25 (m, 3H), 7.16-7.11 (m, 3H), 6.76 (d, J = 6.6 Hz, 1H), 4.45-4.42 (m, 1H), 3.41-3.38 (m, 2H), 3.25 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 3.12 (dd, J = 13.8 Hz, 9.0 Hz, 1H), 2.45 (s, 3H), 1.94 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.7, 144.9, 137.4, 136.6, 136.1, 135.7, 131.4, 130.0, 129.9, 128.9, 128.1, 127.9, 127.3, 127.2, 127.1, 57.2, 50.5, 41.8, 21.8, 17.6 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₄H₂₆N₃O₂S 420.1740, Found 420.1757.

4-benzyl-1-(m-tolyl)-3-tosylimidazolidin-2-imine (4of)

White solid (80 mg, 95% yield), purified by ethyl acetate:hexane = 1:2. m. p. 142-144 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 2H), 7.32-7.30 (m, 4H), 7.26-7.24 (m, 3H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.09 (s, 1H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 4.36-4.33 (m, 1H), 3.50-3.47 (m, 1H), 3.39-3.35 (m, 2H), 3.00 (dd, *J* = 13.8 Hz, 9.6 Hz, 1H), 2.42 (s, 3H), 2.28 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 150.1, 145.0, 139.9, 138.9, 136.2, 135.7, 130.1, 129.6, 128.9, 128.8, 127.6, 127.2, 125.0, 121.6, 118.0, 56.3, 49.2, 41.8, 21.7, 21.6 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₄H₂₆N₃O₂S 420.1740, Found 420.1758.

4-benzyl-1-(4-chlorophenyl)-3-tosylimidazolidin-2-imine (4oh)

White solid (87 mg, 99% yield), purified by ethyl acetate:hexane = 1:4. m. p. 123-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 2H), 7.33-7.29 (m, 4H), 7.27-7.20 (m, 7H), 4.34-4.30 (m, 1H), 3.46-3.42 (m, 1H), 3.38-3.32 (m, 2H), 3.00 (dd, J = 13.6 Hz, 9.6 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 145.3, 138.5, 135.8, 135.4, 130.3, 129.6, 129.0, 128.8, 127.5 (2C), 127.4, 121.5, 56.1, 48.8, 41.8, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₃ClN₃O₂S 440.1194, Found 440.1194.

4-benzyl-3-tosyl-1-(4-(trifluoromethyl)phenyl)imidazolidin-2-imine (4ok)

White solid (81 mg, 86% yield), purified by ethyl acetate:hexane = 1:8. m. p. 136-138 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 7.8 Hz, 2H), 7.51-7.48 (m, 4H), 7.33-7.29 (m, 4H), 7.26-7.23 (m, 3H), 4.35-4.32 (m, 1H), 3.49-3.46 (m, 1H), 3.41-3.35 (m, 2H), 2.99 (dd, J = 13.8 Hz, 9.6 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 145.4, 143.2, 135.7, 135.4, 130.4, 129.6, 129.0, 127.5, 127.4, 126.0 (q, J = 3.0 Hz), 125.1 (q, J = 36.2 Hz), 124.3 (q, J = 270.3 Hz), 119.3, 56.0, 48.5, 41.9, 21.8 ppm; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.1 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₄H₂₃F₃N₃O₂S 474.1458, Found 474.1469. **4-benzyl-1-(***p***-tolyl)-3-tosylimidazolidin-2-imine (40l)**

White solid (83 mg, 99% yield), purified by ethyl acetate:hexane = 1:2. m. p. 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 2H), 7.33-7.30 (m, 4H), 7.27-7.24 (m, 3H), 7.13 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 4.36-4.31 (m, 1H), 3.48-3.44 (m, 1H), 3.40-3.33 (m, 2H), 3.00 (dd, J = 13.2 Hz, 9.6 Hz, 1H), 2.42 (s, 3H), 2.27 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 145.0, 137.2, 136.1, 135.6, 134.1, 130.1, 129.6, 129.5, 128.9, 127.6, 127.3, 121.1, 56.3, 49.3, 41.7, 21.8, 20.9 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₄H₂₆N₃O₂S 420.1740, Found 420.1753.

