Supporting Information

An Unexpected Photoinduced Cyclization to Synthesize Fully Substituted γ-Spirolactones via Intramolecular Hydrogen Abstraction with Allyl Acrylates

Xin Sun, ^{b,c} Min Zhou, ^c Jing-Ping Zhu, ^b Xiang-Fei Zhang, ^b Zu-Jiang Liu, ^b Hao-Ran Li, ^b Yan Chen, ^b He-Ping Chen, ^a Jie Zhao, ^c Jian-Xin Pu, ^c Miao Yu, ^{*,b} Ji-Kai Liu^{*,a} and Bin Wu^{*,a}

^aSchool of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China ^bSchool of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China

^cState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Contents of Supporting Information

Page S1: Title of the paper, author's name, and address along with the contents

Page S2: Experimental section

Page S3: Original UV absorption spectra of 8a, 8p and 8t in MeOH and MeCN

Page S3-S6: Screening the optimal reaction conditions with 8a

Page S7: Structurally similar unreactive substrates

Page S7-S9: Deuterium Experiments

Page **S9**: Computational Studies. DFT study of *sequence a* (**Path 1**)

Page S10-S26: Computational Studies. DFT study of sequence b (Path 2, 3 and 4)

Page S27-S52: Preparation and NMR data of allyl acrylic esters 8

Page S53: References

Page S53-S74: Preparation and NMR data of spirolactone products 9

Page S74-S117: x-ray data of (±)-9f', (±)-9j' and (±)-9j

Page S118-S200: ¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR spectra of compounds

Experiment Section.

1. NMR spectra were recorded on Bruker DPX-400, DRX-600 and Bruker Ascend IIITM 600 MHz NMR spectrometer instruments and calibrated using residual solvent peaks as internal reference, such as CDCl₃ solutions. High resolution mass spectra were performed on API STAR Pulsar and Thermo Q Exactive. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Wakogel 300 - 400 mesh) was used for column chromatography. The photopromoted reactions were run in Perfectlight PLMR Low Temperature Photosynthetic System (Instrument model : PLMR254-XXYY; Low Voltage Mercury Lamp Source, Main Wave Peak 254 nm, Electric Power 8-40W Optional, Low Voltage Mercury Lamp , AC 220 Regulator).

Figure S1. Photos of Photosynthetic reactor

2.Reagent: Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Unsaturated ketenes were purchased from Accela ChemBio Co., Ltd and Shanghai Titan Scientific Co., Ltd.. Cinnamic acids were purchased from Energy-Chemical Co., Ltd.. Other reagents were purchased from Thermo Fisher Scientific Co., Ltd. and Shanghai Aladdin Biochemical Technology Co., Ltd.. Solvents were purchased from Shanghai Titan Scientific Co., Ltd. and Thermo Fisher Scientific Co., Ltd..

All reactions were carried out under N₂ atmosphere.

Figure S2. Original UV absorption spectra of 8a, 8p and 8t in MeOH (left); Original UV absorption spectra of 8a, 8p and 8t in MeCN (right)

Table S1. Screening for the optimal reaction conditions with 8a ".

entry	solvent	λ	additive	temp.	time	conv.	yield
		(nm)	(equiv.)	(°C)	(h)	(%)	$(\%)^b$
1	MeCN	254	-	r.t.	31	100	36
2	MeOH	254	-	r.t.	34	100	46
3	EtOH	254	-	r.t.	35	100	30
4	ⁿ PrOH	254	-	r.t.	38	100	20
5^c	TFE	254	-	r.t.	12	100	8
6 ^{<i>d</i>}	HFIP	254	-	r.t.	4	100	trace
7	CH_2Cl_2	254	-	r.t.	6	100	10
8	DCE	254	-	r.t.	10	100	trace
9	toluene	254	-	r.t.	16	100	9
10	PhCF ₃	254	-	r.t.	10	100	10
11	PhF	254	-	r.t.	12	100	8
12	PhCl	254	-	r.t.	12	100	6
13	THF	254	-	r.t.	6	100	trace
14	2-MeTHF	254	-	r.t.	9	100	trace
15 ^e	CPME	254	-	r.t.	8.5	100	trace
16	1,4-dioxane	254	-	r.t.	12	100	6
17 ^f	DME	254	-	r.t.	3	100	0
18	butyl ether	254	-	r.t.	14	100	8
19	Acetone	254	-	r.t.	6	100	trace

20	ethyl acetate	254	-	r.t.	4	100	0
21	DMF	254	-	r.t.	12	100	0
22	DMSO	254	-	r.t.	12	100	0
23	MeOH	185	-	r.t.	26	100	36
24	MeOH	310	-	r.t.	34	100	36
25	MeOH	365	-	r.t.	35	100	38
26 ^g	MeOH	blue LEDs	-	r.t.	24	trace	0
27 ^{<i>h</i>}	MeOH	purple LEDs	-	r.t.	24	trace	trace
28	MeOH	254	PhSSPh	r.t.	24	100	4
29	MeOH	254	PhSeSePh	r.t.	12	100	trace
30 ⁱ	MeOH	254	TBADT	r.t.	12	100	trace
31	MeOH	sunlight	TBADT	r.t.	12	trace	trace
32	MeOH	254	AIBN	r.t.	12	100	10
33	MeOH	254	DTBP	r.t.	12	100	5
34	MeOH	254	TBHP	r.t.	12	100	trace
35 ^j	MeOH	254	DLP	r.t.	12	100	9
37	MeOH	254	TBPB	r.t.	12	100	10
38^k	MeOH	254	TEMPO	r.t.	12	100	26
39	MeOH	254	-	0	48	100	33
40 ¹	MeOH	254	-	r.t.	34	100	40
41 ^m	MeOH	254	-	r.t.	34	100	43

^a typical reaction conditions: 8a (0.1 mmol), hv (254 nm), solvent (10 mL), N₂, rt;

^{*b*} isolated yield; ^{*c*}TFE: 2,2,2-trifluoroethanol; ^{*d*}HFIP: 1,1,1,3,3,3-hexafluoro-2-propanol; ^{*e*}CPME: cyclopentyl methyl ether; ^{*f*}DME: 1,2-dimethoxyethane; ^{*g*}(λ = 455-460 nm, 60W); ^{*h*}(λ = 405-410 nm, 60W); ^{*i*}TBADT tetrabutylammonium decatungstate; ^{*j*}DLP: dilauroyl peroxide; ^{*k*}TEMPO: 2,2,6,6-tetramethylpiperidinooxy ^{*l*} :the reaction was run at 0.1M; ^{*m*} the reaction was run at 0.05M.

Table S2. Screening for the optimal reaction conditions of 8a in the presence of organic photosensitizer ^{*a*}

entry	Solvent	Photocatalyst	nm	conversion	yield ^b
1	CH₃OH	9-Fluorenone	400	trace	0
2	CH₃CN	9-Fluorenone	400	trace	0
3	CH₃OH	2-Bromo-9-fluorenone	400	30	0
4	CH₃CN	2-Bromo-9-fluorenone	400	20	0
5	CH₃OH	Benzil	400-435	trace	0
6	CH₃CN	Benzil	400-435	trace	0
7	CH₃OH	Methyl benzoylformate	400	<5	0
8	CH₃CN	Methyl benzoylformate	400	<5	0

9	CH₃OH	5-Dibenzosuberenone	400	trace	0
10	CH₃CN	5-Dibenzosuberenone	400	trace	0
11	CH₃OH	2-Chlorothioxanthone	400	50	0
12	CH₃CN	2-Chlorothioxanthone	400	70	0
13	CH₃OH	Phenanthrenequinone	400	<10	0
14	CH₃CN	Phenanthrenequinone	400	<10	0
15	CH₃OH	Benzil	400	40	0
16	CH₃CN	Benzil	400	<30	0
17	CH₃OH	2,3-Butanedione	400	<20	0
18	CH₃CN	2,3-Butanedione	400	<10	0
19	CH₃OH	2,7-Dibromo-9H-fluoren-9-one	400	<30	0
20	CH₃CN	2,7-Dibromo-9H-fluoren-9-one	400	<30	0
21	CH₃OH	3,6-Dibromo-fluoren-9-one	400	<20	0
22	CH₃CN	3,6-Dibromo-fluoren-9-one	400	<20	0
23	CH₃OH	1,8-Diazafluoran-9-one	400	trace	0
24	CH₃CN	1,8-Diazafluoran-9-one	400	trace	0
25	CH₃OH	Solvent Red 43	400	<10	0
26	CH₃CN	Solvent Red 43	400	<10	0
27	CH₃OH	4-Bromo-9H-fluoren-9-one	400	90	0
28	CH₃CN	4-Bromo-9H-fluoren-9-one	400	<20	0
29	CH₃OH	5,9-dibromo-7H-benzo	400	<5	
		[c]fluoren-7-one			0
30	CH₃CN	5,9-dibromo-7H-benzo	400	90	
		[c]fluoren-7-one			0
31	CH₃OH	4,5-Dibromofluorescein	400	80	0
32	CH₃CN	4,5-Dibromofluorescein	400	80	0
33	CH₃OH	3,6-Dibromo-2,7-diiodo-	400-435	70	0
		phenanthrene-9,10-dione			
34	CH₃CN	3,6-Dibromo-2,7-diiodo-	400-435	80	0
		phenanthrene-9,10-dione			
35	CH₃OH	3,6-Dibromo-	400-435	80	0
		Phenanthrenequinone			
36	CH₃CN	3,6-Dibromo-	400-435	80	0
		phenanthrenequinone			
37	CH₃OH	3,6-Dibromo-2,7-diiodo-	400	>60	0
		phenanthrene-9,10-dione			
38	CH₃CN	3,6-Dibromo-2,7-diiodo-	400	>90	0
		phenanthrene-9,10-dione			
39	CH₃OH	3,6-Dibromo-	400	>80	0
		Phenanthrenequinone			
40	CH₃CN	3,6-Dibromo-	400	trace	0
		Phenanthrenequinone			

^a typical reaction conditions: **8a** (0.1 mmol), Photocatalyst (0.1 equiv), hv (400 nm), solvent (10 mL), N₂, rt, 24 h;

^bNMR yield

[Ref. 16] A Lewis acid-catalyzed intramolecular Michael addition Figure S3. reaction with 8t was carried out as following, which was consistent with the result of Snider, see: Snider, B. B.; Roush, D. M. J. Org. Chem, 1979, 44, 4229.

Ő

18

ö

8t

Figure S4. Structurally similar unreactive substrates for control experiments.

Deuterium Experiments

Figure S5. Deuterium experiments D-8j/D-8p in CH₃OH/ CH₃CN.

Figure S6. Deuterium experiments 8j/8p in CD₃OD/ CD₃CN.

Figure S7. Deuterium experiments D-8j/D-8p in CD₃OD/ CD₃CN.

Computational Studies

Figure S8. Mechanistic investigations: a radical is produced via homolytic bond cleavage (*sequence*

Figure S9. DFT (M06-2X/6-311G(d)) computational studies of *sequences a* (*Path 1*).

(b)

Figure S10. Mechanistic investigations: a radical is produced via intramolecular hydrogen abstraction (*sequence b*)

Figure S11. DFT(M06-2X/6-311G(d)) computational studies of *sequences b* (*Path 2, Path 3* and *Path 4*).

Computational Methods.

All the DFT calculations were performed on the GAUSSIAN 16 C01 series of programs. Density functional theory M06-2X with a standard /6-311G (d) basis set was used for primary geometry optimizations.

The M06-2X/6-311G(d) level predicted optimized geometries in terms of Cartesian coordinates for the reactants, products, and intermediates for reactions presented.

¹8a S0

Final structure in terms of initial Cartesian coordinates:

```
C -4.779588 -1.423013 -0.475574
C -3.287329 -1.698570 -0.314136
C -2.496995 -0.437850 -0.617569
C -3.067526 0.770001 0.074800
C -4.290504 0.810763 0.602270
C -5.233797 -0.366843 0.531169
C -4.818539 2.028609 1.304919
O -1.148680 -0.685787 -0.160151
C -0.186906 0.109114 -0.654989
C 1.139337 -0.281146 -0.123810
O -0.392012 1.010144 -1.427478
C 2.223886 0.398744 -0.502827
C 3.610903 0.156600 -0.092270
C 4.611134 1.009340 -0.568930
C 5.940484 0.822448 -0.210757
C 6.290357 -0.225550 0.631678
C 5.303820 -1.084184 1.113156
C 3.978359 -0.896044 0.755497
H -5.353705 -2.343616 -0.348624
H -4.975470 -1.063385 -1.491819
H-3.072410-1.993375 0.718305
H -2.952075 -2.509635 -0.964360
H -2.443177 -0.255664 -1.695794
H-2.424508 1.644687 0.112167
H-5.317311-0.810716 1.532160
H -6.238550 -0.007731 0.282448
H-4.067837 2.816593 1.372212
H-5.693785 2.429012 0.783751
H-5.143398 1.775425 2.319354
Н 1.160751 -1.120281 0.560772
Н 2.062216 1.223621 -1.194196
Н 4.337932 1.828201 -1.226754
Н 6.701299 1.494888 -0.590371
Н 7.326399 -0.376740 0.912619
Н 5.572878 - 1.905129 1.768073
Н 3.223719 -1.575518 1.135318
```

¹8a S1

Final structure in terms of initial Cartesian coordinates: C -4.106030 -0.217101 -1.405089 C -2.986991 -1.208980 -1.093824 C -1.771595 -0.456482 -0.578001

```
C -2.142325 0.531430 0.498305
C -3.387654 0.961428 0.715000
C -4.552556 0.499975 -0.130289
C-3.719474 1.927934 1.817366
O -0.866957 -1.449723 -0.064681
C 0.365474 -1.021672 0.301390
C 1.197635 -1.925070 0.995368
O 0.811003 0.117131 -0.134710
C 2.548325 -1.653057 1.122229
C 3.143911 -0.573195 0.379125
C 4.251432 0.150587 0.811157
C 4.645189 1.316661 0.155908
C 3.943830 1.779587 -0.978434
C 2.897394 1.048317 -1.491720
C 2.445424 -0.141985 -0.837621
H-4.953675-0.728212-1.871881
H-3.741476 0.523351 -2.128897
H -3.312322 -1.907030 -0.312794
H -2.712222 -1.799567 -1.973115
H-1.266078 0.062099 -1.402262
H-1.322247 0.899411 1.112664
H-5.183158-0.167019 0.476312
H-5.184604 1.362965 -0.377774
H-2.838040 2.181532 2.411310
H-4.140686 2.854834 1.409661
H-4.477438 1.503827 2.487576
H 0.746884 -2.816236 1.417463
Н 3.164800 - 2.234039 1.802165
Н 4.774747-0.171048 1.708049
Н 5.492564 1.882213 0.530298
H 4.265288 2.691551 -1.471715
H 2.407340 1.350222 -2.412049
H 2.096015 -0.938388 -1.495089
```

¹Int-1'

Final structure in terms of initial Cartesian coordinates:

C -4.319682 -1.273634 -1.104079 C -2.881365 -1.322806 -0.577654 C -2.458810 0.047270 -0.150716 C -3.362254 1.027461 0.215134 C -4.723170 0.789610 0.272952 C -5.246794 -0.567084 -0.111041

```
C -5.699594 1.815702 0.747615
O -1.130612 0.427591 -0.246264
C -0.164879 -0.400113 0.227179
C 1.169546 0.159272 -0.070086
O -0.389484 -1.428054 0.804810
C 2.260326 -0.504032 0.323435
C 3.657660 -0.108712 0.122898
C 4.668354 -0.962103 0.575943
C 6.008149 -0.635463 0.407247
C 6.357729 0.555095 -0.217949
C 5.360688 1.416282 -0.672292
C 4.024835 1.088842 -0.504081
H -4.677518 -2.285881 -1.305072
H -4.335937 -0.726310 -2.051497
H -2.801536 -2.020622 0.262657
H -2.198549 -1.695793 -1.346854
H-2.967173 2.003316 0.483272
H-5.357351-1.184394 0.793060
H -6.252466 -0.471340 -0.534134
H-5.207448 2.750615 1.020054
H -6.449112 2.035414 -0.021687
H -6.253205 1.457823 1.624322
H 1.195827 1.100861 -0.604289
H 2.095252 -1.443510 0.847500
H 4.395359 -1.891379 1.065638
Н 6.777396 -1.310206 0.765028
H 7.401835 0.814082 -0.351655
Н 5.629085 2.346542 -1.159863
Н 3.261864 1.770953 -0.861882
```

¹Int-1"

Final structure in terms of initial Cartesian coordinates: C -4.086315 -1.373554 -1.050264 C -2.784424 -1.438611 -0.255189 C -2.132263 -0.062854 -0.242236 C -3.112179 1.012938 0.130388 C -4.435115 0.868627 0.073145 C -5.077860 -0.420988 -0.382037 C -5.381301 1.966452 0.467772 O -1.073557 -0.002229 0.723555 C 0.123920 -0.521929 0.327348 C 1.132363 -0.357741 1.329322

```
O 0.287357 -1.039514 -0.764813
C 2.433243 -0.911157 1.111579
C 3.503923 -0.250045 0.458728
C 4.760387 -0.886933 0.322605
C 5.799179 -0.252014 -0.326851
C 5.606471 1.025490 -0.860480
C 4.372854 1.666260 -0.744356
C 3.326853 1.039739 -0.093323
H -4.525842 -2.368695 -1.152283
H -3.870222 -1.018862 -2.064256
H -2.990975 -1.724463 0.782210
H -2.086770 -2.163831 -0.676303
H-1.693868 0.138493 -1.226020
H-2.676492 1.951788 0.464164
H -5.537916 -0.905072 0.490090
H -5.905987 -0.190348 -1.061900
H-4.852265 2.842441 0.845304
H-5.995462 2.275467-0.384188
H-6.071132 1.620190 1.244439
Н 0.877972 0.128250 2.265873
H 2.652781 -1.934511 1.440208
H 4.894197 -1.881067 0.737019
Н 6.760788 -0.741203 -0.428586
Н 6.423098 1.520655 -1.374226
Н 4.234331 2.652554 -1.171588
H 2.354946 1.510084 0.003211
```

³Int-1

Final structure in terms of initial Cartesian coordinates:

```
C -4.164280 -1.367126 -0.983155

C -2.832830 -1.437739 -0.238967

C -2.158515 -0.074069 -0.288978

C -3.100431 1.033309 0.084804

C -4.426758 0.910916 0.087516

C -5.109464 -0.380307 -0.298888

C -5.335245 2.038995 0.483951

O -1.064584 -0.008442 0.649117

C 0.090100 -0.587628 0.260280

C 1.130334 -0.423691 1.273223

O 0.242042 -1.157440 -0.793805

C 2.464825 -0.977479 1.074508

C 3.523382 -0.276087 0.443465
```

```
C 4.800142 -0.872788 0.312126
C 5.839195 -0.199237 -0.300511
C 5.645193 1.088035 -0.804465
C 4.393431 1.692957 -0.688828
C 3.346449 1.027429 -0.078326
H -4.623183 -2.356682 -1.040719
H -3.983770 -1.042711 -2.014010
H -3.005183 -1.691874 0.812649
H -2.169497 -2.190191 -0.667686
H-1.737112 0.092020 -1.286482
H-2.634065 1.974998 0.363537
H-5.536101-0.830688 0.607355
H -5.963764 -0.154932 -0.946891
H-4.775136 2.917407 0.806697
H-5.980575 2.329155-0.351014
H-5.995113 1.731662 1.301599
H 0.863545 0.108732 2.181269
H 2.650958 -1.989765 1.425806
H 4.953398 -1.874251 0.701425
Н 6.809449 -0.674753 -0.392305
H 6.461519 1.612825 -1.287097
H 4.237730 2.690377 -1.084812
H 2.374061 1.502784 0.001657
```