2.2 Procedure for the Transformation of Cyclic Guanidines to Ureas

To a 25 mL oven dried round bottom flask with a magneton was added cyclic guanidine compounds **3** or **4** (0.2 mmol, 1 eq), sodium acetate (4.0 mmol, 20 eq) and 50% AcOH (4.0 mL). Then, sodium nitrite (5.0 mmol, 25 eq) was added within 1 h at room temperature. The reaction mixture was stirred at 50 °C for another 3-5 h. Upon complete consumption of the starting material (detected by TLC), the reaction mixture was then neutralized with saturated aqueous solution of NaHCO₃ and extracted with ethyl acetate. The ethyl acetate fraction was separated, washed with brine and dried over anhydrous Na₂SO₄. The volatile components were then removed under vacuum and the residue was further purified by column chromatography on silica gel to afford the urea products **5** or **6**.

3,4-diphenyl-1-tosylimidazolidin-2-one (5aa)

White solid (78 mg, 99% yield), purified by ethyl acetate:hexane = 1:5. m. p. 170-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.22-7.18 (m, 5H), 7.13-7.09 (m, 4H), 6.94 (t, J = 7.2 Hz, 1H), 5.12 (dd, J = 8.8 Hz, 5.2 Hz, 1H), 4.26-4.22 (m, 1H), 3.74 (dd, J = 9.6 Hz, 5.2 Hz, 1H), 2.37 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 145.2, 138.5, 137.2, 134.9, 129.8, 129.4, 128.91, 128.87, 128.4, 126.2, 125.0, 121.3, 57.8, 50.4, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₁N₂O₂S 393.1267, Found 393.1270.

3-(4-bromophenyl)-4-phenyl-1-tosylimidazolidin-2-one (5ai)

White solid (92 mg, 98% yield), purified by ethyl acetate:hexane = 1:5. m. p. 174-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.31-7.26 (m, 5H), 7.19-7.14 (m, 4H), 5.17 (dd, J = 8.8 Hz, 5.2 Hz, 1H), 4.34-4.30 (m, 1H), 3.80 (dd, J = 9.6 Hz, 5.2 Hz, 1H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 145.4, 138.1, 136.3, 134.8, 131.9, 129.9, 129.6, 129.1, 128.4, 126.1, 122.6, 117.9, 57.6, 50.3, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₂H₂₀Br⁷⁹N₂O₃S 471.0373, Found 471.0381.

3-(naphthalen-2-yl)-4-phenyl-1-tosylimidazolidin-2-one (5ao)

White solid (87 mg, 98% yield), purified by ethyl acetate:hexane = 1:5. m. p. 187-189 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.70-7.62 (m, 4H), 7.51 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 7.40-7.35 (m, 4H), 7.29-7.27 (m, 2H), 7.26-7.22 (m, 3H), 5.34 (dd, J = 9.2 Hz, 5.2 Hz, 1H), 4.40-4.35 (m, 1H), 3.87 (dd, J = 9.6 Hz, 5.2 Hz, 1H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 145.3, 138.5, 135.0, 134.8, 133.4, 130.8, 129.9, 129.5, 129.0, 128.8, 128.5, 127.8, 127.6, 126.5, 126.2, 125.7, 120.4, 119.1, 57.9, 50.4, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₆H₂₃N₂O₃S 443.1424, Found 443.1427.

4-benzyl-1-phenyl-3-tosylimidazolidin-2-one (60a)

White solid (70 mg, 86% yield), purified by ethyl acetate:hexane = 1:6. m. p. 173-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 2H), 7.35-7.24 (m, 11H), 7.07 (t, J = 6.8 Hz, 1H), 4.69-4.65 (m, 1H), 3.82-3.77 (m, 1H), 3.60-3.50 (m, 2H), 2.88 (dd, J = 13.2 Hz, 10.0 Hz, 1H), 2.43 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 145.0, 138.4, 136.4, 135.6, 129.8, 129.6, 129.1, 129.0, 128.5, 127.4, 124.5, 118.9, 54.6, 47.3, 41.0, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₃H₂₃N₂O₃S 407.1424, Found 407.1438.

4-benzyl-1-(o-tolyl)-3-tosylimidazolidin-2-one (6oc)

White solid (80 mg, 95% yield), purified by ethyl acetate:hexane = 1:5. m. p. 167-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 2H), 7.34-7.24 (m, 7H), 7.16-7.09 (m, 3H), 6.81 (d, J = 7.6 Hz, 1H), 4.73-4.67 (m, 1H), 3.73-3.68 (m, 1H), 3.48-3.38 (m, 2H), 3.06 (dd, J = 13.6 Hz, 9.2 Hz, 1H), 2.43 (s, 3H), 1.99 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 144.8, 136.4, 136.0, 135.8, 135.5, 131.3, 129.9, 129.7, 129.0, 128.4, 128.3, 127.4, 126.9, 126.6, 55.3, 49.3, 40.9, 21.8, 17.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₄H₂₅N₂O₃S 421.1580, Found 421.1592.

1-phenyl-3-tosyloctahydro-2H-benzo[d]imidazol-2-one (6sa)

White solid (69 mg, 93% yield), purified by ethyl acetate:hexane = 1:4. m. p. 68-70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.35-7.31 (m, 4H), 7.21-7.17 (m, 1H), 7.12-7.10 (m, 2H), 3.52-3.38 (m, 2H), 2.91-2.87 (m, 1H), 2.43 (s, 3H), 2.09-1.96 (m, 2H), 1.87-1.73 (m, 2H), 1.53-1.24 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 144.9, 136.4, 134.8, 129.7, 129.1, 128.7, 126.5, 124.6, 63.8, 62.4, 30.2, 28.5, 24.6, 23.8, 21.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₀H₂₃N₂O₃S 371.1424, Found 371.1430.

2.3 Procedure for the Deprotection of 60a

In a 20 mL reaction tube were added **60a** (0.2 mmol), magnesium chips (3.0 mmol) and methanol (4.0 mL). The mixture was then stirred at 70 °C. Upon the complete consumption of **60p** detected by TLC, the reaction mixture was filtered through a celite pad and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate: hexane = 1:2), affording the desired product 7 as white solid (48 mg, 95% yield). m. p. 163-165 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.36-7.32 (m, 4H), 7.29-7.27 (m, 1H), 7.23 (d, *J* = 7.2 Hz, 2H), 7.05 (t, *J* = 7.2 Hz, 1H), 5.08-4.83 (mz, 1H), 4.04-3.98 (m, 2H), 3.65-3.63 (m, 1H), 2.94-2.86 (m, 2H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 158.6, 140.1, 136.8, 129.2, 129.1, 129.0, 127.3, 122.9, 118.0, 50.7, 50.6, 42.5 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₂₆H₁₇N₂O 253.1335, Found 253.1340.

3. References.

[1] (a) Steiman, T. J.; Liu, J.; Mengiste, A. et al. Synthesis of β -Phenethylamines via Ni/Photoredox Cross-Electrophile Coupling of Aliphatic Aziridines and Aryl Iodides. *Journal of the American Chemical Society*, **2020**, *142* (16): 7598-7605; (b) Das, B. K.; Pradhan, S.; Punniyamurthy, T. Stereospecific Ring Opening and Cycloisomerization of Aziridines with Propargylamines: Synthesis of Functionalized Piperazines and Tetrahydropyrazines. *Organic Letters*, **2018**, *20* (15): 4444-4448; (c) Thakur, V. V.; Sudalai, A. N-Bromoamides as versatile catalysts for aziridination of olefins using chloramine-T. *Tetrahedron letters*, **2003**, *44* (5): 989-992.

[2] (a) Ayres, J. N.; Williams, M. T. J.; Tizzard, G. J. et al. Synthesis and Reactivity of N-Allenyl Cyanamides. *Organic Letters*, 2018, *20* (17): 5282-5285; (b) Anbarasan, P.; Neumann, H.; Beller, M. A General Rhodium-Catalyzed Cyanation of Aryl and Alkenyl Boronic Acids. *Angewandte Chemie International Edition*, 2011, *50* (2): 519-522.

4. Copies of NMR Spectra

S24

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

Ts

3ab ¹⁹F NMR (565 MHz, CDCl₃)

S38

-86 -92 -98 -104 -112 -118 -124 -132 -140

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

S66

5. HPLC Chromatograms

HPLC chromatogram of 5aa

Enantiomeric excess was determined by HPLC with a Chiralpak[®] IB column (*n*-hexane/*i*-propanol = 75/25, 1.0 mL/min, 210 nm, 25 °C);

 $t_r(R) = 17.396 \text{ min}, t_r(S) = 19.533 \text{ min}; >99\% \text{ ee.}$

RT [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%
17.350	0.448	2415.292	80.088	100.0000
	Sum	2415.2915		

HPLC chromatogram of 6aa

Enantiomeric excess was determined by HPLC with a Chiralpak[®] IB column (*n*-hexane/*i*-propanol = 75/25, 1.0 mL/min, 210 nm, 25 °C);