¹Int-2

Final structure in terms of initial Cartesian coordinates:

```
C -3.523170 1.899941 -0.642580
C -2.265068 1.059751 -0.847631
C -2.108395 0.095116 0.319131
C -3.383321 -0.637121 0.621163
C -4.583874 -0.236938 0.205360
C -4.766194 1.011297 -0.626437
C -5.837827 -0.998929 0.525074
O -1.119015 -0.910327 0.015037
C 0.169301 -0.539635 0.143785
C 1.044596 -1.674573 -0.233393
O 0.505806 0.561026 0.496459
C 2.378053 -1.674737 -0.367095
C 3.399948 -0.644702 -0.112069
C 4.528191 -0.638037 -0.942228
C 5.542969 0.291282 -0.761693
```

```
C 5.461779 1.209312 0.279970
C 4.364640 1.187140 1.134772
C 3.338530 0.272099 0.942062
H-3.608592 2.657688-1.424746
H-3.446979 2.436528 0.309608
H -2.353432 0.469235 -1.766101
H-1.373820 1.683566 -0.928800
H-1.754742 0.638451 1.202016
H -3.281142 -1.537884 1.221420
H-5.028447 0.709323 -1.649208
H-5.631733 1.569652 -0.252647
H -5.625634 -1.923312 1.063442
H -6.514221 -0.392056 1.135207
H -6.379741 -1.250821 -0.391953
Н 0.502293 -2.574108 -0.499919
H 2.793993 -2.600437 -0.762359
Н 4.600944 -1.364551 -1.745954
Н 6.400217 0.292260 -1.425289
H 6.254750 1.933362 0.430511
H 4.304055 1.890359 1.957579
Н 2.486945 0.269544 1.606076
```

¹Int-2"

Final structure in terms of initial Cartesian coordinates:

C 3.788700 1.493810 1.031714 C 2.460366 0.734396 1.100807 C 2.409798 -0.283241 0.004243 C 3.551795 -0.850856 -0.536674 C 4.820223 -0.500167 -0.116769 C 4.981024 0.535234 0.963196 C 6.053397 -1.147895 -0.656948 O 1.194816 -0.825504 -0.367737 C 0.153530 0.024306 -0.565796 C -1.115464 -0.328609 -0.214775 O 0.440362 1.206864 -1.147919 C -2.240270 0.451733 -0.502004 C -3.596382 0.128179 -0.155192 C -4.634432 1.002833 -0.537839 C -5.957107 0.732898 -0.229636 C -6.294208 -0.421428 0.474192 C -5.283750 -1.298733 0.864599 C -3.959834 -1.033349 0.558794

```
Н 3.883592 2.160493 1.891194
H 3.787105 2.122126 0.135133
H 2.365083 0.221364 2.068233
H 1.619986 1.429230 1.033491
Н 1.286856 1.143685 -1.611247
Н 3.418977 -1.615570 -1.297316
H 5.104009 0.029677 1.932411
H 5.906944 1.097889 0.802858
Н 5.821397 -1.906777 -1.405660
Н 6.722098 -0.409699 -1.114645
Н 6.627156 -1.628522 0.144622
H-1.196960-1.272873 0.309049
H -2.077772 1.382268 -1.036490
H-4.381545 1.903882 -1.088146
H -6.732492 1.424797 -0.540287
H-7.329128-0.634788 0.715751
H-5.534067-2.199317 1.415044
H-3.196974-1.733411 0.879779
```

³Int-2

Final structure in terms of initial Cartesian coordinates: C -1.735189 -1.191034 1.598008 C -1.698393 0.332439 1.434137 C -2.000337 0.683134 0.010887 C -2.777698 -0.123837 -0.805739 C -3.306711 -1.325019 -0.368660 C -3.029383 -1.787734 1.036629 C -4.181071 -2.175715 -1.233498 O -1.632963 1.916570 -0.496888 C -0.429411 2.468868 -0.208209 C 0.788025 1.845596 -0.108823 O -0.516590 3.810504 -0.102726 C 1.048680 0.484599 -0.305634 C 2.340681 -0.141802 -0.209069 C 2.455056 -1.522899 -0.478413 C 3.674597 -2.177165 -0.398676 C 4.827690 -1.476647 -0.044467 C 4.736657 -0.111011 0.228132 C 3.519434 0.547807 0.148957 H-1.618806-1.454809 2.653265 H -0.878666 -1.618138 1.061737 H-2.447765 0.800200 2.092353

```
H -0.720966 0.717008 1.737919
H -1.454177 4.049788 -0.160794
H -2.973703 0.221988 -1.818325
H -3.875175 -1.509319 1.686391
H -2.980630 -2.883855 1.064822
H -4.339031 -1.724957 -2.217047
H -3.745918 -3.173436 -1.380480
H -5.164970 -2.332458 -0.770147
H 1.597547 2.528400 0.128970
H 0.222829 -0.167032 -0.579678
H 1.561114 -2.075924 -0.757809
H 3.728605 -3.240403 -0.614029
H 5.783511 -1.986695 0.019799
H 5.626840 0.445708 0.506461
H 3.480013 1.609856 0.370113
```

¹Int-3

Final structure in terms of initial Cartesian coordinates:

C -1.979308 -1.423451 1.404034 C-1.617781 0.065335 1.359193 C -1.879206 0.596238 -0.008406 C -2.892600 0.040328 -0.832323 C -3.613881 -1.051531 -0.482040 C -3.379060 -1.703554 0.854730 C -4.685280 -1.629833 -1.350907 O -1.495723 1.849497 -0.347589 C -0.334809 2.371133 0.003425 C 0.871383 1.708505 0.172747 O -0.345521 3.724230 -0.008863 C 1.138913 0.358042 0.081281 C 2.471342 -0.206428 -0.052469 C 2.603327 -1.602284 -0.154889 C 3.846353 -2.204862 -0.272635 C 5.001760 -1.429132 -0.284900 C 4.892251 -0.043876 -0.183821 C 3.650280 0.560403 -0.075239 H -1.889642 -1.792107 2.427980 H -1.247215 -1.973586 0.802246 H-2.227104 0.638447 2.076668 H-0.580859 0.185462 1.686822 H -1.220490 4.023990 -0.280033 H-3.078650 0.536980 -1.781108

```
H -4.135449 -1.340921 1.566327
H -3.539773 -2.784495 0.776976
H -4.824924 -1.051561 -2.265428
H -4.450477 -2.662830 -1.633935
H -5.644007 -1.665857 -0.819881
Н 1.692480 2.407751 0.285922
H 0.331537 -0.358203 0.021422
Н 1.706771 -2.215120 -0.141632
Н 3.915154 - 3.284298 - 0.352794
Н 5.975733 -1.896174 -0.375495
Н 5.785558 0.571236 -0.196678
Н 3.599199 1.641266 -0.012448
```

¹Int-3"

Final structure in terms of initial Cartesian coordinates: C -1.735189 -1.191034 1.598008 C-1.698393 0.332439 1.434137 C -2.000337 0.683134 0.010887 C -2.777698 -0.123837 -0.805739 C -3.306711 -1.325019 -0.368660 C -3.029383 -1.787734 1.036629 C -4.181071 -2.175715 -1.233498 O -1.632963 1.916570 -0.496888 C -0.429411 2.468868 -0.208209 C 0.788025 1.845596 -0.108823 O -0.516590 3.810504 -0.102726 C 1.048680 0.484599 -0.305634 C 2.340681 -0.141802 -0.209069 C 2.455056 -1.522899 -0.478413 C 3.674597 -2.177165 -0.398676 C 4.827690 -1.476647 -0.044467 C 4.736657 -0.111011 0.228132 C 3.519434 0.547807 0.148957 H-1.618806-1.454809 2.653265 H -0.878666 -1.618138 1.061737 H-2.447765 0.800200 2.092353 H-0.720966 0.717008 1.737919 H-1.454177 4.049788 -0.160794 H -2.973703 0.221988 -1.818325 H -3.875175 -1.509319 1.686391 H -2.980630 -2.883855 1.064822

```
H -4.339031 -1.724957 -2.217047
H -3.745918 -3.173436 -1.380480
H -5.164970 -2.332458 -0.770147
H 1.597547 2.528400 0.128970
H 0.222829 -0.167032 -0.579678
H 1.561114 -2.075924 -0.757809
H 3.728605 -3.240403 -0.614029
H 5.783511 -1.986695 0.019799
H 5.626840 0.445708 0.506461
H 3.480013 1.609856 0.370113
```

¹Int-2'

Final structure in terms of initial Cartesian coordinates:

C 2.505392 -1.018019 -1.385491 C 2.401388 0.357363 -0.732400 C 1.087573 0.492845 0.035149 C 0.831150 -0.711675 0.891118 C 1.449796 -1.881961 0.744456 C 2.494935 -2.112079 -0.319634 C 1.162058 -3.050785 1.641745 O 1.196815 1.636947 0.912784 C 0.634511 2.747952 0.355669 C -0.103403 2.336000 -0.829555 O 0.745094 3.842173 0.834581 C -0.093968 0.856782 -0.942347 C -1.422567 0.214201 -0.581059 C -1.797529 -0.976096 -1.201509 C -2.976238 -1.621278 -0.848667 C -3.796921 -1.080429 0.135412 C -3.430941 0.106343 0.760342 C -2.250650 0.750985 0.404904 Н 3.412668 -1.082129 -1.990337 Н 1.662859 -1.171721 -2.069849 Н 3.215229 0.492845 -0.014159 H 2.481011 1.162318 -1.470895 H 0.082031 -0.580521 1.667433 Н 3.476455 -2.170304 0.169293 Н 2.334871 - 3.093835 - 0.778578 H 0.461298 -2.790280 2.435119 H 0.739742 -3.882083 1.068490 H 2.084621 -3.419093 2.101611 H-0.655912 3.028776-1.446645

```
H 0.170709 0.532534 -1.954226
H -1.154130 -1.404890 -1.964345
H -3.254691 -2.545202 -1.343045
H -4.717611 -1.580965 0.412704
H -4.066381 0.534553 1.527408
H -1.975542 1.676149 0.902303
```

³Int-3

Final structure in terms of initial Cartesian coordinates: C -1.617182 -1.083753 1.698125

C-1.737167 0.423754 1.453762 C-1.999636 0.663416 0.002585 C -2.653686 -0.253011 -0.798779 C -3.081688 -1.476406 -0.316613 C -2.817994 -1.838138 1.120444 C -3.839525 -2.450986 -1.158330 O -1.704129 1.901413 -0.555810 C -0.515645 2.504890 -0.295471 C 0.711125 1.914480 -0.218520 O -0.656042 3.835050 -0.164752 C 0.985994 0.563520 -0.484066 C 2.253870 -0.081238 -0.284226 C 2.417501 -1.420438 -0.697744 C 3.618948 -2.086823 -0.528009 C 4.703598 -1.442177 0.063979 C 4.561641 -0.121229 0.486030 C 3.362068 0.549941 0.319508 H-1.519642-1.283216 2.767167 H -0.700058 -1.439284 1.217421 H-2.562931 0.838988 2.049662 H-0.825490 0.934652 1.771960 H-1.597679 4.041486 -0.156103 H-2.832765 0.019253 -1.835441 H -3.715303 -1.619873 1.718744 H -2.659308 -2.918464 1.207175 H -4.004865 -2.074046 -2.168787 H -3.309841 -3.407711 -1.233403 H -4.818213 -2.674080 -0.716248 H 1.506615 2.594536 0.063841 H 0.195470 -0.053206 -0.898471 Н 1.578904 -1.928243 -1.165126 Н 3.714171 -3.114848 -0.860381

Η	5.645276 -	1.961497	0.198325
Η	5.396748	0.387881	0.955298
Н	3.276942	1.571175	0.672817

¹⁻³MECP1

C -1.972314 -1.354517 1.481163 C-1.622720 0.133983 1.373532 C -1.871372 0.604434 -0.017615 C -2.881047 0.010212 -0.823470 C -3.590926 -1.075476 -0.438479 C -3.359308 -1.678191 0.922462 C -4.637618 -1.704717 -1.302121 O -1.486250 1.839128 -0.406186 C -0.332242 2.381524 -0.073811 C 0.872435 1.723168 0.140242 O -0.334910 3.731334 -0.177432 C 1.126877 0.369499 0.117228 C 2.454749 -0.210465 -0.012795 C 2.564927 -1.575330 -0.330088 C 3.801746 -2.183342 -0.483527 C 4.970260 -1.448128 -0.309486 C 4.880838 -0.098820 0.026037 C 3.645777 0.513560 0.170159 H-1.898823-1.672866 2.523335 H-1.221551-1.923008 0.920940 H-2.245745 0.735717 2.054801 H-0.590854 0.273148 1.710621 H-1.184845 4.012178 -0.535753 H-3.068378 0.469807 -1.790739 H-4.131056-1.309011 1.613546 H-3.498013-2.764172 0.878178 H -4.772369 -1.160032 -2.237719 H -4.373035 -2.740477 -1.547221 H -5.605164 -1.745006 -0.787562 Н 1.701527 2.420755 0.191078 Н 0.312270 -0.339521 0.071998 Н 1.657604 -2.154758 -0.474840 Н 3.853551 -3.235025 -0.743024

Н 5.939226 -1.918938 -0.432539

Н 5.785729 0.480590 0.174415

Н 3.608846 1.562548 0.442844

¹Int-4

Final structure in terms of initial Cartesian coordinates:

C 2.374000 -1.274801 -1.395516 C 2.396588 0.111339 -0.758191 C 1.107548 0.364204 0.020788 C 0.755456 -0.805126 0.890179 C 1.272841 -2.024774 0.752111 C 2.289451 -2.350957 -0.315453 C 0.886682 -3.159711 1.656003 O 1.344677 1.505344 0.895892 C 0.851543 2.582952 0.263407 C 0.096533 2.337947 -0.811485 O 1.217067 3.725238 0.857951 C -0.046374 0.844082 -0.943446 C -1.419139 0.304119 -0.583585 C -1.869096 -0.885884 -1.156448 C -3.095337 -1.433140 -0.799119 C -3.892946 -0.794798 0.145275 C -3.453790 0.390529 0.724251 C -2.226787 0.935621 0.360646 Н 3.262283 -1.423431 -2.014018 Н 1.509622 -1.362744 -2.063482 Н 3.228421 0.180254 -0.050666 H 2.530110 0.899239 -1.505001 H 0.794122 4.460376 0.403222 H 0.016168 -0.607863 1.662047 H 3.268189 -2.478610 0.166136 H 2.048802 - 3.323445 - 0.759089 Н 0.204993 -2.836530 2.443053 H 0.400900 -3.958530 1.086684 Н 1.773921 -3.598337 2.123897 H -0.407492 3.073462 -1.420586 Н 0.197062 0.491575 -1.951169 H -1.245536 -1.391943 -1.888729 H -3.430039 -2.357118 -1.258113 H-4.850670-1.218190 0.426719 H-4.069656 0.894879 1.460920 H-1.888192 1.862703 0.810921

³Int-4

Final structure in terms of initial Cartesian coordinates: C 2.888275 -0.147257 -1.288629

C 2.260490 1.093842 -0.661156 C 0.934011 0.751618 0.016516 C 1.052631 -0.489046 0.852028 C 2.053334 -1.364645 0.761197 C 3.192584 -1.186780 -0.212803 C 2.125829 - 2.582158 1.636896 O 0.575278 1.834725 0.909458 C -0.207678 2.752710 0.283048 C -0.600352 2.183663 -1.046132 O -1.216073 3.143090 1.141349 C -0.241042 0.729835 -1.031804 C -1.367531 -0.214450 -0.652747 C -1.437033 -1.473613 -1.246841 C -2.425544 -2.380352 -0.881071 C -3.356389 -2.037608 0.092865 C -3.290679 -0.785000 0.694262 C -2.305024 0.123441 0.324447 Н 3.798549 0.119262 -1.830816 H 2.200538 -0.580910 -2.023568 H 2.924838 1.498538 0.108461 H 2.101015 1.883978 -1.402437 H-1.672969 3.890509 0.743305 Н 0.247660 -0.648392 1.564119 H 4.087391 -0.893348 0.352357 Н 3.433613 -2.152986 -0.669403 Н 1.302792 -2.616759 2.350991 Н 2.096971 - 3.494713 1.033196 H 3.068288 -2.600341 2.193670 H-0.698201 2.770684 -1.948661 H 0.152043 0.416734 -2.002823 H -0.705249 -1.748482 -2.001433 H -2.468509 -3.354054 -1.356804 H-4.128952-2.741669 0.381100 H-4.011466-0.511089 1.456939 H-2.257280 1.095331 0.804906

Final structure in terms of initial Cartesian coordinates:

```
С
  1.835754 -1.338612 1.714024
C 0.577306 -1.069834 0.895789
C 0.760145 0.153004 0.011010
C 2.107179 0.153637 -0.668372
C 3.117541 -0.651222 -0.341468
C 3.009285 -1.644702 0.787999
O 0.677193 1.329748 0.863222
C 0.106033 2.368554 0.217703
C -0.355419 1.908394 -1.156676
C -0.374405 0.382733 -1.040659
C 4.428664 -0.625268 -1.072752
O -0.009831 3.450385 0.705176
Н 0.373402 2.257732 -1.892097
H-1.316156 2.358697 -1.401040
C -1.716416 -0.159410 -0.600207
C -2.171306 -1.379043 -1.102474
C -3.381209 -1.920387 -0.682428
C -4.157390 -1.246208 0.252888
C -3.716909 -0.027791 0.758629
C -2.507960 0.511745 0.335484
H 1.669168 -2.166789 2.406386
Н 2.063839 -0.452832 2.313975
H -0.292155 -0.912231 1.536698
H 0.353561 -1.930623 0.254602
H 2.242418 0.874057 -1.473878
H 2.904750 - 2.651042 0.359894
Н 3.951049 -1.655294 1.346639
H -0.086548 -0.105037 -1.974092
Н 4.414550 0.067240 -1.914977
Н 5.237504 -0.330670 -0.397405
H 4.679043 -1.622045 -1.449514
H -1.570368 -1.909432 -1.835562
H -3.719117 -2.867272 -1.088876
H-5.101822-1.664072 0.582634
H-4.316614 0.508243 1.485485
H-2.190759 1.466748 0.743020
```

$^{3}(\pm)-9a$

Final structure in terms of initial Cartesian coordinates:

```
C 2.039432 -1.282063 1.698969
C 0.752555 -1.136267 0.894014
C 0.804150 0.102409 0.013556
C 2.134774 0.223716 -0.688448
C 3.218708 -0.486903 -0.378937
C 3.224230 -1.477406 0.758479
O 0.612744 1.269537 0.856001
C -0.042182 2.252954 0.190702
C -0.464695 1.733199 -1.175728
C -0.362567 0.210983 -1.021519
C 4.507473 -0.350080 -1.137075
O -0.226805 3.333007 0.656866
Н 0.230035 2.121064 -1.924336
H-1.461373 2.098407-1.419184
C -1.654638 -0.357202 -0.512951
C -2.212371 -1.503173 -0.982564
C -3.527026 -1.891564 -0.583492
C -4.371066 -0.957797 0.117981
C -3.852469 0.186981 0.609612
C -2.378098 0.325884 0.600505
Н 1.962014 -2.120689 2.394471
Н 2.187718 -0.376353 2.294399
H-0.118726-1.079341 1.549064
Н 0.609651 -2.009791 0.246833
Н 2.189798 0.947370 -1.500133
Н 3.214259 -2.492825 0.339019
Н 4.170368 -1.390158 1.302862
H -0.072352 -0.296803 -1.943643
Н 4.416216 0.335971 -1.979788
Н 5.301113 0.015832 -0.478787
Н 4.835565 -1.322771 -1.517025
H -1.696644 -2.090247 -1.738620
H -3.950336 -2.812294 -0.964286
H -5.436240 -1.156553 0.178277
H-4.474076 0.953288 1.059737
H-1.891768 0.293515 1.579577
```

Preparation of Starting Materials Allyl Acrylic Esters.

1.Preparation of compound 8a to 8o.

To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), cinnamic acid (2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **8a** to **80**.