 $t_r(R) = 16.261 \text{ min}, t_r(S) = 17.606 \text{ min}; >99\% \text{ ee.}$

Signal:	DAD1 C, Sig=210,4 Ref=360,100				
RT [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%	
16.261	0.428	1160.281	40.313	50.1472	
17.606	0.452	1153.468	38.274	49.8528	
	Sum	2313.7491			

1079.1663

Sum

HPLC chromatogram of 60a

Enantiomeric excess was determined by HPLC with a Chiralpak[®] IB column (*n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm, 25 °C);

 $t_r(R) = 12.156 \text{ min}, t_r(S) = 14.774 \text{ min}; >99\% \text{ ee.}$

Signal: DADTA, Sig=220,4 Ref=360,100				
RT [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%
12.156	0.323	3138.951	143.761	46.8087
14.774	0.387	3566.966	136.394	53.1913
	Sum	6705.9170		

J					
RT [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area%	
14.572	0.387	12224.776	467.296	100.0000	
	Sum	12224.7764			
6. Single-Crystal X-Ray Diffraction Data

Fig S-1. ORTEP drawing of 4aa (CCDC 2129607) with 50% ellipsoid probability

Identification code	4aa
Empirical formula	C ₂₂ H ₂₁ N ₃ O ₂ S
Formula weight	391.48 g/mol
Temperature	276(2) K
Wavelength	1.54178 Å
Crystal system, space group	Monoclinic, P 1 21/n 1
Unit cell dimensions	$a = 8.6347(16) \text{ Å} \qquad \alpha = 90^{\circ}$
	b = 6.1566(11) Å β =95.175(7)°
	c = 35.983(7) Å $\gamma = 90^{\circ}$
Volume	1905.1(6) Å ³
Ζ	4
Absorption coefficient	1.698 mm ⁻¹
F(000)	824
Theta range for data collection	2.47 to 65.49°
imiting indices	-8<=h<=10, -7<=k<=7, -42<=l<=42
Absorption correction	Multi-Scan
Data / parameters	3183/258
Goodness-of-fit on F ²	1.096
Final R indices [l>2sigma(l)]	R1 = 0.0428, wR2 = 0.1052
R indices (all data)	R1 = 0.0521, wR2 = 0.1107
Largest diff. peak and hole	0.337 and -0.419 eÅ ⁻³

Fig S-1. ORTEP drawing of 3ai (CCDC 2129608) with 50% ellipsoid probability

Identification code	3ai
Empirical formula	C ₂₂ H ₂₀ BrN ₃ O ₂ S
Formula weight	470.38 g/mol
Temperature	301(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P -1
Unit cell dimensions	a = 8.4289(7) Å α = 102.292(3)°
	b = 8.9127(7) Å β =92.181(4)°
	c = 14.3601(13) Å γ = 93.615(3)°
Volume	1050.50(15) Å ³
Ζ	2
Absorption coefficient	2.079 mm ⁻¹
F(000)	480
Theta range for data collection	2.35 to 28.34°
Limiting indices	-11<=h<=11, -11<=k<=11, -19<=l<=19
Absorption correction	Multi-Scan
Data / parameters	5229/267
Goodness-of-fit on F ²	1.033
Final R indices [l>2sigma(l)]	R1 = 0.0346, wR2 = 0.0869
R indices (all data)	R1 = 0.0460, WR2 = 0.0941
Largest diff. peak and hole	0.434 and -0.577 eÅ ⁻³

Fig S-1. ORTEP drawing of 4oh (CCDC 2129609) with 50% ellipsoid probability

Identification code	4oh
Empirical formula	C ₂₃ H ₂₂ ClN ₃ O ₂ S
Formula weight	439.94 g/mol
Temperature	306(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P 1 21/n 1
Unit cell dimensions	$a = 13.4605(8) \text{ Å}$ $\alpha = 90^{\circ}$
	b = 8.4799(5) Å β =102.521(2)°
	c = 19.7332(12) Å $\gamma = 90^{\circ}$
Volume	2198.9(2) Å ³
Ζ	4
Absorption coefficient	0.293 mm ⁻¹
F(000)	920
Theta range for data collection	2.62 to 26.53°
Limiting indices	-16<=h<=16, -10<=k<=10, -24<=l<=24
Absorption correction	Multi-Scan
Data / parameters	4540/275
Goodness-of-fit on F ²	1.009
Final R indices [l>2sigma(l)]	R1 = 0.0635, wR2 = 0.1352
R indices (all data)	R1 = 0.1273, wR2 = 0.1715
Largest diff. peak and hole	0.210 and -0.322 eÅ ⁻³