(*E*)-3-Methylcyclohex-2-en-1-yl cinnamate (8a): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-cinnamic acid (356 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give 8a (354 mg, 73% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 16.0 Hz, 1H), 7.53-7.50 (m, 2H), 7.38 – 7.36 (m, 3H), 6.45 (d, *J* = 16.0 Hz, 1H), 5.55 (s, 1H), 5.40 (s, 1H), 2.05 – 1.96 (m, 2H), 1.86 – 1.78 (m, 3H), 1.74 (s, 3H), 1.70-1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 144.4, 141.2, 134.5, 130.1, 128.8, 128.0, 120.0, 118.7, 68.9, 29.9, 28.1, 23.8, 19.1; HRMS(EI) Calcd for C₁₆H₁₉O₂ [M + H]⁺ : 242.1385, Found 243.1379; IR (KBr) v(cm⁻¹) : 3350, 2947, 2833, 1651, 1451, 1115, 1032.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(4-fluorophenyl)acrylate (**8b**): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(4-fluorophenyl)acrylic acid (399 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **8b** (364 mg, 70% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 16.0 Hz, 1H), 7.49 (dd, *J* = 8.6 and 5.4 Hz, 2H), 7.05 (t, *J* = 8.6 Hz, 2H), 6.36 (d, *J* = 16.0 Hz, 1H), 5.53 (s, 1H), 5.38 (s, 1H), 2.04 – 1.95 (m, 2H), 1.85-1.76 (m, 3H), 1.72 (s, 3H), 1.68 – 1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 163.7 (d, *J*_{C-F} = 2.49.5 Hz), 143.0, 141.2, 130.8 (d, *J*_{C-F} = 3.3 Hz), 129.8 (d, *J*_{C-F} = 8.5 Hz), 120.0, 118.5 (d, *J*_{C-F} = 2.3 Hz), 116.0, 115.8, 68.9, 29.9, 28.0, 23.7, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.88; HRMS(EI) Calcd for C₁₆H₁₇FO₂ [M⁺]: 260.1213, Found 260.1209; IR (KBr) v (cm⁻¹): 2937, 1708, 1639, 1601, 1510, 1233, 1161, 981, 917, 832.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(3,5-difluorophenyl)acrylate (8c): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(3,5-difluorophenyl)acrylic acid (442 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by

column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **8c**. (463 mg, 83% yield). White solid; mp 39.1-39.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 16.0 Hz, 1H), 7.04-6.99 (m, 2H), 6.81 (tt, J = 8.7 and 2.2 Hz, 1H), 6.42 (d, J = 16.0 Hz, 1H), 5.53 (s, 1H), 5.38 (s, 1H), 2.05 – 1.96 (m, 2H), 1.84-1.76 (m, 3H), 1.73 (s, 3H), 1.70-1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 163.2 (d, $J_{C-F} = 247.6$ Hz), 163.1 (d, $J_{C-F} = 247.7$ Hz), 141.7 (t, $J_{C-F} = 2.9$ Hz), 141.5, 137.8 (t, $J_{C-F} = 9.5$ Hz), 121.5, 119.7, 110.62 (d, $J_{C-F} = 25.7$ Hz), 110.58 (d, $J_{C-F} = 11.6$ Hz), 105.2 (t, $J_{C-F} = 25.4$ Hz), 69.3, 29.9, 28.0, 23.7, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.15; HRMS(EI) Calcd for C₁₆H₁₆F₂O₂ [M⁺]: 278.1118, Found 278.1124; IR (KBr) (cm⁻¹) : 2938, 1711, 1592, 1440, 1277, 1181, 1122, 980, 915, 851.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(2,3,5-trifluorophenyl)acrylate (8d): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(2,3,5-trifluorophenyl)acrylic acid (485 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **8d** (510 mg, 86% yield). White solid; mp 66.8-67.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 16.2 Hz, 1H), 7.05-6.90 (m, 2H), 6.52 (d, *J* = 16.2 Hz, 1H), 5.53 (s, 1H), 5.38 (s, 1H), 2.06 – 1.92(m, 2H), 1.85 – 1.76 (m, 3H), 1.73 (s, 3H), 1.69 – 1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 157.5 (ddd, *J*_{C-F} = 244.4, 10.6 and 3.2 Hz), 150.6 (ddd, *J*_{C-F} = 250.1, 14.6 and 12.9 Hz), 145.8 (ddd, *J*_{C-F} = 250.1, 13.3 and 4.0 Hz), 141.4, 134.3 (q, *J*_{C-F} = 24.3, 3.6 and 1.3 Hz), 106.5 (dd, *J*_{C-F} = 27.5 and 22.0 Hz), 69.4, 29.8, 27.9,

23.6, 18.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.79 (dd, J = 14.8 and 3.4 Hz), -132.57 (dd, J = 19.9 and 3.4 Hz), -144.70 (dd, J = 19.9 and 14.8 Hz); HRMS(EI) Calcd for C₁₆H₁₆F₃O₂ [M + H]⁺ : 297.1102, Found 297.1097; IR (KBr) v (cm⁻¹) : 3433, 2938, 1706, 1640, 1597, 1494, 1445, 1280, 1198, 1164, 1128, 1051, 1000, 987.

Methylcyclohex-2-en-1-yl 3-(3,4,5-trifluorophenyl)acrylate (8e): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), (E)-3-(3,4,5-trifluorophenyl)acrylic acid (485 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give 8e (504 mg, 85% yield). White solid; mp 81.6-81.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 15.9 Hz, 1H), 7.23 - 6.99 (m, 2H), 6.35 (d, J = 15.9 Hz, 1H), 5.52 (s, 1H), 5.37 (s, 1H), 2.06 – 1.90 (m, 2H), 1.85-1.75 (m, 3H), 1.73 (s, 3H), 1.69-1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 151.3 (ddd, J_{C-F} = 249.5, 10.3 and 4.1 Hz), 141.4, 140.5 (dt, $J_{C-F} = 245.6$ and 15.4 Hz), 140.8 (d, $J_{C-F} = 2.3$ Hz), 130.7 (td, $J_{C-F} = 7.8$ and 4.8 Hz), 121.2 (d, $J_{C-F} = 2.4$ Hz), 119.7, 111.8 (dd, $J_{C-F} = 15.8$ and 6.0 Hz), 69.3, 29.8, 27.9, 23.7, 18.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -133.33 (d, J_{C-F} =20.1 Hz), -157.09 (t, J_{C-F} = 20.0 Hz); HRMS(EI) Calcd for $C_{16}H_{16}F_{3}O_{2}$ [M + H]⁺ : 297.1102, Found 297.1094; IR (KBr) v (cm⁻¹): 2940, 1711, 1645, 1529, 1442, 1329, 1308, 1277, 1184, 1166, 1046, 991.

(E)-3-Methylcyclohex-2-en-1-yl 3-(2,4,5-trifluorophenyl)acrylate (8f): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (E)-3-(2,4,5-trifluorophenyl)acrylic acid (485 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give 8f (533 mg, 90 % yield). White solid; mp 77.9-78.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 16.1 Hz, 1H), 7.35-7.25 (m, 1H), 6.96 (td, *J* = 9.8 and 6.6 Hz, 1H), 6.44 (d, *J* = 16.1 Hz, 1H), 5.52 (s, 1H), 5.38 (s, 1H), 2.04 – 1.95 (m, 2H), 1.91-1.76(m, 3H), 1.72 (s, 3H), 1.69 - 1.63 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 166.0, 156.4 (ddd, $J_{C-F} = 251.6$, 9.2 and 2.2 Hz), 150.9 (ddd, $J_{C-F} = 254.5$, 14.8 and 12.5 Hz), 149.5 (ddd, $J_{C-F} = 244.6$, 13.0 and 3.5 Hz), 141.5, 134.7 (d, $J_{C-F} = 2.0$ Hz), 122.1 (dd, $J_{C-F} = 6.0$ and 2.4 Hz), 119.8, 119.2 (dt, $J_{C-F} = 13.8$ and 5.2 Hz), 116.0 (ddd, $J_{C-F} = 19.6$, 4.5 and 1.5 Hz), 106.3 (dd, J_{C-F} = 28.0 and 21.0 Hz), 69.2, 29.8, 27.9, 23.6, 18.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.68 (dd, J_{C-F} = 15.0 and 5.3 Hz), -129.67 (dd, J_{C-F} = 21.4 and 5.3 Hz) -141.63 (dd, $J_{C-F} = 21.4$ and 15.0 Hz); HRMS(EI) Calcd for C₁₆H₁₅F₃O₂ [M⁺]: 296.1024, Found 296.1019; IR (KBr) v (cm⁻¹) : 3059, 2953, 1697, 1519, 1433, 1336, 1284, 1187.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(perfluorophenyl)acrylate (8g): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(perfluorophenyl)acrylic acid (571 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2

equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **8g** (598 mg, 90% yield). White solid; m.p. 56.0-56.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 16.4 Hz, 1H), 6.74 (d, J = 16.4 Hz, 1H), 5.53 (s, 1H), 5.39 (s, 1H), 2.06-1.96 (m, 2H), 1.86-1.76 (m, 3H), 1.73 (s, 3H), 1.70 – 1.64 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 146.4-144.6 (m, 1C), 142.4-140.5 (m, 1C), 141.4, 138.6-136.7 (m, 1C), 127.5, 126.7 (t, $J_{CF} = 7.9$ Hz), 119.5, 109.8 (td, $J_{C-F} = 13.4$ and 3.9 Hz), 69.5, 29.7, 27.8, 23.4, 18.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -139.50--139.57(m), -151.45 (tt, $J_{C-F} = 20.8$ and 2.7 Hz), -161.62--161.76 (m); HRMS(EI) Calcd for C₁₆H₁₃F₅O₂ [M⁺]: 332.0836, Found 332.0841; IR (KBr) v(cm⁻¹) : 3429, 2939, 1716, 1524, 1500, 1293,1263, 1189, 1151,1018, 984, 962, 913.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(4-(trifluoromethyl)phenyl)acrylate (8h): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(4-(trifluoromethyl)phenyl)acrylic acid (519 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give 8h (534 mg, 86% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 16.0 Hz, 1H), 7.64-7.59 (m, 4H), 6.51 (d, *J* = 16.0 Hz, 1H), 5.54 (s, 1H), 5.39 (s, 1H), 2.04 – 1.91 (m, 2H), 1.86-1.76 (m, 3H), 1.73 (s, 3H), 1.69 – 1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 142.4, 141.4, 137.9 (d, *J*_{C-F} = 1.2 Hz), 131.5(q, *J*_{C-F} = 32.5 Hz), 128.1, 125.8 (q, *J*_{C-F} = 3.7 Hz), 123.8 (q, *J*_{C-F} = 270.5 Hz), 121.3, 119.8, 69.2, 29.9, 28.0, 23.7, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.87; HRMS(EI) Calcd for

 $C_{17}H_{17}F_{3}O_{2}$ [M⁺]: 310.1181, Found 310.1174; IR (KBr) v(cm⁻¹) : 2938, 1711, 1642, 1325, 1173, 1129, 1068, 981, 917, 834.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(4-nitrophenyl)acrylate (8i): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(4-nitrophenyl)acrylic acid (464 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **8i** (141 mg, 49% yield). White solid; mp 117.8-118.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.7 Hz, 1H), 7.71 – 7.65 (m, 3H), 6.56 (d, *J* = 16.0 Hz, 1H), 5.54 (s, 1H), 5.40 (s, 1H), 2.06 – 1.93 (m, 2H), 1.86 – 1.77 (m, 3H), 1.74 (s, 3H), 1.70 – 1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 148.4, 141.7, 141.3, 140.7, 128.5, 124.1, 123.1, 119.6, 69.5, 29.9, 28.0, 23.8, 19.0; HRMS(EI) Calcd for C₁₆H₁₇NO4 [M⁺]: 287.1158, Found; 287.1161; IR (KBr) v(cm⁻¹) : 2939, 2869, 1704, 1640, 1600, 1520, 1347, 1206, 1180, 1165, 1110, 984.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(4-cyanophenyl)acrylate (8j): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(4-cyanophenyl)acrylic acid (416 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent

was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **8**j

(513 mg, 96% yield). White solid; mp 83.5-83.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.55 (m, 5H), 6.52 (d, J = 16.0 Hz, 1H), 5.53 (s, 1H), 5.39 (s, 1H), 2.07 – 1.92 (m, 2H), 1.86 – 1.76 (m, 3H), 1.73 (s, 3H), 1.70 – 1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 141.8, 141.6, 138.8, 132.6, 128.3, 122.4, 119.7, 118.4, 113.2, 69.4, 29.9, 28.0, 23.8, 19.0; HRMS(EI) Calcd for C₁₇H₁₇NO₂ [M⁺]: 267.1259, Found; 267.1247; IR (KBr) (cm⁻¹) : 3432, 2938, 2229, 1707, 1639, 1329, 1306, 1279, 1254, 1205, 1181, 985, 915, 831.

3-Methylcyclohex-2-en-1-yl (E)-3-(4-(methylsulfonyl)phenyl)acrylate (8k): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), *(E)*-3-(4-(methylsulfonyl) – phenyl)acrylic acid (**8k2**) (543 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 20/1) to give **8k** (448 mg, 70% yield). White solid; mp 195.2-195.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 15.8 Hz, 1H), 6.55 (d, *J* = 16.1 Hz, 1H), 5.53 (s, 1H), 5.38 (s, 1H), 3.06 (s, 3H), 2.05 – 1.92 (m, 2H), 1.85-1.77 (m, 3H), 1.73 (s, 3H), 1.70-1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 141.7, 141.6, 141.3, 139.8, 128.6, 127.9, 122.6, 119.7, 69.4, 44.4, 29.9, 28.0, 23.7, 19.0; HRMS(EI) Calcd for C₁₇H₂₀O₄S [M + Na]⁺ : 343.0980, Found 343.0972; IR (KBr) (cm⁻¹): 1707, 1642, 1301, 1142, 960, 831,774.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(p-tolyl)acrylate (8l): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(p-tolyl)acrylic acid (389 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give 8l (369 mg, 72% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 16.0 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 6.40 (d, *J* = 16.0 Hz, 1H), 5.55 (s, 1H), 5.39 (s, 1H), 2.36 (s, 3H), 2.06-1.96 (m, 2H), 1.91 – 1.76 (m, 3H), 1.73 (s, 3H), 1.69 – 1.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 144.3, 141.0, 140.4, 131.7, 129.5, 127.9, 120.1, 117.6, 68.7, 29.9, 28.0, 23.7, 21.4, 19.0; HRMS(EI) Calcd for C₁₇H₂₀O₂ [M⁺]: 256.1463, Found 256.1452; IR (KBr) v(cm⁻¹): 2936, 1707, 1636, 1304, 1253, 1164, 983, 918, 813.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(4-methoxyphenyl)acrylate (8m): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(4-methoxyphenyl)acrylic acid (428 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give 8m (436 mg, 80% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 16.0 Hz, 1H), 7.44 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.30 (d, *J* = 16.0 Hz, 1H), 5.53 (s,

1H), 5.37 (s, 1H), 3.80 (s, 3H), 2.04 – 1.94 (m, 2H), 1.84 – 1.74 (m, 3H), 1.71 (s, 3H), 1.67 – 1.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.1, 143.9, 140.9, 129.5, 127.1, 120.1, 116.1, 114.1, 68.5, 55.2, 29.8, 28.0, 23.7, 19.0; HRMS(EI) Calcd for C₁₇H₂₀O₃ [M⁺]: 272.1412, Found 272.1417; IR (KBr) v (cm⁻¹): 2937, 2836, 1705, 1634, 1604, 1513, 1252, 1171, 1031, 982, 918, 829.

(*E*)-3-Methylcyclohex-2-en-1-yl 3-(3,4,5-trimethoxyphenyl)acrylate (8n): To the mixture of 8p1 (224 mg, 2.0 mmol, 1.0 equiv), *(E*)-3-(3,4,5-trimethoxyphenyl)acrylic acid (572 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give 8n (486 mg, 73% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 15.9 Hz, 1H), 6.72 (s, 2H), 6.33 (d, *J* = 15.9 Hz, 1H), 5.51 (s, 1H), 5.36 (s, 1H), 3.84 (s, 9H), 2.02-1.89 (m, 2H), 1.83-1.74 (m,3H), 1.70 (s, 3H), 1.67 – 1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 153.2, 144.2, 141.2, 139.8, 129.9, 119.9, 117.9, 105.0, 68.7, 60.8, 56.0, 29.8, 28.0, 23.7, 18.9; HRMS(EI) Calcd for C₁₉H₂₄O₅ [M⁺]: 332.1624, Found 332.1629; IR (KBr) v(cm⁻¹) : 2938, 1704, 1636, 1582, 1505, 1455, 1419, 1317, 1246, 1152, 1005, 917, 828.

7-Methyl-4-(2,3,4-trimethoxyphenyl)-1-oxaspiro[4.5]dec-6-en-2-one (80): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), *(E)*-3-(2,3,4-trimethoxyphenyl)acrylic acid (572 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4
mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give **80** (539 mg, 81% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 16.1 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 1H), 6.66 (d, *J* = 8.8 Hz, 1H), 6.40 (d, *J* = 16.1 Hz, 1H), 5.52 (s, 1H), 5.36 (s, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.85 (s, 3H), 2.02-1.89 (m, 2H), 1.83 – 1.75 (m, 3H), 1.71 (s, 3H), 1.67 – 1.61(m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 155.3, 153.2, 142.2, 140.9, 139.3, 123.0, 121.5, 120.2, 117.5, 107.5, 68.6, 61.3, 60.8, 55.9, 29.9, 28.1, 23.7, 19.1; HRMS(EI) Calcd for C₁₉H₂₄O₅ [M⁺]: 332.1624, Found 332.1618; IR (KBr) v(cm⁻¹) : 2938, 1704, 1630, 1594, 1496, 1465, 1415, 1296, 1256, 1159, 1098.

2. Preparation of compound 8p, 8q and 8r

3-Methylcyclohex-2-en-1-ol¹ (8p1): To the solution of 3-Methyl-2-cyclohexen-1-one (2.2 g, 20 mmol, 1.0 equiv) and Cerium(III) chloride heptahydrate (8.94 g, 24 mmol, 1.2 equiv) in MeOH (50 mL) was added NaBH₄ (908 mg, 24 mmol, 1.2 equiv) at 0 °C, the reaction was stirred at room temperature for 30 min. The reaction mixture was extracted by DCM (15 mL x 3), the combined organic phase was dried over anhydrous Na₂SO₄, After evaporation of the solvent under reduced pressure (the temperature should be kept below 20 °C), the residue light yellow oil was pure enough for next step without further purification **8p1** (2.2 g, 98% yield). The data is consistent with the literature ¹. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.48 (s, 1H), 4.15 (s, 1H), 1.95 – 1.87 (m, 2H), 1.78 – 1.72 (m, 3H), 1.67 (s, 3H), 1.58-1.51 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 124.2, 65.8, 31.6, 30.0, 23.6, 19.0.

3-Methylcyclohex-2-en-1-yl acrylate (8p): Acryloyl chloride (1.2 equiv) was added dropwise into the mixture of 3-Methyl-2-cyclohexen-1-ol (1.0 equiv) and Et₃N (2.0 equiv) in DCM (20 mL) under 0 °C. After 30 minutes, the reaction mixture was extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure , the residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1) to give **8p** (772 mg, 47% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.38 (dd, *J* = 17.3 and 1.4 Hz, 1H), 6.10 (dd, *J* = 17.3 and 10.4 Hz, 1H), 5.78 (dd, *J* = 10.4 and 1.4 Hz, 1H), 5.49 (s, 1H), 5.32 (s, 1H), 2.02-1.89 (m, 2H), 1.83 – 1.73 (m, 3H), 1.71 (s, 3H), 1.67-1.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 141.2, 130.2, 129.0, 119.9, 68.9, 29.9, 28.0, 23.7, 19.0; HRMS(EI) Calcd for C₁₀H₁₄O₂ [M⁺]: 166.0994, Found 166.0993; IR (film) v(cm⁻¹): 2938, 1721, 1406, 1270, 1043, 982, 914, 811.

Cyclohex-2-en-1-yl acrylate (8q): Acryloyl chloride (1.2 equiv) was added dropwise into the mixture of 2-cyclohexen-1-ol (1.0 equiv) and Et₃N (2.0 equiv) in DCM (20 mL) under 0 °C. After 30 minutes, the reaction mixture was extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1) to give **8q** (237 mg, 78% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.39 (dd, *J* = 17.3 and 1.2 Hz, 1H), 6.11 (dd, *J* = 17.3 and 10.4 Hz, 1H), 6.03-5.88 (m, 1H), 5.79 (dd, *J* = 10.4 and 1.2 Hz, 1H), 5.72 (dd, *J* = 6.0 and 1.6 Hz, 1H), 5.33 (s, 1H), 2.12-1.99 (m, 2H), 1.92-1.86 (m, 1H), 1.80-1.73 (m, 2H), 1.68 – 1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 132.7, 130.3, 128.9, 125.5, 68.2, 28.2, 24.8, 18.8; HRMS(EI) Calcd for C₉H₁₂O₂ [M⁺]: 152.0837, Found 152.0839; IR (KBr) v(cm-1): 3445, 1723, 1635, 1407, 1385, 1269, 1193, 1048, 941, 908.

Cyclohept-2-en-1-yl acrylate (8r): To the solution of cyclopent-2-en-1-one (1.0 equiv) in MeOH was added NaBH₄ (1.2 equiv) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue light yellow oil was used for next step directly without further purification. Acryloyl chloride (1.2 equiv) was added dropwise into the mixture of cyclohept-2-en-1-ol (1.0 equiv) and Et₃N (2.0 equiv) in DCM (20 mL) under 0 °C. After 30 minutes, the reaction mixture was extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1) to give 8r (269 mg, 81% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.39 (dd, J = 17.3 and 1.3 Hz, 1H), 6.12 (dd, J = 17.3 and 10.4 Hz, 1H), 5.86 -5.83 (m, 1H), 5.80 (dd, J = 10.3 and 1.3 Hz, 1H), 5.66 (d, J = 11.6 Hz, 1H), 5.47 (d, J= 8.7 Hz, 1H), 2.24 – 2.17 (m, 1H), 2.12-2.05 (m, 1H), 1.96-1.87 (m, 2H), 1.75 – 1.62 (m, 3H), 1.46-1.37 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 133.4, 131.7, 130.4, 128.9, 74.3, 32.7, 28.4, 26.6, 26.5; HRMS(EI) Calcd for C₁₀H₁₄O₂ [M⁺]: 166.0994, Found 166.0995; IR (film) (cm⁻¹): 2927, 1729, 1457, 1262, 1098, 1028, 800.

3. Preparation of compound 8s, 8t, 8u and 8v.

2-en-1-yl 2-bromoacetate (8s1): To the solution of cyclopent-2-en-1-one (1.0 equiv) in MeOH was added NaBH4 (1.2 equiv) at 0 °C. The reaction was stirred at 0 °C for 30 min. The reaction mixture was extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure (the temperature should be kept below 20 °C), the residue light yellow oil was used for next step without further purification. To the mixture of cyclopent-2en-1-ol (561 mg, 5.0 mmol, 1.0 equiv), bromoacetic acid (834 mg, 6.0 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 122 mg, 1.0 mmol, 0.2 equiv) in DCM (30 mL) was added dicyclohexylcarbodiimide (DCC, 1.24 g, 6.0 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give the desired ester products 8s1 (886 mg, 86% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 6.20-6.12 (m, 1H), 5.82 (dd, J = 5.4 and 2.1 Hz, 1H), 5.74 (dd, J = 5.4 and 2.1 Hz, 1H), 3.79 (s, 2H), 2.55 – 2.51 (m, 1H), 2.35 – 2.26 (m, 2H), 1.87 – 1. 82 (m, 1H); ^{13}C NMR (150 MHz, CDCl_3) δ 167.1, 138.6, 128.4, 82.6, 31.0, 29.5, 26.3; HRMS(EI) Calcd for C₇H₉BrO₂ [M⁺]: 203.9786, Found 203.9783; IR (film) v (cm⁻¹):

2931, 1732, 1421, 1279, 1171, 1028, 874, 739.

(2-(Cyclopent-2-

en-1-yloxy)-2-oxoethyl)triphenylphosphonium bromide (8s2): The obtained ester **8s1** (1.0 g, 4.29 mmol, 1.0 equiv) and PPh₃ (2.25 g, 8.58 mmol, 2.0 equiv) were stirred in toluene (30 mL) at room temperature for 48 h. A white precipitate was formed from the reaction mixture. After filtered, the white solid was collected and dried at room

temperature to give the desired product **8s2** (1.84 g, 92%).White solid; mp 127.5-127.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76-7.72 (m, 6H), 7.68 (t, *J* = 7.2 Hz, 3H), 7.56 (br, 6H), 5.89 (s, 1H), 5.35 (s, 2H), 5.23 (d, *J* = 14.0 Hz, 2H), 2.17 – 2.05 (m, 2H), 1.94-1.88 (m, 1H), 1.38 – 1.34 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 163.5(d, *J*_{*c*-*p*} = 4.0 Hz), 138.8, 134.9 (d, *J*_{*c*-*p*} = 2.8 Hz), 133.6 (d, *J*_{*c*-*p*} = 10.7 Hz), 129.9 (d, *J*_{*c*-*p*} = 13.1 Hz), 127.3, 117.8, 117.2, 83.1, 32.9 (d, *J*_{*c*-*p*} = 54.0 Hz), 30.6, 28.8; ³¹P NMR (242 MHz, CDCl₃) δ 20.86; HRMS(EI) Calcd for C₂₅H₂₄BrO₂P [M⁺]: 466.0697, Found 466.0709; IR (film) v (cm⁻¹): 1705, 1585, 1435, 1309, 1196, 1153, 1028, 868.

2-(Cyclopent-2-en-1-yl) 1,1-dimethyl ethene-1,1,2-tricarboxylate (8s): 8s2 (1.49 g, 3.0 mmol, 1.0 equiv) and dimethyl keto malonate (439 mg, 3.0 mmol, 1.0 equiv) were dissolved in DCM (30 mL), and then cooled to 0 °C. A aqueous solution of NaOH (240 mg, 6.0 mmol, 2.0 equiv, 2N) was added dropwise into the solution. The reaction was stirred at 0 °C for 30 min, and then extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give the desired esters **8s** (610 mg, 80%). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H), 6.20-6.10 (m, 1H), 5.90-5.75 (m, 1H), 5.70-5.60 (m, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 2.55 – 2.45 (m, 1H), 2.36 – 2.23 (m, 2H), 1.89 – 1.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 163.3, 162.6, 138.6, 137.8, 131.1, 128.4, 82.2, 53.2, 52.8, 31.0, 29.5; HRMS(EI) Calcd for C₁₂H₁₅O₆ [M + H]⁺: 255.0869, Found 255.0864; IR (film) v (cm⁻¹): 2956, 1720, 1456, 1070, 1028, 920, 777.

Cyclohex-2-en-1-yl 2-bromoacetate (8t1): To the mixture of 8p1 (561 mg, 5.0 mmol, 1.0 equiv), bromoacetic acid (834 mg, 6.0 mmol, 1.2 equiv) and 4dimethylaminopyridine (DMAP, 122 mg, 1.0 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 1.24 g, 6.0 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give the desired ester products 8t1 (1.0 g, 86% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.47 (s, 1H), 5.28 (s, 1H), 3.80 (s, 2H), 2.01-1.93(m, 2H), 1.78-1.73 (m, 3H), 1.70 (s, 3H), 1.67-1.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.1, 119.0, 71.0, 29.8, 27.6, 26.5, 23.7, 18.7; HRMS(EI) Calcd for C₉H₁₃BrO₂ [M⁺]: 233.0177, Found 233.0171; IR (KBr) v(cm⁻¹): 3368, 2945, 2833, 1728, 1450, 1285, 1032.

(2-(Cyclohex-2-en-1-yloxy)-2-oxoethyl)triphenylphosphonium bromide (8t2): The obtained ester 8t1 (1.0 g, 4.29 mmol, 1.0 equiv) and PPh₃ (2.25 g, 8.58 mmol, 2.0 equiv) were stirred in toluene (30 mL) at room temperature for 48 h. A white precipitate was formed from the reaction mixture. After filtered, the white solid was collected and dried at room temperature to give the desired product 8t2 (2.08g, 98%). White solid; mp 129.6-129.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 13.4 and 7.5 Hz, 6H), 7.79 – 7.74 (m, 3H), 7.66 (tt, *J* = 7.7 and 3.5 Hz, 6H), 5.54-5.41 (m, 2H), 5.12 (s, 1H), 5.05 (s, 1H), 1.88 – 1.83 (m, 2H), 1.72 (s, 3H), 1.60 – 1.46 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, *J*_{c-p} = 4.1 Hz), 142.2, 134.9 (d, *J*_{c-p} = 3.0 Hz), 133.7 (d, *J*_{c-p} = 10.7 Hz), 130.0 (d, *J*_{c-p} = 13.1 Hz), 118.1, 117.9, 117.2, 71.7, 33.0 (d, *J*_{c-p} = 53.7 Hz), 29.3,

27.0, 23.4, 18.1; ³¹P NMR (242 MHz, CDCl₃) δ 20.92; HRMS(EI) Calcd for C₂₇H₂₈BrO₂P [M⁺]: 494.1010, Found 494.1015; IR (KBr) v(cm⁻¹) : 3422, 2915, 2871, 1715, 1587, 1485, 1438, 1326, 1270, 1113.

1,1-Dimethyl 2-(3-methylcyclohex-2-en-1-yl) ethene-1,1,2-tricarboxylate (8t): 8t2 (1.49 g, 3.0 mmol, 1.0 equiv) and dimethyl keto malonate (439 mg, 3.0 mmol, 1.0 equiv) were mixed in DCM (30 mL), and then cooled to 0 °C. A aqueous solution of NaOH (240 mg, 6.0 mmol, 2.0 equiv, 2N) was added dropwise into the solution. The reaction was stirred at 0 °C for 30 min, and then extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give the desired esters **8t** (670 mg, 79% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.88 (s, 1H), 5.47 (s, 1H), 5.31 (s, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 2.03– 1.89 (m, 2H), 1.78-1.75 (s, 3H), 1.70 (s, 3H), 1.65 – 1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 163.1, 162.7, 142.2, 137.7, 131.4, 118.9, 70.6, 53.2, 52.8, 29.8, 27.7, 23.7, 18.7; HRMS(EI) Calcd for C₁₄H₁₈O₆ [M⁺]: 282.1103, Found 282.1106; IR (KBr) v(cm⁻¹) : 2953, 1742, 1721, 1437, 1266, 1174.

Cyclohex-2-en-1-yl 2-bromoacetate (8u1): To the mixture of 2-Cyclohexen-1-ol (491 mg, 5.0 mmol, 1.0 equiv), bromoacetic acid (834 mg, 6.0 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 122 mg, 1.0 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 1.24 g, 6.0 mmol, 1.2 equiv) in portions at 0 °C. After 30 min, the reaction mixture was filtered. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica

gel (Petroleum ether/ EtOAc = 50/1) to give the desired ester products **8u1** (942 mg, 86% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.98 (d, *J* = 10.0 Hz, 1H), 5.70 (d, *J* = 8.8 Hz, 1H), 5.29 (s, 1H), 3.81 (s, 2H), 2.11 – 1.96 (m, 2H), 1.90 – 1.82 (m, 1H), 1.79-1.70 (m, 2H), 1.65-1.61 (m, 1H) ; ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 133.5, 124.6, 70.1, 27.9, 26.3, 24.7, 18.5; HRMS(EI) Calcd for C₈H₁₁BrO₂ [M⁺]: 217.9942, Found 217.9950; IR (film) v(cm⁻¹) : 3427, 2926, 2857, 1711, 1633, 1458, 1385, 1282, 1029.

(2-(Cyclohex-2-en-1-yloxy)-2-oxoethyl)triphenylphosphonium bromide (8u2): The obtained ester 8u1 (0.8 g, 3.65 mmol, 1.0 equiv) and PPh₃ (1.92 g, 7.3 mmol, 2.0 equiv) were stirred in toluene (30 mL) at room temperature for 48 h. A white precipitate was formed from the reaction mixture. After filtered, the white solid was collected and dried at room temperature to give the desired product 8u2 (1.69 g, 96% yield). White solid; mp 137.1-137.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.89 (m, 6H), 7.80 – 7.76 (m, 3H), 7.69-7.65 (m, 6H), 5.85 (dt, *J* = 10.2 and 3.9 Hz, 1H), 5.64 – 5.50 (m, 2H), 5.40 – 5.36 (m, 1H), 5.08 (d, *J* = 4.7 Hz, 1H), 2.00 – 1.86 (m, 2H), 1.68-1.64 (m, 1H), 1.56-1.53 (m,1H), 1.50-1.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8 (d, *J*_{c-p} = 3.9 Hz), 135.1(d, *J*_{c-p} = 2.9 Hz), 134.0 (d, *J*_{c-p} = 10.6 Hz), 130.2 (d, *J*_{c-p} = 13.1 Hz), 123.7, 118.4, 117.5, 71.0, 33.4 (d, *J*_{c-p} = 54.0 Hz), 27.6, 24.5, 18.2; ³¹P NMR (242 MHz, CDCl₃) δ 20.83; HRMS(EI) Calcd for C₂₆H₂₆BrO₂P [M⁺]: 480.0854, Found 480.0838; IR (KBr) (cm⁻¹): 3436, 3011, 2873, 2832, 1738, 1439, 1247, 1111, 1002, 915, 869.

2-Cyclohex-2-en-1-yl 1,1-dimethyl ethene-1,1,2-tricarboxylate (8u): **8u2** (1.49 g, 3.1 mmol, 1.0 equiv) and dimethyl keto malonate (453 mg, 3.1 mmol, 1.0 equiv) were

mixed in DCM (30 mL), and then cooled to 0 °C. A aqueous solution of NaOH (240 mg, 6.0 mmol, 2.0 equiv, 2N) was added dropwise into the solution. The reaction was stirred at 0 °C for 30 min, and then extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄, After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give the desired esters **8u** (632 mg, 76% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.90 (s, 1H), 6.02 – 5.98 (m, 1H), 5.73 – 5.69 (m, 1H), 5.34 (d, *J* = 3.1Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 2.13 – 1.96 (m, 2H), 1.92-1.84 (m, 1H), 1.81 – 1.71 (m, 2H), 1.68 – 1.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 163.1, 162.7, 137.9, 133.7, 131.3, 124.6, 69.8, 53.2, 52.9, 28.0, 24.8, 18.5; HRMS(EI) Calcd for C₁₃H₁₆O₆ [M⁺]: 268.0947, Found 268.0960; IR (KBr) (cm⁻¹) : 3425, 2953, 1744, 1723, 1438, 1367, 1268, 1173, 1069, 1011, 910.

1,1-Diethyl 2-(3-methylcyclohex-2-en-1-yl) ethene-1,1,2-tricarboxylate (8v): 8t2 (1.49 g, 3.0 mmol, 1.0 equiv) and diethyl keto malonate (522 mg, 3.0 mmol, 1.0 equiv) were mixed in DCM (30 mL), and then cooled to 0 °C. A aqueous solution of NaOH (240 mg, 6.0 mmol, 2.0 equiv, 2N) was added dropwise into the solution. The reaction was stirred at 0 °C for 30 min, and then extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 30/1) to give the desired esters **8v** (754 mg, 81% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 5.46 (s, 1H), 5.31 (s, 1H), 4.35-4.24 (m, 4H), 2.02 – 1.93 (m, 2H), 1.88-1.74 (m, 3H), 1.69 (s, 3H), 1.33 (t, *J* = 7.1Hz, 3H), 1.29 (t, *J* = 7.1Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 163.2, 162.3, 142.1, 138.4, 130.6, 119.0, 70.5, 62.3, 61.9, 29.8, 27.7, 23.7, 18.7, 13.9, 13.8; HRMS(EI) Calcd for C₁₆H₂₂O₆ [M⁺]: 310.1416, Found 310.1405; IR (film) v(cm⁻¹) : 2940, 1721, 1376, 1254, 1183, 1164, 1067, 1023, 913.

4. Preparation of deuterated substrates D-8p and D-8j

Deuterated-3-Methylcyclohex-2-enol (D-8p1): To the solution of 3-Methyl-2-cyclohexen-1-one (330 mg, 3.0 mmol, 1.0 equiv) and Cerium(III) chloride heptahydrate (1.34 g, 3.6 mmol, 1.2 equiv) in MeOH (20 mL) was added NaBD₄ (151 mg, 3.6 mmol, 1.2 equiv) at 0 °C, the reaction was stirred at 0 °C for 30 min. The reaction mixture was extracted by DCM (15 mL x 3), the combined organic phase was dried over anhydrous Na₂SO₄, After evaporation of the solvent under reduced pressure (the temperature should be kept below 20 °C), the residue light yellow oil was pure enough used for next step without further purification (994 mg, 87% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.47 (s, 1H), 1.96-1.87 (m, 2H), 1.78-1.71 (m, 3H), 1.67 (s, 3H), 1.57-1.55 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 124.1, 65.79, 65.54, 65.32, 65.11, 31.4, 30.0, 23.6, 18.9; HRMS(EI) Calcd for C₇H₁₀D₂O [M⁺]: 114.1014, Found 114.1013; IR (film) (cm⁻¹): 3331, 2934, 1447, 1339, 1171, 1095, 1069, 1005, 942.

Deuterated-(*E*)-3-Methylcyclohex-2-en-1-yl 3-(4-cyanophenyl)acrylate (D-8j): To the mixture of D-8p1 (228 mg, 2.0 mmol, 1.0 equiv), (*E*)-3-(4-cyanophenyl)acrylic acid (416 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. The reaction was stirred at room temperature for 30 min. The reaction mixture was filtered, after evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica

gel (Petroleum ether/ EtOAc = 30/1) to give **D-8j** (478 mg, 89 % yield). White solid; mp 82.4-82.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68– 7.66 (m, 3H), 7.63-7.59 (m, 2H), 6.52 (d, *J* = 16.0 Hz, 1H), 5.54 (s, 1H), 2.06 – 1.93 (m, 2H), 1.84-1.78 (m, 3H), 1.74 (s, 3H), 1.70-1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 141.8, 141.6, 138.8, 132.5, 128.3, 122.4, 119.5, 118.3, 113.2, 69.4, 69.2, 69.0, 68.7, 29.9, 27.8, 23.7, 18.9; HRMS(EI) Calcd for C₁₇H₁₆DNO₂ [M⁺]: 268.1322, Found 268.1313; IR (KBr) v(cm⁻¹): 2938, 2227, 1708, 1638, 1329, 1319, 1207, 1165, 1085, 901, 829.

Deuterated-3-Methylcyclohex-2-en-1-yl acrylate (D-8p): To the mixture of **D-8p1** (228 mg, 2.0 mmol, 1.0 equiv) and Et₃N (405 mg, 4.0 mmol, 2.0 equiv) in DCM (20 mL) was added acryloyl chloride (217 mg, 2.4 mmol, 1.2 equiv) at 0 °C. The reaction mixture was stirred at room temperature for 30 min. Then the reaction was quenched by water, extracted by DCM (15 mL x 3), the combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give **D-8p** (311 mg, 93% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.38 (dd, *J* = 17.3 and 1.1 Hz, 1H), 6.11 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.78 (dd, *J* = 10.4 and 1.2 Hz, 1H), 5.49 (s, 1H), 2.03 – 1.89 (m, 2H), 1.80 – 1.72 (m, 3H), 1.71 (s, 3H), 1.66-1.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 141.3, 130.2, 129.1, 119.8, 68.92, 68.77, 68.54, 68.31, 29.9, 27.9, 23.7, 19.0; HRMS(EI) Calcd for C₁₀H₁₃DO₂ [M⁺]: 167.1057, Found 167.1051; IR (film) v(cm⁻¹): 2935, 1720, 1405, 1296, 1209, 1167, 1042, 927.

5. Preparation of structurally similar substrates (10-17)

3-Methylcyclohex-2-en-1-yl 3-phenylpropanoate (10): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), 3-phenylpropanoic acid (360 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. The reaction was stirred at room temperature for 30 min. The reaction mixture was filtered, after evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give **10** (420 mg, 86% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.30-7.28 (m, 3H), 5.52 (s, 1H), 5.34 (s, 1H), 3.04 (t, *J* = 7.9 Hz, 2H), 2.70 (t, *J* = 7.5 Hz, 2H), 2.09-1.96 (m, 2H), 1.87-1.81 (m, 2H), 1.79 (s, 3H), 1.75 – 1.67(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 141.0, 140.5, 128.4, 128.3, 126.1, 119.9, 68.8, 36.2, 31.1, 29.8, 27.9, 23.7, 19.0; HRMS(EI) Calcd for C₁₆H₂₀O₂ [M⁺]: 244.1463, Found 244.1460; IR (KBr) v (cm⁻¹): 2936, 2867, 1729, 1497, 1452, 1377, 1288, 1180, 1160, 1074, 976, 914.

Cyclohex-2-en-1-yl but-3-enoate (11): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), but-3-enoic acid (207 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. The reaction was stirred at room temperature for 30 min. The reaction mixture was filtered, after evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give

11(185 mg, 51% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.99-5.84 (m, 1H), 5.44 (s, 1H), 5.24 (s, 1H), 5.15 (d, *J* = 4.0 Hz, 1H), 5.11 (s, 1H), 3.05 (d, *J* = 4.0 Hz, 2H), 1.99-1.83 (m, 2H), 1.77-1.70 (m, 3H), 1.68 (s, 3H), 1.66 – 1.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 141.1, 130.5, 119.8, 118.2, 69.0, 39.4, 29.8, 27.9, 23.7, 18.9; HRMS(EI) Calcd for C₁₁H₁₆O₂ [M⁺]: 180.1150, Found 180.1148; IR (film) v(cm⁻¹): 2938, 1732, 1440, 1253, 1180, 988, 916.

3-Methylcyclohex-2-en-1-yl 3-phenylpropiolate (12): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), 3-phenylpropiolic acid (351 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. The reaction was stirred at room temperature for 30 min. The reaction mixture was filtered, after evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give **12** (298 mg, 62% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.56 (m, 2H), 7.45-7.41 (m, 1H), 7.37-7.33 (m, 2H), 5.54 (s, 1H), 5.39 (s, 1H), 2.04-1.91 (m, 2H), 1.85-1.79 (m, 3H), 1.73 (s, 3H), 1.69-1.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 142.2, 132.9, 130.4, 128.5, 119.8, 119.1, 85.7, 81.0, 70.9, 29.8, 27.8, 23.7, 18.8; HRMS(EI) Calcd for C₁₆H₁₆O₂ [M⁺]: 240.1150, Found 240.1153; IR (KBr) v(cm⁻¹) : 2936, 2216, 1704, 1491, 1444, 1282, 1192, 1069, 972, 907, 757, 690.

3-Methylcyclohex-2-en-1-yl cyclopropanecarboxylate (13): To the mixture of **8p1** (224 mg, 2.0 mmol, 1.0 equiv), cyclopropanecarboxylic acid (207 mg, 2.4 mmol, 1.2

equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. The reaction was stirred at room temperature for 30 min. The reaction mixture was filtered, after evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give **13** (321mg, 89% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 5.43 (s, 1H), 5.21 (s, 1H), 1.98-1.88 (m, 2H), 1.75-1.70 (m, 2H), 1.68 (s, 3H), 1.66-1.63 (m, 1H), 1.62-1.58 (m, 1H), 1.57 – 1.53 (m, 1H), 0.96-0.93 (m, 2H), 0.81-0.78 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 140.8, 120.0, 68.5, 29.8, 27.9, 23.7, 18.9, 13.1, 8.3, 8.2; HRMS(EI) Calcd for C₁₁H₁₆O₂ [M⁺]: 180.1150, Found 180.1151; IR (KBr) v (cm⁻¹): 3339, 2943, 2832, 1454, 1115, 1032.

3-Methylcyclohexyl cinnamate (14): To the mixture of 3-methylcyclohexan-1-ol (228 mg, 2.0 mmol, 1.0 equiv), cinnamic acid (356 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. The reaction was stirred at room temperature for 30 min. The reaction mixture was filtered, after evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give **14** (391 mg, 80% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.69-7.65 (m, 1.70 H), 7.54-7.51 (m, 3.47 H), 7.39-7.36 (m, 5.00 H), 6.47-6.41 (m, 1.61 H), 5.21-5.20 (m, 0.57 H), 4.86-4.81 (m, 1.00 H), 2.05-2.03 (d, *J* = 12.2 Hz, 2.14 H), 1.91 – 1.78 (m, 3.26 H), 1.73-1.46 (m, 4.92 H), 1.41-1.20 (m, 3.03 H), 1.06 (q, *J* = 11.6 Hz, 1.27 H), 1.03-0.96 (m, 1.01 H), 0.95 (d, *J* = 6.5 Hz, 3.15 H), 0.91 (d, *J* = 6.7 Hz, 1.82 H), 0.85 (qd, *J* = 12.7 and 3.6 Hz, 1.29 H); ¹³C NMR (150 MHz, CDCl₃) δ 166.37, 166.36, 144.2, 144.1, 134.44, 134.42, 130.0, 128.8, 128.0, 118.9, 118.7, 73.3, 70.3, 40.5, 38.4,

34.1, 33.9, 31.5, 31.3, 29.9, 27.1, 23.9, 22.2, 22.1, 20.7; HRMS(EI) Calcd for C₁₆H₂₀O₂ [M⁺]: 244.1463, Found 244.1457; IR (KBr) (cm⁻¹) : 2932, 2864, 1710, 1639, 1451, 1309, 1276, 1201, 1176, 1002, 979, 767.

3-Methylcyclohexyl 3-phenylpropanoate (15): То of the mixture 3methylcyclohexan-1-ol (228 mg, 2.0 mmol, 1.0 equiv), 3-phenylpropanoic acid (360 mg, 2.4 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 49 mg, 0.4 mmol, 0.2 equiv) in DCM (20 mL) was added dicyclohexylcarbodiimide (DCC, 495 mg, 2.4 mmol, 1.2 equiv) in portions at 0 °C. The reaction was stirred at room temperature for 30 min. The reaction mixture was filtered, after evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give 15 (458 mg, 93% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 3.22 H), 7.30-7.28 (m, 4.03 H), 5.16 – 5.14 (m, 0.6 H), 4.82 – 4.74 (m, 1.01 H), 3.07-3.01 (m, 4.01 H), 2.74-2.66 (m, 4.06 H), 2.01-1.98 (d, J = 11.9 Hz, 2.55 H), 1.86 – 1.69 (m, 6.04 H), 1.62-1.53 (m, 2.78 H), 1.52-1.45 (m, 0.68 H), 1.44-1.35 (m, 1.65 H), 1.31-1.18 (m, 2.27 H), 1.07-1.04 (m, 1.34 H), 1.00 (d, J = 6.6 Hz, 3.84 H), 0.94 (d, J = 6.4 Hz, 1.77 H), 0.91-0.84 (m, 1.57 H); ¹³C NMR (100 MHz, CDCl₃) & 172.34, 172.32, 140.6, 140.5, 128.4, 128.3, 128.2, 126.1, 73.2, 70.3, 40.4, 38.3, 36.2, 34.1, 33.9, 31.4, 31.3, 31.1, 31.0, 29.8, 27.0, 23.9, 22.2, 22.1, 20.6; HRMS(EI) Calcd for $C_{16}H_{22}O_2$ [M⁺]: 246.1620, Found 246.1614; IR (KBr) v(cm⁻ 1): 2932, 2864, 1732, 1496, 1453, 1360, 1259, 1238, 1178, 1093, 1042, 989, 920.

3-(Allyloxy)-1-methylcyclohex-1-ene (16): NaH (160 mg, 60%, 4.0 mmol, 2.0 equiv) was added into the solution of **8p1** (224.3 mg, 2.0 mmol, 1.0 equiv) in THF (20 mL),

the mixture was reflux for 30 min. 3-Bromoprop-1-ene (484 mg, 4.0 mmol, 2.0 equiv) was added into the reaction mixture and reflux for additional 2 hours. Then the reaction mixture was quenched by saturated NH₄Cl (aq), and extracted by DCM (15 mL×3). The combined organic phase was dried with anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give **16** (240 mg, 79% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.97-5.87 (m, 1H), 5.50 (d, *J* = 1.1Hz, 1H), 5.25 (dd, *J* = 17.2 and 1.4 Hz, 1H), 5.12 (dd, *J* = 10.3 and 0.7 Hz, 1H), 4.06-3.95 (m, 2 H), 3.85 (s, 1H), 1.97-1.85 (m, 2H), 1.78 – 1.71 (m, 2H), 1.67 (s, 3H), 1.64 – 1.59 (m, 1H), 1.56-1.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 135.5, 122.1, 116.2, 72.6, 69.0, 30.1, 27.9, 23.6, 19.2; HRMS(EI) Calcd for C₁₀H₁₇O [M + H] +: 153.1279, Found 153.1274 ; IR (KBr) v (cm⁻¹) : 3468, 2936, 1639, 1449, 1082, 1016, 916.

Cinnamyl acrylate² (17): To the mixture of Cinnamyl alcohol (268 mg, 2.0 mmol, 1.0 equiv) and Et₃N (405 mg, 4.0 mmol, 2.0 equiv) in DCM (30 mL) was added acryloyl chloride (217 mg, 2.4 mmol, 1.2 equiv) at 0 °C. The reaction mixture was stirred at room temperature for 30 min. Then the reaction was quenched by water, extracted by DCM (15 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether/ EtOAc = 50/1) to give **17** (350 mg, 93% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (d, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 1H), 6.70 (d, *J* = 15.9 Hz, 1H), 6.48 (dd, *J* = 17.3 and 1.2 Hz, 1H), 6.34 (dt, *J* = 15.9 and 6.4 Hz, 1H), 6.19 (dd, *J* = 17.3 and 10.4 Hz, 1H), 5.86 (dd, *J* = 10.4 and 1.2 Hz, 1H), 4.84 (dd, *J* = 6.4 and 1.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 136.1, 134.2, 130.9, 128.5, 128.3, 128.0, 126.5, 123.0, 65.0.

Reference:

- a) Klaus Daniel Umland, Adeline Palisse, Timm T. Haug, Stefan F. Kirsch. *Angewandte Chemie, International Edition.* 2011, 50, 9965-9968; b) Monica Nardi,Giovanni Sindona, Paola Costanzo, Manuela Oliverio, Antonio Procopio. *Tetrahedron.* 2015, 71, 1132-1135; c) Gary B. Fisher, Joseph C. Fuller, John Harrison, Salvador G. Alvarez, Elizabeth R. Burkhardt, Christian T. Goralski, and Bakthan Singaram. *Journal of Organic Chemistry.* 1994, 59, 6378-6385.
- a) Maria Kalyva, Alexandros L. Zografos, Era Kapourani, Evaggelos Giambazolias, Laurent Devel, Athanasios Papakyriakou, Vincent Dive, Yannis G. Lazarou, and Dimitris Georgiadis. *Chemistry - A European Journal*, 2015, 21, 3278-3289;
 - b) Daiki Nakatake, Ryo Yazaki, and Takashi Ohshima. Eur. J. Org. Chem. 2016, 3696–3699.

Typical Procedure for Photo-Promoted Hydrogen Abstraction and Cyclization of Allyl Acrylic Esters

To a quartz Schlenk tube (15 mL) was added allyl acrylic esters **8** (0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9.

diastereoisomer, 46%

7-Methyl-4-phenyl-1-oxaspiro[4.5]dec-6-en-2-one (\pm)-9a and (\pm)-9a': To a quartz Schlenk tube (15 mL) was added 8a (24.2 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to

ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (\pm)-9a and (\pm)-9a' (11.1 mg, 46% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.34-7.31 (m, 3.88 H), 7.30-7.27 (m, 2.01 H), 7.18-7.17 (m, 4.17 H), 5.54 (s, 1.00 H), 5.14 (s, 0.67 H), 3.58 (t, *J* = 8.6 Hz, 1.05 H), 3.48 (t, *J* = 8.6 Hz, 0.73 H), 3.02 – 2.91 (m, 3.80 H), 2.05 – 2.02 (m, 0.79 H), 1.95 – 1.88 (m, 2.36 H), 1.88-1.84 (m, 1.08 H), 1.83-1.79 (m, 1.04 H), 1.77 (s, 3.78 H), 1.75-1.74 (m, 0.54 H), 1.72-1.64 (m, 2.22 H), 1.62-1.58 (m, 1.31 H), 1.54 (s, 2.39 H), 1.40-1.35 (m, 1.30 H), 1.33-1.28 (m, 0.83 H), 1.24-1.19 (m, 1.34 H); ¹³C NMR (150 MHz, CDCl₃) δ 175.9, 175.7, 143.8, 142.2, 137.3, 136.8, 128.6, 128.5, 128.2, 127.8, 127.53, 127.47, 122.8, 119.3, 87.4, 87.2, 50.954, 50.950, 35.4, 34.4, 34.2, 29.8, 29.6, 29.5, 23.8, 23.7, 19.6, 18.7; HRMS(EI) Calcd for C₁₆H₁₈O₂ [M⁺]: 242.1307, Found 242.1311; IR (KBr) v(cm⁻¹) : 3429, 2936, 1768, 1453, 1270, 1240, 1230, 1155, 1078, 937.

diastereoisomer, 49%

4-(4-Fluorophenyl)-7-methyl-1-oxaspiro[**4.5**]**dec-6-en-2-one** (\pm)-**9b** and (\pm)-**9b**': To a quartz Schlenk tube (15 mL) was added 8b (26.0 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (\pm)-**9b and** (\pm)-**9b'** (12.7 mg, 49% yield).

(±)-9b: White solid; mp 64.9-65.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.14 (dd, *J* = 8.4 and 5.4 Hz, 2H), 7.02 (t, *J* = 8.5 Hz, 2H), 5.10 (s, 1H), 3.47 (t, *J* = 8.5 Hz, 1H), 3.00-2.90 (m, 2H), 2.04 – 2.01 (m, 1H), 1.94 – 1.91 (m, 1H), 1.86-1.77 (m, 2H), 1.71 – 1.66 (m, 1H), 1.65-1.61 (s, 1H), 1.56 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.6, 162.0 (d, *J*_{*C*-*F*} = 244.9 Hz), 142.6, 133.1 (d, *J*_{*C*-*F*} = 3.2 Hz), 129.6 (d, *J*_{*C*-*F*} = 8.0 Hz), 119.2, 115.4 (d, *J*_{*C*-*F*} = 21.2 Hz), 87.3, 50.3, 35.5, 34.4, 29.5, 23.8, 19.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -114.81; HRMS(EI) Calcd for C₁₆H₁₈FO₂ [M + H]⁺ : 261.1291, Found 261.1285; IR (KBr) v(cm⁻¹) : 2933, 1770, 1606, 1512, 1429, 1379, 1228, 1163, 1082, 937.

(±)-9b': White solid; mp 85.2-85.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, J = 8.4 and 5.4 Hz, 2H), 7.02 (t, J = 8.6 Hz, 2H), 5.51 (s, 1H), 3.56 (t, J = 9.1 Hz, 1H), 2.93 (d, J = 9.1 Hz, 2H), 1.96-1.92 (m, 1H), 1.77 (s, 3H), 1.70-1.65 (m, 1H), 1.62-1.58 (m, 1H) 1.42 – 1.37 (m, 1H), 1.33-1.28 (m, 1H), 1.23 – 1.16 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.3, 162.1(d, $J_{C-F} = 245.1$ Hz), 144.1, 132.6 (d, $J_{C-F} = 3.2$ Hz), 129.3 (d, $J_{C-F} = 8.0$ Hz), 122.6, 115.5 (d, $J_{C-F} = 21.2$ Hz), 87.0, 50.3, 34.3, 29.72, 29.66, 23.8, 18.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -114.63; HRMS(EI) Calcd for C₁₆H₁₈FO₂ [M + H]⁺: 261.1291, Found 261.1285; IR (KBr) v(cm⁻¹) : 2920, 1770, 1606, 1514, 1427, 1228, 1076, 931.

diastereoisomer, 54%

4-(3,5-Difluorophenyl)-7-methyl-1-oxaspiro[**4.5**]**dec-6-en-2-one** (\pm)-**9c** and (\pm)-**9c**': To a quartz Schlenk tube (15 mL) was added 8c (27.8 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (\pm)-**9c and** (\pm)-**9c'** (15.0 mg, 54% yield).

(±)-9c: White solid; mp 113.2-113.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 6.77 – 6.68 (m, 3H), 5.09 (s, 1H), 3.46 (t, J = 8.4 Hz, 1H), 3.00 (dd, J = 17.7 and 8.4 Hz, 1H), 2.89 (dd, J = 17.6 and 8.3 Hz, 1H), 2.04 – 2.01 (m, 1H), 1.97 – 1.94 (m, 1H), 1.91 – 1.83 (m, 3H), 1.72-1.67 (m, 1H), 1.60 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.9, 162.9 (dd, $J_{C-F} = 247.6$ and 12.7 Hz), 143.2, 141.5 (t, $J_{C-F} = 4.0$ Hz), 118.8, 111.2 (dd, $J_{C-F} = 20.1$ and 5.2 Hz), 103.1 (t, $J_{C-F} = 25.0$ Hz), 87.0, 50.6, 35.2, 34.5, 29.5, 23.8, 19.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -109.06; HRMS(EI) Calcd for C₁₆H₁₇F₂O₂ [M + H]⁺: 279.1197, Found 279.1191; IR (KBr) (cm⁻¹): 2922, 1755, 1599, 1456, 1363, 1246, 1163, 1117, 931.

(±)-9c': White solid; mp128.0-128.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 6.78-6.69 (m, 3H), 5.50 (s, 1H), 3.56 (t, *J* = 9.1 Hz, 1H), 2.96-2.88 (m, 2H), 1.99-1.95 (m, 1H), 1.85-1.82 (m, 1H), 1.79 (s, 3H), 1.74 – 1.67 (m, 1H), 1.64 – 1.62 (m, 1H), 1.48 – 1.43 (m, 1H), 1.20 (td, *J* = 3.2 and 0.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 163.0 (dd, *J*_{*C*-*F*} = 247.8 and 12.9 Hz), 144.8, 140.8 (t, *J*_{*C*-*F*} = 8.9 Hz), 122.3, 110.8 (dd, *J*_{*C*-*F*} = 20.0 and 5.3 Hz), 103.2 (t, *J*_{*C*-*F*} = 25.1 Hz), 86.6, 50.7, 33.9, 29.7, 23.9, 18.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -108.80; HRMS(EI) Calcd for C₁₆H₁₆F₂O₂ [M⁺] : 278.1118, Found 278.1117; IR (KBr) v(cm⁻¹) : 3427, 2926, 1768, 1626, 1599, 1458, 1242, 1116, 954, 926.

diastereoisomer, 56%

7-Methyl-4-(2,3,5-trifluorophenyl)-1-oxaspiro[4.5]dec-6-en-2-one (\pm)-9d and (\pm)-9d': To a quartz Schlenk tube (15 mL) was added 8d (29.6 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (\pm)-9d and (\pm)-9d' (17.2 mg, 56% yield).

(±)-9d : White solid; mp 106.1-106.4 °C; ¹H NMR (600 MHz, CDCl₃) δ 6.90 – 6.85 (m, 1H), 6.72-6.69 (m, 1H), 5.01 (s, 1H), 3.86 (dd, J = 8.8 and 6.2 Hz, 1H), 3.06 (dd, J =

17.9 and 8.9 Hz, 1H), 2.84 (dd, J = 17.9 and 6.2 Hz, 1H), 2.02-1.95 (m, 2H), 1.92-1.86 (m, 3H), 1.77-1.69 (m, 1H), 1.59 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.89, 157.6 (ddd, $J_{C-F} = 244.7$, 10.6 and 3.2 Hz), 150.5 (ddd, $J_{C-F} = 250.2$, 15.4 and 13.0 Hz), 144.4 (ddd, $J_{C-F} = 241.9$, 12.8 and 4.0 Hz), 143.3, 128.9 (dd, $J_{C-F} = 12.3$ and 8.3 Hz), 118.9, 109.8 (dt, $J_{C-F} = 23.9$ and 3.3 Hz), 104.8 (dd, $J_{C-F} = 27.1$ and 20.8 Hz), 87.1, 43.2, 34.7, 34.5, 29.4, 23.7, 19.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.20 (dd, $J_{C-F} = 14.6$ and 3.3 Hz), -132.59 (dd, $J_{C-F} = 20.9$ and 3.3 Hz), -145.25 (dd, $J_{C-F} = 20.9$ and 14.6 Hz); HRMS(EI) Calcd for C₁₆H₁₆F₃O₂ [M + H]⁺ : 297.1102, Found 297.1096; IR (KBr) ν (cm⁻¹) : 2935, 1778, 1635, 1500, 1346, 1232, 1011.

(±)-9d': White solid; mp 93.7-94.0 °C; ¹H NMR (600 MHz, CDCl₃) δ 6.91-6.85 (m, 1H), 6.79 – 6.60 (m, 1H), 5.52 (s, 1H), 3.86 (t, *J* = 8.1 Hz, 1H), 3.05 (dd, *J* = 17.7 and 8.6 Hz, 1H), 2.86 (dd, *J* = 17.7 and 7.5 Hz, 1H), 1.98-1.95 (m, 1H), 1.87 – 1.81 (m, 1H), 1.75 (s, 3H), 1.73-1.71 (m, 1H), 1.69-1.66 (m, 1H), 1.56-1.52 (m, 1H), 1.27 – 1.22 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 157.6 (ddd, *J*_{*C*-*F*} = 245.0, 10.5 and 2.9 Hz), 149.8 (ddd, *J*_{*C*-*F*} = 250.4, 15.2 and 12.9 Hz), 145.6 (ddd, *J*_{*C*-*F*} = 242.9, 13.0 and 4.1 Hz), 143.7, 128.1(dd, *J*_{*C*-*F*} = 12.9 and 8.4 Hz), 122.0, 110.2 (dt, *J*_{*C*-*F*} = 24.0 and 3.2 Hz), 104.9 (dd, *J*_{*C*-*F*} = 27.1 and 20.8 Hz), 86.3, 44.0, 34.5, 30.2, 29.6, 23.7, 18.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.10 (dd, *J*_{*C*-*F*} = 14.6 and 3.4 Hz), -132.08 (dd, *J*_{*C*-*F*} = 20.9 and 3.4 Hz), -144.70 (dd, *J*_{*C*-*F*} = 20.9 and 14.7 Hz); HRMS(EI) Calcd for C₁₆H₁₅F₃O₂ [M⁺]: 296.1024, Found 296.1028; IR (KBr) v(cm⁻¹) : 2941, 1774, 1608, 1496, 1369, 1234, 1126, 1003, 926.

7-Methyl-4-(3,4,5-trifluorophenyl)-1-oxaspiro[4.5]dec-6-en-2-one (±)-9e and (±) -9e': To a quartz Schlenk tube (15 mL) was added 8e (29.6 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9e and (±)-9e' (16.3 mg, 55% yield).

(±)-9e: White solid; mp 106.3-106.6 °C; ¹H NMR (600 MHz, CDCl₃) δ 6.83-6.78 (m, 2H), 5.06 (s, 1H), 3.41 (t, *J* = 8.4 Hz, 1H), 2.99 (dd, *J* = 17.6 and 8.5 Hz, 1H), 2.84 (dd, *J* = 17.6 and 8.3 Hz, 1H), 2.04 – 1.94 (m, 2H), 1.88-1.81 (m, 3H), 1.71 – 1.67 (m, 1H), 1.61 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.62, 151.0 (ddd, *J*_{*C*-*F*} = 249.2 and 9.8 and 4.1 Hz), 143.5, 139.0 (dt, *J*_{*C*-*F*} = 250.9 and 15.1 Hz), 134.0-133.9 (m, 1C), 118.5, 112.3 (dd, *J*_{*C*-*F*} = 16.8 and 4.5 Hz), 86.8, 50.2, 35.2, 34.4, 29.5, 23.8, 19.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -133.37 (dd, *J*= 20.2 and 8.2 Hz), -161.05 (t, *J*= 20.2 Hz); HRMS(EI) Calcd for C₁₆H₁₆F₃O₂ [M + H]⁺ : 297.1102, Found 297.1096; IR (KBr) v(cm⁻¹) : 2945, 1755, 1620, 1533, 1452, 1338, 1246, 1039, 931.

(±)-9e': White solid; mp 144.3-144.6 °C; ¹H NMR (600 MHz, CDCl₃) δ 6.83-6.80 (m, 2H), 5.48 (s, 1H), 3.51 (t, J = 2.2Hz, 1H), 2.95-2.83 (m, 2H), 1.99-1.96 (m, 1H), 1.85 – 1.82 (m, 1H), 1.79 (s, 3H), 1.75-1.67 (m, 1H), 1.62-1.61 (m, 1H), 1.49-1.44 (m, 1H), 1.20-1.15 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 151.1 (ddd, $J_{C-F} = 249.5$, 9.9 and 4.2 Hz), 145.1, 139.0 (dt, $J_{C-F} = 250.9$ and 15.1 Hz), 133.3-133.2 (m, 1C), 122.0, 112.0 (dd, $J_{C-F} = 16.7$ and 4.5 Hz), 86.4, 50.3, 33.9, 29.66, 29.65, 23.8, 18.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -133.12 (dd, J = 19.2 and 7.3 Hz), -160.95 (t, J = 19.9 Hz); HRMS(EI) Calcd for C₁₆H₁₆F₃O₂ [M + H]⁺ : 297.1102, Found 297.1096; IR (KBr) ν (cm⁻¹) : 2947, 1763, 1620, 1533, 1448, 1365, 1336, 1240, 1038.

diastereoisomer, 58%

7-Methyl-4-(2,4,5-trifluorophenyl)-1-oxaspiro[4.5]dec-6-en-2-one (\pm)-9f and (\pm)-9f': To a quartz schlenk tube (15 mL) was added 8f (29.6 mg, 0.1 mmol) and CH₃OH (10 mL), the schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (\pm)-9f and (\pm)-9f' (17.2 mg, 58% yield).

(±)-9f: White solid; mp 113.6-113.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.03 – 6.99 (m, 1H), 6.95-6.91 (m, 1H), 5.03 (s, 1H), 3.77 (d, J = 8.2 Hz, 1H), 3.04 (dd, J = 17.8 and 8.9 Hz, 1H), 2.83 (dd, J = 17.8 and 6.6 Hz, 1H), 2.00-1.95 (m, 2H), 1.87 – 1.84 (m, 3H), 1.74 – 1.68 (m, 1H), 1.59 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.0, 155.7 (ddd, J_{C-F} = 243.5, 9.2 and 2.4 Hz) ,149.2 (dt, J_{C-F} = 250.5 and 13.7 Hz), 146.8 (ddd, J_{C-F} = 244.1, 12.2 and 3.4 Hz) , 143.2, 121.9 (dt, J_{C-F} = 19.8 and 5.4 Hz), 118.9, 116.5 (dd, J_{C-F} = 19.8 and 5.4 Hz), 105.8 (dd, J_{C-F} = 29.1 and 20.5 Hz), 87.2, 43.0, 34.7, 34.4, 29.4, 23.7, 19.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -116.79, -133.90 (t, J = 10.3 Hz), - 141.45 (d, J = 8.9 Hz); HRMS(EI) Calcd for C₁₆H₁₆F₃O₂ [M + H]⁺ : 297.1102, Found 297.1096; IR (film) v(cm⁻¹): 2939, 1751, 1630, 1508, 1427, 1336, 1242, 1163, 1080, 937.

(±)-9f': White solid; mp 100.6-100.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.03-6.99 (m, 1H), 6.97-6.92 (m, 1H), 5.50 (s, 1H), 3.78 (t, *J* = 8.1 Hz, 1H), 3.03 (dd, *J* = 17.6 and 8.6 Hz, 1H), 2.85 (dd, *J* = 17.6 and 7.7 Hz, 1H), 1.98-1.94 (m,1H), 1.88-1.80 (m, 1H), 1.74 (s, 3H), 1.68-1.65 (m, 1H), 1.55 – 1.50 (m, 1H), 1.26 – 1.21 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.8, 155.9 (ddd, *J*_{C-F} = 244.3, 9.1 and 2.6 Hz), 149.3 (ddd, *J*_{C-F} = 250.9, 14.1 and 13.0 Hz), 146.8 (ddd, *J*_{C-F} = 244.5, 12.5 and 3.6 Hz), 143.5, 122.1, 121.2 (dt, *J*_{C-F} = 16.4 and 4.6 Hz), 116.8 (dd, *J*_{C-F} = 19.9 and 6.1 Hz), 106.0 (dd, *J*_{C-F} = 29.0 and 20.5 Hz), 86.4, 43.9, 34.5, 30.2, 29.6, 23.7, 18.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -116.18, -133.65 (t, *J*= 10.2 Hz), -141.32 (d, *J*= 7.5 Hz); HRMS(EI) Calcd for C₁₆H₁₅F₃O₂ [M⁺]: 296.1024, Found 296.1023; IR (film) v(cm⁻¹): 3428, 2929, 1768, 1630, 1519, 1427, 1334, 1217, 1152, 940, 841.

7-Methyl-4-(perfluorophenyl)-1-oxaspiro[4.5]dec-6-en-2-one (±)-9g and (±)-9g': To a quartz Schlenk tube (15 mL) was added 8g (33.2 mg, 0.1 mmol) and CH₃OH (10 mL) the Schlenk tube was refilled with N₂ and then the reaction mixture was exposed

mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl = acetate 20/1) to give product (\pm)-9g and (\pm)-9g' (20.6 mg, 62% yield).

(±)-9g: White solid; mp136.6-136.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 5.13 (s, 1H), 3.91 (dd, *J* = 9.4 and 5.8 Hz, 1H), 3.09 – 2.99 (m, 2H), 2.00 – 1.96 (m, 2H), 1.89-1.87 (m, 3H), 1.72 – 1.70 (m, 1H), 1.60 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 146.2-145.9 (m, 1C), 143.7, 141.4-141.1(m, 1C), 138.9-136.7 (m, 1C), 119.0, 112.6 (td, *J_{C-F}* = 16.8 and 4.3 Hz), 85.6, 40.6, 34.9, 33.6, 29.3, 23.7, 19.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -139.49 (d, *J* = 18.5 Hz), -153.83 (t, *J* = 20.9 Hz)., -160.97 (td, *J* = 22.0 and 4.0 Hz); HRMS(EI) Calcd for C₁₆H₁₄F₅O₂ [M + H]⁺ : 333.0914, Found 333.0907; IR (film) v(cm⁻¹): 2931, 1770, 1657, 1498, 1300, 1211, 1119, 985.

(±)-9g': White solid; mp 122.5-122.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 5.47 (s, 1H),

3.92 (dd, J = 9.2 and 7.4 Hz, 1H), 3.11 – 3.02 (m, 2H), 2.00 – 1.96 (m, 1H), 1.89 – 1.80 (m, 2H), 1.75 (s, 3H), 1.62-1.60 (m, 1H), 1.28 – 1.23 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 146.5-144.6 (m, 1C), 143.8, 141.5-139.6 (m, 1C), 138.7-136.8 (m, 1C), 121.8, 111.6-111.4 (m, 1C), 85.6, 41.3, 33.3, 30.5, 29.5, 23.7, 18.9; ¹⁹F NMR (565MHz, CDCl₃) δ -138.91, -153.53 (t, J = 20.9 Hz), -160.73 (td, J = 21.0 and 6.0 Hz); HRMS(EI) Calcd for C₁₆H₁₃F₅O₂ [M⁺]: 332.0836, Found 332.0844; IR (film) v(cm⁻¹): 2935, 1774, 1529, 1499, 1426, 1245, 1211, 1192, 1120, 993, 967, 938, 893, 805.

diastereoisomer, 53%

7-Methyl-4-(4-(trifluoromethyl)phenyl)-1-oxaspiro[4.5]dec-6-en-2-one (\pm)-9h and (\pm)-9h': To a quartz Schlenk tube (15 mL) was added 8h (31.0 mg, 0.1 mmol) and CH₃CN (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (\pm)-9h and (\pm)-9h' (16.4 mg, 53% yield).

(±)-9h: White solid; 75.9-76.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 5.09 (s, 1H), 3.55 (t, *J* = 8.4 Hz, 1H), 3.05 – 2.94 (m, 2H), 2.07-2.04 (m, 1H), 1.96-1.92 (m, 1H), 1.88 – 1.85 (m, 2H), 1.84-1.80 (m, 1H), 1.73 – 1.68 (m, 1H), 1.56 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.2, 143.0, 141.6, 129.8 (q, *J*_{C-F} = 32.3 Hz), 128.6, 125.5 (q, *J*_{C-F} = 3.6 Hz), 124.2 (q, *J*_{C-F} = 270.5 Hz),

118.9, 87.1, 50.8, 35.3, 34.5, 29.5, 23.8, 19.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.55; HRMS(EI) Calcd for C₁₇H₁₈F₃O₂ [M + H]⁺ : 311.1259, Found 311.1252; IR (KBr) v(cm⁻¹) : 2924, 1770, 1620, 1429, 1327, 1124, 1070, 939.

(±)-9h': White solid; 84.5-84.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 5.54 (s, 1H), 3.64 (t, *J* = 9.0 Hz, 1H), 3.02-2.94 (m, 2H), 1.95 (dt, *J* = 17.6 and 4.1 Hz, 1H), 1.78 (s, 3H), 1.72-1.66 (m, 1H), 1.63 – 1.59 (m, 2H), 1.44-1.39 (m, 1H), 1.18-1.11 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 175.0, 144.5, 141.0, 129.9 (q, *J*_{C-F} = 32.5 Hz), 128.5, 128.2, 125.5 (q, *J*_{C-F} = 3.7 Hz), 123.9 (q, *J*_{C-F} = 270.3 Hz), 122.4, 111.6, 86.7, 50.8, 34.1, 29.8, 29.6, 23.8, 18.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.58 ; HRMS(EI) Calcd for C₁₇H₁₈F₃O₂ [M + H]⁺ : 311.1259, Found 311.1252; IR (KBr) v(cm⁻¹) : 2941, 1770, 1620, 1439, 1332, 1120, 1070, 935.

diastereoisomer, 33%

7-Methyl-4-(4-nitrophenyl)-1-oxaspiro[4.5]dec-6-en-2-one (±)-9i and (±)-9i': To a quartz Schlenk tube (15 mL) was added 8i (28.7 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9i and (±)-9i' (9.5 mg, 33% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 8.21 – 7.19 (m, 3.01 H), 7.37-7.35 (m, 3.16 H), 5.55 (s, 0.49 H), 5.04 (s, 1.00 H), 3.69 (t, *J* = 9.0 Hz, 0.51 H), 3.61 (t, *J* = 8.2

Hz, 1.04 H), 3.09 - 2.95 (m, 3.23 H), 2.08 - 2.05 (m, 1.16 H), 1.98 - 1.94 (m, 1.80 H), 1.91-1.86 (m, 2.22 H), 1.84-1.81 (m, 0.82 H), 1.79 (s, 3.28 H), 1.72-1.68 (m, 2.00 H), 1.63-1.60 (m, 3.33 H), 1.56 (s, 3.60 H), 1.42-1.39 (m, 0.93 H), 1.15-1.10 (m, 0.81H); ¹³C NMR (150 MHz, CDCl₃) δ 174.9, 174.5, 147.4, 147.3, 145.2, 144.9, 144.4, 143.5, 129.1, 128.7, 123.8, 123.7, 122.1, 118.8, 87.0, 86.6, 50.9, 50.8, 35.3, 34.5, 34.0, 29.9, 29.6, 29.5, 23.84, 23.77, 19.6, 18.6; HRMS(EI) Calcd for C₁₆H₁₇NO₄ [M⁺]: 287.1158, Found 287.1164; IR (film) v(cm⁻¹): 3433, 2924, 1759, 1632, 1604, 1519, 1350, 1229,1109, 1077, 936.

diastereoisomer, 50%

4-(7-Methyl-2-oxo-1-oxaspiro[4.5]dec-6-en-4-yl)benzonitrile (\pm)-9j and (\pm)-9j': To a quartz Schlenk tube (15 mL) was added 8j (26.7 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (\pm)-9j and (\pm)-9j' (13.4 mg, 50% yield).

(±)-9j : White solid; mp 125.5-125.6 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 5.02 (s, 1H), 3.54 (t, *J* = 8.2 Hz, 1H), 3.04 (dd, *J* = 17.7 and 8.4 Hz, 1H), 2.93 (dd, *J* = 17.6 and 8.0 Hz, 1H), 2.06-2.03 (m, 1H), 1.96-1.93 (m, 1H), 1.88-1.85 (m, 2H), 1.83 – 1.78 (m, 1H), 1.71 – 1.66 (m, 1H), 1.56 (s, 3H); ¹³C

NMR (150 MHz, CDCl₃) δ 174.9, 143.3, 143.1, 132.3, 129.0, 118.9, 118.4, 111.6, 87.0, 50.9, 35.2, 34.5, 29.5, 23.8, 19.6; HRMS(EI) Calcd for C₁₇H₁₇NO₂ [M⁺] : 267.1259, Found 267.1263; IR (KBr) v(cm⁻¹) : 2945, 2225, 1766, 1608, 1431, 1232, 1074, 933.

(±)-9j' : White solid; mp 139.0-139.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 5.53 (s, 1H), 3.63 (t, *J* = 9.0 Hz, 1H), 2.97 (dd, *J* = 9.0 and 1.5 Hz, 2H), 1.98 – 1.94 (m, 1H), 1.85-1.74 (m, 4H), 1.72 – 1.65 (m, 1H), 1.61 – 1.58 (m, 1H), 1.43 – 1.38 (m, 1H), 1.14 – 1.09 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 144.7, 142.4, 132.4, 128.6, 122.2, 118.4, 111.6, 86.6, 51.0, 33.9, 29.9, 29.6, 23.8, 18.6; HRMS(EI) Calcd for C₁₇H₁₇NO₂ [M⁺]: 267.1259, Found 267.1258; IR (KBr) v(cm⁻¹) : 3430, 2943, 2917, 2226, 1762, 1668, 1609, 1508, 1429, 1233, 1076, 959, 934.

7-Methyl-4-(4-(methylsulfonyl)phenyl)-1-oxaspiro[4.5]dec-6-en-2-one (9k) : To a quartz Schlenk tube (15 mL) was added 8k (32.0 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to give product (±)-9k and (±)-9k' (15.4 mg, 51% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.4 and 2.8 Hz, 3.54 H), 7.39 (dd, *J* = 8.4 and 2.5 Hz, 3.70 H), 5.54 (s, 1.02 H), 5.06 (s, 1 H), 3.66 (t, *J* = 9.0 Hz, 1.18

H), 3.58 (t, J = 8.3 Hz, 1.16 H), 3.06 (s, 5.37 H), 3.07 – 2.92 (m, 3.42 H), 2.06-2.03 (m, 1H), 1.97-1.90 (m, 2.13 H), 1.89 – 1.82 (m, 2.72 H), 1.78 (s, 3.31 H), 1.72-1.59 (m, 3.79 H), 1.55 (s, 2.75 H), 1.44-1.38 (m, 1.5 H), 1.58-1.09 (m, 1.27 H); ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 174.5, 144.7, 144.1, 143.4, 143.3, 139.9, 139.8, 129.2, 128.8, 127.7, 127.6, 122.3, 118.8, 87.0, 86.6, 50.94, 50.88, 44.4, 35.4, 34.5, 34.1, 29.9, 29.6, 29.5, 23.8, 23.7, 19.6, 18.6; HRMS(EI) Calcd for C₁₇H₂₀O₄S [M + H]⁺ : 321.1161, Found 321.1151; IR (KBr) (cm⁻¹): 1760, 1305, 1233, 1092, 933, 912, 728.

diastereoisomer, 32%

7-Methyl-4-(p-tolyl)-1-oxaspiro[4.5]dec-6-en-2-one (±)-9l and (±)-9l': To a quartz schlenk tube (15 mL) was added 81 (25.6 mg, 0.1 mmol) and CH₃OH (10 mL), the schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9l and (±)-9l' (8.2 mg, 32% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.14-7.11 (m, 4.07 H), 7.06 – 7.05 (m, 4.28 H), 5.52 (s, 1.00 H), 5.17 (s, 0.86 H), 3.54 (t, *J* = 9.1 Hz, 1.03 H), 3.45 (t, *J* = 8.7 Hz, 1.01H), 2.99-2.88 (m, 4.30 H), 2.33 (s, 6.33 H), 2.03-1.99 (m, 1.12 H), 1.93 – 1.83 (m, 4.17 H), 1.82-1.78 (m, 1.36 H), 1.76 (s, 3.85 H), 1.70-1.62 (m, 2.62 H), 1.61-1.58 (m, 1.20 H), 1.55 (s, 3.00 H), 1.421–1.36 (m, 1.21 H), 1.25 - 1.19 (m, 1.80 H); ¹³C NMR (150 MHz, CDCl₃) δ 175.9, 175.8, 143.6, 142.1, 137.2, 137.1, 134.1, 133.7, 129.2, 129.1, 128.0, 127.6, 122.9, 119.3, 87.4, 87.2, 50.6, 35.4, 34.3, 34.2, 29.7, 29.6, 29.5, 23.8, 23.7, 21.0, 19.6, 18.7; HRMS(EI) Calcd for $C_{17}H_{21}O_2$ [M + H]⁺: 257.1542, Found 257.1534; IR (film) v (cm⁻¹): 2934, 1771, 1518, 1233, 934.

(4R,5R)-4-(4-methoxyphenyl)-7-methyl-1-oxaspiro[4.5]dec-6-en-2-one (±)-9m and (±)-9m': To a quartz Schlenk tube (15 mL) was added 8m (27.2 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9m and (±)-9m' (6.0 mg, 22%) yield). Colorless oil; ¹H NMR (600 MHz, , CDCl₃) & 7.10-7.08 (m, 2.66 H), 6.86-6.84 (m, 2.81H), 5.51 (s, 1H), 5.16 (s, 0.59 H), 3.86-3.74 (m, 3.78 H), 3.53 (t, J = 9.2 Hz, 0.88 H), 3.44 (t, J = 8.7 Hz, 0.51 H), 2.97 - 2.88 (m, 2.53 H), 2.03-1.98 (m, 0.55 H), 1.94 – 1.91 (m, 1.3 H), 1.87 – 1.83 (m, 0.91 H), 1.81 - 1.79 (m, 0.72 H), 1.76 (s, 3.21 H), 1.70-1.64 (m, 1.57 H), 1.63-1.61 (m, 1.56 H), 1.59-1.58 (s, 0.66 H), 1.56 (s, 1.27 H), 1.41-1.35 (m, 1.05 H), 1.25 – 1.20 (m, 1.68 H); ¹³C NMR (150 MHz, CDCl₃) δ 175.9, 175.8, 143.6, 142.1, 137.2, 137.1, 134.1, 133.7, 129.2, 129.1, 128.0, 127.6, 122.9, 119.3, 87.4, 87.2, 50.6, 35.4, 34.3, 34.2, 29.7, 29.6, 29.5, 23.8, 23.7, 21.0, 19.6, 18.7; HRMS(EI) Calcd for $C_{17}H_{21}O_3 [M + H]^+$: 273.1491, Found 273.1485; IR (film) v (cm⁻ ¹): 2933, 1770, 1612, 1516, 1442, 1250, 1034, 933, 833.

diastereoisomer, 15%

7-Methyl-4-(3,4,5-trimethoxyphenyl)-1-oxaspiro[4.5]dec-6-en-2-one (±)-9n and

(±)-9n': To a quartz Schlenk tube (15 mL) was added 8n (33.2 mg, 0.1 mmol) and CH₃OH (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9n and (±)-9n' (5.0 mg, 15% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 6.35 (s, 2.79 H), 5.53 (s, 1.0 H), 5.17 (s, 0.73 H), 3.84 – 3.83 (m, 11.7 H), 3.50 (t, *J* = 8.9 Hz, 0.96 H), 3.39 (t, *J* = 8.2 Hz, 0.65 H), 3.02 – 2.88 (m, 3.00 H), 2.04 – 1.94 (m, 2.20 H), 1.87-1.81 (m, 2.38 H), 1.78 (s, 3.05 H), 1.72-1.63 (m, 3.83 H), 1.59 (s, 2.19 H), 1.49-1.41 (s, 1.27 H), 1.29-1.24 (s, 2.20 H); ¹³C NMR (150 MHz, CDCl₃) δ 175.8, 175.5, 153.15, 153.07, 143.7, 142.4, 137.29, 137.25, 133.3, 132.7, 122.9, 119.4, 105.2, 104.7, 87.4, 87.1, 60.9, 56.2, 56.1, 51.3, 51.0, 35.8, 34.5, 34.3, 29.71, 29.67, 29.56, 23.9, 23.8, 19.6, 18.8; HRMS(EI) Calcd for C₁₉H₂₅O₅ [M + H]⁺ : 333.1702, Found 333.1694; IR (film) v (cm⁻¹): 2935, 1770, 1589, 1508, 1460, 1240, 1128, 1009, 924.

7-Methyl-4-(2,3,4-trimethoxyphenyl)-1-oxaspiro[4.5]dec-6-en-2-one (±)-9o and (±)-9o': To a quartz Schlenk tube (15 mL) was added 8o (33.2 mg, 0.1 mmol) and CH₃CN (10 mL), the Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9o and (±)-9o' (4.0 mg, 12% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 6.79-6.75 (m, 2.04 H), 6.62- 6.60 (m, 2.15 H), 5.53 (s, 1.00 H), 4.94 (s, 1.14 H), 3.86-3.85 (m, 8.53 H), 3.84-3.82 (m,

8.23 H), 3.79-3.77 (m, 2.37 H), 3.07-2.99 (m, 2.22 H), 2.80-2.71 (m, 2.30 H), 1.97 – 1.94 (m, 2.23 H), 1.90-1.83 (m, 4.13 H), 1.73 (s, 3.26 H), 1.67-1.60 (s, 3.23 H), 1.53 (s, 3.13 H), 1.50-1.48 (m, 1.02 H), 1.27-1.23 (m, 2.13 H); ¹³C NMR (150 MHz, CDCl₃) δ 176.9, 176.4, 153.1, 152.9, 152.1, 151.8, 141.9, 141.8, 141.4, 141.2, 124.9, 123.63, 123.55, 123.2, 122.4, 120.8, 106.7, 106.6, 87.9, 87.0, 60.9, 60.59, 60.58, 60.55, 55.89, 55.87, 44.9, 43.9, 35.9, 35.6, 34.9, 30.5, 29.591, 29.585, 23.74, 23.71, 19.7, 19.1; HRMS(EI) Calcd for C₁₉H₂₅O₅ [M + H]⁺: 333.1702, Found 333.1694; IR (film) v (cm⁻¹): 1759, 1601, 1466, 1101, 926.

7-Methyl-1-oxaspiro[**4.5**]**dec-6-en-2-one** (±)-**9p**: To a quartz Schlenk tube (15 mL) was added **8p** (16.6 mg, 0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-**9p** (6.6 mg, 40% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.36 (s, 1H), 2.59 (t, *J* = 8.2 Hz, 2H), 2.07 (t, *J* = 8.2 Hz, 2H), 1.99-1.87 (m, 3H), 1.83-1.79 (m, 1H), 1.70 (s, 3H), 1.67-1.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 141.2, 123.1, 84.6, 34.3, 29.6, 28.9, 23.5, 19.6; HRMS(EI) Calcd for C₁₀H₁₄O₂ [M⁺]: 166.0994, Found 166.0995; IR (film) v(cm⁻¹): 3436, 2937, 1769, 1451, 1238, 1193, 1164, 941, 914.

Oxaspiro[4.5]dec-6-en-2-one (±)-9q: To a quartz Schlenk tube (15 mL) was added 8q

(15.2 mg, 0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-**9q** (6.5 mg, 43% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 5.96 (dt, *J* = 10.0 and 3.7 Hz, 1H), 5.64 (d, *J* = 10.0 Hz, 1H), 2.62 (t, *J* = 8.2 Hz, 2H), 2.11 (t, *J* = 8.2 Hz, 2H), 2.03 – 1.97 (m, 3H), 1.87-1.80 (m, 1H), 1.76-1.72 (m, 1H), 1.68-1.64 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.8, 132.6, 128.4, 83.7, 34.5, 34.0, 28.8, 24.6, 19.3; HRMS(EI) Calcd for C₉H₁₂O₂ [M⁺]: 152.0837, Found 152.0834; IR (KBr) v(cm⁻¹) : 2936, 1771, 1728, 1455, 1242, 1188, 1162, 1072, 1043, 1010.

1-Oxaspiro[4.6]undec-6-en-2-one (±)-**9r**: To a quartz Schlenk (15 mL) tube was added 8**r** (16.6 mg, 0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-**9r** (4.8 mg, 29% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 5.86-5.82 (m, 1H), 5.71 (d, *J* = 11.9 Hz, 1H), 2.63-2.52 (m, 2H), 2.27-2.17 (m, 2H), 2.15-2.09 (m, 1H), 2.06-2.01 (m, 1H), 1.95-1.90 (m, 1H), 1.86-1.82 (m, 1H), 1.71-1.64 (m, 2H), 1.63-1.57 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 176.8, 135.1, 132.9, 89.4, 37.4, 33.8, 29.1, 27.8, 26.9, 24.1; HRMS(EI) Calcd for C₁₀H₁₄O₂ [M⁺]: 166.0994, Found 166.0993; IR (KBr) v(cm⁻¹) : 2931, 2860, 1773, 1451, 1263, 1223, 1181, 1160, 1020, 971, 916.

Dimethyl 2-oxo-1-oxaspiro[4.4]non-6-ene-4,4-dicarboxylate (±)-**9**s: To a quartz Schlenk tube (15 mL) was added 8s (25.4 mg, 0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-**9s** (10.4 mg, 41% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 6.36 – 6.08 (m, 1H), 5.77 – 5.40 (m, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.27 (d, *J* = 17.7 Hz, 1H), 2.97 (d, *J* = 17.7 Hz, 1H), 2.62 – 2.57 (m, 1H), 2.46 – 2.41 (m, 1H), 2.40 – 2.28 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 168.6, 167.4, 140.3, 127.5, 98.5, 63.2, 53.2, 53.1, 37.3, 32.8, 31.5; HRMS(EI) Calcd for C₁₂H₁₅O₆ [M + H]⁺ : 255.0869, Found 255.0863; IR (KBr) v(cm⁻¹) : 1766, 1739, 1437, 1267, 1038, 937.

Dimethyl 7-methyl-2-oxo-1-oxaspiro[4.5]dec-6-ene-4,4-dicarboxylate (±)-9t: To a quartz Schlenk tube (15 mL) was added 8t (28.2 mg, 0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9t (12.1mg, 43% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 5.21 (s, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.25 (d, *J* = 17.7 Hz,
1H), 2.92 (d, J = 17.7 Hz, 1H), 2.03-1.98 (m, 1H), 1.95-1.91 (m, 3H), 1.77-1.75 (m, 2H), 1.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.3, 168.5, 167.4, 144.5, 117.6, 85.0, 63.5, 53.1, 52.8, 36.3, 29.9, 29.3, 23.8, 19.1; HRMS(EI) Calcd for C₁₄H₁₉O₆ [M + H]⁺: 283.1182, Found 283.1174; IR (KBr) v(cm⁻¹) : 2954, 1776, 1739, 1437, 1267, 1070, 945, 768, 650, 550.

Dimethyl 2-oxo-1-oxaspiro[4.5]dec-6-ene-4,4-dicarboxylate (±)-9u: To a quartz Schlenk tube (15 mL) was added 8u (26.8 mg, 0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-9u (10.5 mg, 39% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 6.16- 6.08 (m, 1H), 5.51 (d, *J* = 10.0 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.26 (d, *J* = 17.7 Hz, 1H), 2.98 (d, *J* = 17.7 Hz, 1H), 2.16 – 2.11 (m, 2H), 2.04 – 1.98 (m, 2H), 1.80 – 1.75 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 168.5, 167.3, 135.7, 123.1, 83.9, 63.5, 53.2, 53.1, 36.3, 30.4, 24.3, 18.8; HRMS(EI) Calcd for C₁₃H₁₇O₆ [M + H]⁺ : 269.1025, Found 269.1018 ; IR (KBr) v(cm⁻¹) : 2956, 1739, 1437, 1265, 1068, 945, 756.

Diethyl 7-methyl-2-oxo-1-oxaspiro[4.5]dec-6-ene-4,4-dicarboxylate (\pm)-9v: To a quartz Schlenk tube (15 mL) was added 8v (31.0 mg, 0.1 mmol) and CH₃OH (10 mL). The Schlenk tube was refilled with N₂, and then the reaction mixture was exposed to

ultraviolet light (254 nm). The reaction was monitored by TLC. When the starting material was completely consumed, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product (±)-**9**v (11.8 mg, 38% yield). Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 5.25 (s, 1H), 4.29-4.22 (m, 3H), 4.20 – 4.14 (m, 1H), 3.29 (d, *J* = 18.5 Hz, 1H), 2.93 (d, *J* = 17.7 Hz, 1H), 2.10 – 2.02 (m, 2H), 1.98 – 1.91 (m, 2H), 1.81 – 1.79 (m, 2H), 1.72 (s, 3H), 1.29 (td, *J* = 7.6 and 0.8 Hz, 3H), 1.23 (td, *J* = 7.5 and 0.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.6, 168.2, 167.1, 144.2, 118.0, 85.1, 63.6, 62.5, 62.0, 36.5, 30.0, 29.5, 23.9, 19.3, 13.94, 13.92; HRMS(EI) Calcd for C₁₆H₂₂O₆ [M⁺]: 310.1416, Found 310.1409; IR (KBr) v(cm⁻¹) : 2937, 1790, 1736, 1444, 1370, 1303, 1258, 1233, 1172, 932, 906, 858.

X-ray data of (±)-9f' (CCDC 1911404)

Crystal data for mo_(±)-9f': C₁₆H₁₅F₃O₂, M = 296.28, a = 10.5914(10) Å, b = 16.4477(16) Å, c = 7.9363(8) Å, $a = 90^{\circ}$, $\beta = 96.959(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 1372.4(2) Å³, T = 100(2) K, space group P21/c, Z = 4, μ (MoK α) = 0.120 mm⁻¹, 15271 reflections measured, 4091 independent reflections ($R_{int} = 0.0359$). The final R_I values were 0.0452 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1209 ($I > 2\sigma(I)$). The final R_I values were 0.0654 (all data). The final $wR(F^2)$ values were 0.1335 (all data). The goodness of fit on F^2 was 1.049.

View of a molecule of (±)-9f' with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.+

View of the pack drawing of (±)-9f'.

Hydrogen-bonds are shown as dashed lines.

Table 1. Crystal data and structure refinement for $mo_{\pm}-9f'_{0m}$.				
Identification code	mo_(±)-9f'_0m			
Empirical formula	C16 H15 F3 O2			
Formula weight	296.28			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P21/c			
Unit cell dimensions	a = 10.5914(10) Å	α= 90°.		
	b = 16.4477(16) Å	$\beta = 96.959(2)^{\circ}.$		
	c = 7.9363(8) Å	$\gamma = 90^{\circ}$.		
Volume	1372.4(2) Å ³			
Z	4			
Density (calculated)	1.434 Mg/m ³			
Absorption coefficient	0.120 mm ⁻¹			
F(000)	616			
Crystal size	$0.300 \ge 0.220 \ge 0.150 \text{ mm}^3$			
Theta range for data collection	1.937 to 30.986°.			

Index ranges	-15<=h<=14, -22<=k<=23, -11<=l<=11
Reflections collected	15271
Independent reflections	4091 [R(int) = 0.0359]
Completeness to theta = 25.242°	99.7 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4091 / 0 / 191
Goodness-of-fit on F ²	1.049
Final R indices [I>2sigma(I)]	R1 = 0.0452, $wR2 = 0.1209$
R indices (all data)	R1 = 0.0654, wR2 = 0.1335
Extinction coefficient	n/a
Largest diff. peak and hole	0.390 and -0.231 e.Å ⁻³

	Х	у	Z	U(eq)
	8020(1)	12041(1)	5435(1)	34(1)
F(2)	8052(1)	10703(1)	3489(1)	38(1)
F(3)	8557(1)	10418(1)	10335(1)	25(1)
O(1)	7655(1)	7674(1)	9131(1)	21(1)
O(2)	9123(1)	6826(1)	8366(1)	25(1)
C(1)	8155(1)	11305(1)	6188(2)	23(1)
C(2)	8291(1)	11244(1)	7924(2)	22(1)
C(3)	8418(1)	10473(1)	8618(2)	18(1)
C(4)	8423(1)	9763(1)	7672(2)	16(1)
C(5)	8545(1)	8946(1)	8555(2)	16(1)
C(6)	7259(1)	8539(1)	8848(2)	17(1)
C(7)	6771(1)	8823(1)	10440(2)	20(1)
C(8)	5532(1)	8875(1)	10622(2)	21(1)
C(9)	4506(1)	8643(1)	9228(2)	26(1)
C(10)	8165(1)	10618(1)	5191(2)	24(1)
C(11)	8303(1)	9851(1)	5908(2)	21(1)
C(12)	8708(1)	7508(1)	8383(2)	19(1)
C(13)	9217(1)	8277(1)	7679(2)	19(1)
C(14)	6235(1)	8548(1)	7322(2)	21(1)
C(15)	5011(1)	8167(1)	7797(2)	27(1)
C(16)	5104(2)	9186(1)	12241(2)	29(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for mo_(±)-9f'_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(1)-C(1)	1.3506(15)
F(2)-C(10)	1.3487(16)
F(3)-C(3)	1.3560(15)
O(1)-C(12)	1.3525(16)
O(1)-C(6)	1.4923(15)
O(2)-C(12)	1.2054(16)
C(1)-C(2)	1.372(2)
C(1)-C(10)	1.381(2)
C(2)-C(3)	1.3829(18)
C(2)-H(2)	0.9500
C(3)-C(4)	1.3887(17)
C(4)-C(11)	1.3983(17)
C(4)-C(5)	1.5124(17)
C(5)-C(13)	1.5246(17)
C(5)-C(6)	1.5604(18)
C(5)-H(3)	1.0000
C(6)-C(7)	1.4964(18)
C(6)-C(14)	1.5243(19)
C(7)-C(8)	1.3402(19)
C(7)-H(6)	0.9500
C(8)-C(9)	1.503(2)
C(8)-C(16)	1.503(2)
C(9)-C(15)	1.528(2)
C(9)-H(1)	0.9900
C(9)-H(10)	0.9900
C(10)-C(11)	1.3832(19)
C(11)-H(15)	0.9500
C(12)-C(13)	1.5077(19)
C(13)-H(5)	0.9900
C(13)-H(4)	0.9900
C(14)-C(15)	1.528(2)
C(14)-H(14)	0.9900
C(14)-H(13)	0.9900
C(15)-H(11)	0.9900
C(15)-H(12)	0.9900
C(16)-H(7)	0.9800

Table 3. Bond lengths [Å] and angles $[\circ]$ for mo_(±)-9f'_0m.

C(16)-H(8)	0.9800
C(16)-H(9)	0.9800
C(12)-O(1)-C(6)	111.00(10)
F(1)-C(1)-C(2)	120.16(13)
F(1)-C(1)-C(10)	119.23(13)
C(2)-C(1)-C(10)	120.61(12)
C(1)-C(2)-C(3)	117.37(12)
C(1)-C(2)-H(2)	121.3
C(3)-C(2)-H(2)	121.3
F(3)-C(3)-C(2)	117.06(11)
F(3)-C(3)-C(4)	118.67(11)
C(2)-C(3)-C(4)	124.27(12)
C(3)-C(4)-C(11)	116.60(11)
C(3)-C(4)-C(5)	120.13(11)
C(11)-C(4)-C(5)	123.27(11)
C(4)-C(5)-C(13)	116.66(11)
C(4)-C(5)-C(6)	115.05(10)
C(13)-C(5)-C(6)	102.83(10)
C(4)-C(5)-H(3)	107.2
C(13)-C(5)-H(3)	107.2
C(6)-C(5)-H(3)	107.2
O(1)-C(6)-C(7)	106.83(10)
O(1)-C(6)-C(14)	106.76(10)
C(7)-C(6)-C(14)	112.53(11)
O(1)-C(6)-C(5)	101.35(9)
C(7)-C(6)-C(5)	112.89(11)
C(14)-C(6)-C(5)	115.28(11)
C(8)-C(7)-C(6)	123.61(13)
C(8)-C(7)-H(6)	118.2
C(6)-C(7)-H(6)	118.2
C(7)-C(8)-C(9)	122.31(13)
C(7)-C(8)-C(16)	120.99(14)
C(9)-C(8)-C(16)	116.69(13)
C(8)-C(9)-C(15)	112.97(12)
C(8)-C(9)-H(1)	109.0
C(15)-C(9)-H(1)	109.0
C(8)-C(9)-H(10)	109.0

C(15)-C(9)-H(10)	109.0
H(1)-C(9)-H(10)	107.8
F(2)-C(10)-C(1)	118.89(12)
F(2)-C(10)-C(11)	119.90(13)
C(1)-C(10)-C(11)	121.20(12)
C(10)-C(11)-C(4)	119.94(12)
C(10)-C(11)-H(15)	120.0
C(4)-C(11)-H(15)	120.0
O(2)-C(12)-O(1)	120.94(12)
O(2)-C(12)-C(13)	128.91(13)
O(1)-C(12)-C(13)	110.14(11)
C(12)-C(13)-C(5)	103.23(10)
C(12)-C(13)-H(5)	111.1
C(5)-C(13)-H(5)	111.1
C(12)-C(13)-H(4)	111.1
C(5)-C(13)-H(4)	111.1
H(5)-C(13)-H(4)	109.1
C(6)-C(14)-C(15)	110.08(11)
C(6)-C(14)-H(14)	109.6
C(15)-C(14)-H(14)	109.6
C(6)-C(14)-H(13)	109.6
C(15)-C(14)-H(13)	109.6
H(14)-C(14)-H(13)	108.2
C(9)-C(15)-C(14)	110.96(11)
C(9)-C(15)-H(11)	109.4
C(14)-C(15)-H(11)	109.4
C(9)-C(15)-H(12)	109.4
C(14)-C(15)-H(12)	109.4
H(11)-C(15)-H(12)	108.0
C(8)-C(16)-H(7)	109.5
C(8)-C(16)-H(8)	109.5
H(7)-C(16)-H(8)	109.5
C(8)-C(16)-H(9)	109.5
H(7)-C(16)-H(9)	109.5
H(8)-C(16)-H(9)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	35(1)	20(1)	45(1)	14(1)	1(1)	-1(1)
F(2)	53(1)	40(1)	20(1)	10(1)	2(1)	0(1)
F(3)	33(1)	24(1)	18(1)	-5(1)	3(1)	-3(1)
O(1)	18(1)	15(1)	29(1)	3(1)	5(1)	2(1)
O(2)	24(1)	18(1)	32(1)	1(1)	2(1)	5(1)
C(1)	19(1)	16(1)	34(1)	8(1)	2(1)	-1(1)
C(2)	20(1)	16(1)	30(1)	-2(1)	3(1)	-2(1)
C(3)	16(1)	19(1)	19(1)	-1(1)	2(1)	-2(1)
C(4)	15(1)	15(1)	18(1)	1(1)	2(1)	-1(1)
C(5)	15(1)	14(1)	18(1)	0(1)	2(1)	0(1)
C(6)	16(1)	13(1)	23(1)	1(1)	2(1)	2(1)
C(7)	19(1)	18(1)	22(1)	2(1)	3(1)	1(1)
C(8)	20(1)	13(1)	31(1)	4(1)	6(1)	1(1)
C(9)	16(1)	21(1)	42(1)	2(1)	4(1)	-2(1)
C(10)	25(1)	28(1)	19(1)	6(1)	3(1)	-1(1)
C(11)	25(1)	20(1)	18(1)	-1(1)	2(1)	-2(1)
C(12)	17(1)	18(1)	20(1)	-1(1)	-1(1)	2(1)
C(13)	18(1)	17(1)	23(1)	0(1)	5(1)	2(1)
C(14)	19(1)	17(1)	24(1)	-4(1)	-1(1)	2(1)
C(15)	19(1)	21(1)	39(1)	-4(1)	-2(1)	-3(1)
C(16)	28(1)	24(1)	38(1)	1(1)	14(1)	3(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_(±)-9f'_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

Х	У	Z	U(eq)
8298	11714	8623	27
9037	9035	9696	19
7373	8973	11374	24
4080	9143	8752	31
3862	8309	9714	31
8317	9386	5202	26
9004	8304	6431	23
10152	8314	7964	23
6534	8239	6375	25
6068	9114	6938	25
4361	8162	6790	32
5178	7598	8162	32
5846	9355	13020	43
4650	8754	12769	43
4535	9652	11989	43
	8298 9037 7373 4080 3862 8317 9004 10152 6534 6068 4361 5178 5846 4650 4535	X y 8298 11714 9037 9035 7373 8973 4080 9143 3862 8309 8317 9386 9004 8304 10152 8314 6534 8239 6068 9114 4361 8162 5178 7598 5846 9355 4650 8754 4535 9652	A y L 8298 11714 8623 9037 9035 9696 7373 8973 11374 4080 9143 8752 3862 8309 9714 8317 9386 5202 9004 8304 6431 10152 8314 7964 6534 8239 6375 6068 9114 6938 4361 8162 6790 5178 7598 8162 5846 9355 13020 4650 8754 12769 4535 9652 11989

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for mo_(\pm)-9f'_0m.

F(1)-C(1)-C(2)-C(3)	179.69(12)
C(10)-C(1)-C(2)-C(3)	-0.9(2)
C(1)-C(2)-C(3)-F(3)	179.79(12)
C(1)-C(2)-C(3)-C(4)	0.3(2)
F(3)-C(3)-C(4)-C(11)	-178.73(11)
C(2)-C(3)-C(4)-C(11)	0.7(2)
F(3)-C(3)-C(4)-C(5)	1.64(19)
C(2)-C(3)-C(4)-C(5)	-178.90(13)
C(3)-C(4)-C(5)-C(13)	-148.82(13)
C(11)-C(4)-C(5)-C(13)	31.57(18)
C(3)-C(4)-C(5)-C(6)	90.58(15)
C(11)-C(4)-C(5)-C(6)	-89.02(15)
C(12)-O(1)-C(6)-C(7)	-143.33(11)
C(12)-O(1)-C(6)-C(14)	96.06(12)
C(12)-O(1)-C(6)-C(5)	-24.96(13)
C(4)-C(5)-C(6)-O(1)	160.81(10)
C(13)-C(5)-C(6)-O(1)	32.90(12)
C(4)-C(5)-C(6)-C(7)	-85.27(13)
C(13)-C(5)-C(6)-C(7)	146.82(11)
C(4)-C(5)-C(6)-C(14)	45.97(15)
C(13)-C(5)-C(6)-C(14)	-81.94(13)
O(1)-C(6)-C(7)-C(8)	-100.60(14)
C(14)-C(6)-C(7)-C(8)	16.26(18)
C(5)-C(6)-C(7)-C(8)	148.86(13)
C(6)-C(7)-C(8)-C(9)	0.6(2)
C(6)-C(7)-C(8)-C(16)	-178.36(12)
C(7)-C(8)-C(9)-C(15)	13.43(19)
C(16)-C(8)-C(9)-C(15)	-167.54(12)
F(1)-C(1)-C(10)-F(2)	0.6(2)
C(2)-C(1)-C(10)-F(2)	-178.76(13)
F(1)-C(1)-C(10)-C(11)	179.85(13)
C(2)-C(1)-C(10)-C(11)	0.5(2)
F(2)-C(10)-C(11)-C(4)	179.87(13)
C(1)-C(10)-C(11)-C(4)	0.6(2)
C(3)-C(4)-C(11)-C(10)	-1.2(2)
C(5)-C(4)-C(11)-C(10)	178.42(13)

Table 6. Torsion angles [°] for mo_(±)-9f'_0m.

C(6)-O(1)-C(12)-O(2)	-174.67(12)
C(6)-O(1)-C(12)-C(13)	6.38(14)
O(2)-C(12)-C(13)-C(5)	-163.22(14)
O(1)-C(12)-C(13)-C(5)	15.63(14)
C(4)-C(5)-C(13)-C(12)	-156.63(11)
C(6)-C(5)-C(13)-C(12)	-29.74(13)
O(1)-C(6)-C(14)-C(15)	70.89(13)
C(7)-C(6)-C(14)-C(15)	-46.00(14)
C(5)-C(6)-C(14)-C(15)	-177.42(11)
C(8)-C(9)-C(15)-C(14)	-43.69(17)
C(6)-C(14)-C(15)-C(9)	60.68(15)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(13)-H(5)O(2)#1	0.99	2.46	3.4169(17)	162.2
C(7)-H(6)O(2)#2	0.95	2.64	3.3665(18)	133.9
C(2)-H(2)F(1)#3	0.95	2.54	3.4848(16)	173.0
C(13)-H(5)O(2)#1	0.99	2.46	3.4169(17)	162.2
C(7)-H(6)O(2)#2	0.95	2.64	3.3665(18)	133.9
C(2)-H(2)F(1)#3	0.95	2.54	3.4848(16)	173.0
C(2)-H(2)F(1)#3	0.95	2.54	3.4848(16)	173.0
C(7)-H(6)O(2)#2	0.95	2.64	3.3665(18)	133.9
C(13)-H(5)O(2)#1	0.99	2.46	3.4169(17)	162.2
C(2)-H(2)F(1)#3	0.95	2.54	3.4848(16)	173.0
C(7)-H(6)O(2)#2	0.95	2.64	3.3665(18)	133.9
C(13)-H(5)O(2)#1	0.99	2.46	3.4169(17)	162.2
C(2)-H(2)F(1)#3	0.95	2.54	3.4848(16)	173.0
C(7)-H(6)O(2)#2	0.95	2.64	3.3665(18)	133.9
C(13)-H(5)O(2)#1	0.99	2.46	3.4169(17)	162.2

Table 7. Hydrogen bonds for mo_(\pm)-9f' _0m [Å and °].

#1 x,-y+3/2,z-1/2 #2 x,-y+3/2,z+1/2

#3 x,-y+5/2,z+1/2

X-ray data of (±)-9j' (CCDC 1911403)

Original name: mo 9j' 0m-data mo bwsx1094 0m a file002

Crystal data for mo_bwsx1094_0m_a: C₁₇H₁₇NO₂, M = 267.31, a = 13.9466(16) Å, b = 23.367(3) Å, c = 8.8425(10) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2881.7(6) Å³, T = 100(2) K, space group Pba2, Z = 8, μ (MoK α) = 0.081 mm⁻¹, 31450 reflections measured, 8481 independent reflections ($R_{int} = 0.0361$). The final R_I values were 0.0406 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0968 ($I > 2\sigma(I)$). The final R_I values were 0.0528 (all data). The final $wR(F^2)$ values were 0.1036 (all data). The goodness of fit on F^2 was 1.016. Flack parameter = 0.2(4).

View of the molecules in an asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

View of a molecule of (±)-9j' with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of (±)-9j' Hydrogen-bonds are shown as dashed lines. Table 1. Crystal data and structure refinement for (±)-9j' (mo_bwsx1094_0m_a.) Identification code mo_bwsx1094_0m_a

Empirical formula	C17 H17 N O2		
Formula weight	267.31		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pba2		
Unit cell dimensions	a = 13.9466(16) Å	α= 90°.	
	b = 23.367(3) Å	β= 90°.	
	c = 8.8425(10) Å	$\gamma = 90^{\circ}.$	
Volume	2881.7(6) Å ³		
Z	8		
Density (calculated)	1.232 Mg/m ³		
Absorption coefficient	0.081 mm ⁻¹		
F(000)	1136		
Crystal size	1.800 x 0.320 x 0.100 mm ³		
Theta range for data collection	1.700 to 31.054°.		
Index ranges	-19<=h<=19, -31<=k<=33, -12<=l<=12		
Reflections collected	31450		
Independent reflections	8481 [R(int) = 0.0361]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	8481 / 1 / 363		
Goodness-of-fit on F ²	1.016		
Final R indices [I>2sigma(I)]	R1 = 0.0406, wR2 = 0.0968		
R indices (all data)	R1 = 0.0528, wR2 = 0.1036		
Absolute structure parameter	0.2(4)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.274 and -0.208 e.Å ⁻³		

	x	у	Z	U(eq)
O(001)	4460(1)	6630(1)	3362(1)	20(1)
O(002)	10938(1)	6621(1)	-1618(1)	22(1)
O(003)	3042(1)	6292(1)	2627(2)	31(1)
O(004)	12314(1)	6232(1)	-2360(2)	35(1)
N(005)	8818(1)	5319(1)	7421(2)	30(1)
N(006)	6514(1)	5283(1)	12368(2)	31(1)
C(007)	4642(1)	5874(1)	8064(2)	20(1)
C(008)	9410(1)	5638(1)	4774(2)	21(1)
C(009)	6120(1)	6645(1)	4098(2)	19(1)
C(00A)	5237(1)	5820(1)	6798(2)	17(1)
C(00B)	5928(1)	5585(1)	9703(2)	20(1)
C(00C)	9276(1)	6674(1)	-889(2)	19(1)
C(00D)	6633(1)	7123(1)	4287(2)	21(1)
C(00E)	4981(1)	5761(1)	9504(2)	20(1)
C(00F)	10455(1)	5968(1)	280(2)	18(1)
C(00G)	10691(1)	5941(1)	3140(2)	20(1)
C(00H)	10110(1)	5860(1)	1868(2)	18(1)
C(00I)	9073(1)	5472(1)	6251(2)	24(1)
C(00J)	11520(1)	5880(1)	-75(2)	22(1)
C(00K)	4904(1)	5948(1)	5210(2)	17(1)
C(00L)	3834(1)	5886(1)	4855(2)	20(1)

for $(\pm)-9j'-(mo_bwsx1094_0m_a)$. U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

10³)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x

C(00M)	10271(1)	6589(1)	-302(2)	18(1)
C(00N)	10346(1)	5835(1)	4582(2)	21(1)
C(00O)	5121(1)	6571(1)	4678(2)	16(1)
C(00P)	6262(1)	5423(1)	11184(2)	23(1)
C(00Q)	3700(1)	6274(1)	3508(2)	22(1)
C(00R)	10563(1)	7057(1)	808(2)	18(1)
C(00S)	11666(1)	6246(1)	-1456(2)	24(1)
C(00T)	8814(1)	5562(1)	3519(2)	24(1)
C(00U)	8784(1)	7159(1)	-727(2)	21(1)
C(00V)	6538(1)	5533(1)	8458(2)	24(1)
C(00W)	5149(1)	7621(1)	5248(2)	20(1)
C(00X)	10285(1)	7646(1)	201(2)	21(1)
C(00Y)	6188(1)	5650(1)	7022(2)	22(1)
C(00Z)	4852(1)	7032(1)	5820(2)	18(1)
C(010)	9168(1)	5675(1)	2088(2)	24(1)
C(011)	9199(1)	7680(1)	10(2)	23(1)
C(012)	6235(1)	7644(1)	5055(2)	23(1)
C(013)	7656(1)	7166(1)	3754(3)	33(1)
C(014)	7765(1)	7211(1)	-1260(3)	34(1)

—

Table 3.	Bond lengths [Å] and angles [°] for (±)-9j' (mo_bwsx1094_0m_a).
----------	---

O(001)-C(00Q)	1.354(2)
O(001)-C(00O)	1.491(2)
O(002)-C(00S)	1.348(2)
O(002)-C(00M)	1.491(2)
O(003)-C(00Q)	1.204(2)
O(004)-C(00S)	1.208(2)
N(005)-C(00I)	1.151(3)
N(006)-C(00P)	1.152(3)
C(007)-C(00E)	1.383(2)
C(007)-C(00A)	1.399(2)
C(007)-H(007)	0.9500
C(008)-C(00N)	1.394(3)
C(008)-C(00T)	1.398(3)
C(008)-C(00I)	1.442(3)
C(009)-C(00D)	1.337(2)
C(009)-C(00O)	1.494(2)
C(009)-H(009)	0.9500
C(00A)-C(00Y)	1.398(2)
C(00A)-C(00K)	1.509(2)
C(00B)-C(00E)	1.394(2)
C(00B)-C(00V)	1.397(3)
C(00B)-C(00P)	1.441(3)
C(00C)-C(00U)	1.333(2)
C(00C)-C(00M)	1.495(2)
C(00C)-H(00C)	0.9500
C(00D)-C(012)	1.501(3)
C(00D)-C(013)	1.505(3)

C(00E)-H(00E)	0.9500
C(00F)-C(00H)	1.506(2)
C(00F)-C(00J)	1.532(2)
C(00F)-C(00M)	1.560(2)
C(00F)-H(00F)	1.0000
C(00G)-C(00N)	1.386(3)
C(00G)-C(00H)	1.399(2)
C(00G)-H(00G)	0.9500
C(00H)-C(010)	1.397(3)
C(00J)-C(00S)	1.505(3)
C(00J)-H(00A)	0.9900
C(00J)-H(00B)	0.9900
C(00K)-C(00L)	1.532(2)
C(00K)-C(00O)	1.558(2)
C(00K)-H(00K)	1.0000
C(00L)-C(00Q)	1.509(3)
C(00L)-H(00D)	0.9900
C(00L)-H(00H)	0.9900
C(00M)-C(00R)	1.526(2)
C(00N)-H(00N)	0.9500
C(00O)-C(00Z)	1.524(2)
C(00R)-C(00X)	1.527(2)
C(00R)-H(00J)	0.9900
C(00R)-H(00L)	0.9900
C(00T)-C(010)	1.384(3)
С(00Т)-Н(00Т)	0.9500
C(00U)-C(011)	1.497(3)
C(00U)-C(014)	1.501(3)
C(00V)-C(00Y)	1.387(3)

C(00V)-H(00V)	0.9500
C(00W)-C(00Z)	1.524(2)
C(00W)-C(012)	1.525(3)
C(00W)-H(00M)	0.9900
C(00W)-H(00O)	0.9900
C(00X)-C(011)	1.526(3)
C(00X)-H(00Q)	0.9900
C(00X)-H(00R)	0.9900
C(00Y)-H(00Y)	0.9500
C(00Z)-H(00S)	0.9900
C(00Z)-H(00U)	0.9900
C(010)-H(010)	0.9500
C(011)-H(01A)	0.9900
C(011)-H(01B)	0.9900
C(012)-H(01C)	0.9900
C(012)-H(01D)	0.9900
C(013)-H(01E)	0.9800
C(013)-H(01F)	0.9800
C(013)-H(01G)	0.9800
C(014)-H(01H)	0.9800
C(014)-H(01I)	0.9800
C(014)-H(01J)	0.9800
C(00Q)-O(001)-C(00O)	110.70(13)
C(00S)-O(002)-C(00M)	110.71(13)
C(00E)-C(007)-C(00A)	121.10(16)

С(00А)-С(007)-Н(007) 119.5

C(00E)-C(007)-H(007)

C(00N)-C(008)-C(00T) 120.16(17)

119.5

C(00N)-C(008)-C(00I)	120.29(17)
C(00T)-C(008)-C(00I)	119.39(16)
C(00D)-C(009)-C(00O)	123.59(16)
C(00D)-C(009)-H(009)	118.2
C(000)-C(009)-H(009)	118.2
C(00Y)-C(00A)-C(007)	118.36(16)
C(00Y)-C(00A)-C(00K)	118.70(16)
C(007)-C(00A)-C(00K)	122.93(15)
C(00E)-C(00B)-C(00V)	120.22(16)
C(00E)-C(00B)-C(00P)	119.90(17)
C(00V)-C(00B)-C(00P)	119.76(16)
C(00U)-C(00C)-C(00M)	123.75(16)
C(00U)-C(00C)-H(00C)	118.1
C(00M)-C(00C)-H(00C)	118.1
C(009)-C(00D)-C(012)	122.39(16)
C(009)-C(00D)-C(013)	121.60(17)
C(012)-C(00D)-C(013)	116.01(16)
C(007)-C(00E)-C(00B)	119.73(17)
C(007)-C(00E)-H(00E)	120.1
C(00B)-C(00E)-H(00E)	120.1
C(00H)-C(00F)-C(00J)	118.59(15)
C(00H)-C(00F)-C(00M)	114.27(14)
C(00J)-C(00F)-C(00M)	102.47(14)
C(00H)-C(00F)-H(00F)	106.9
C(00J)-C(00F)-H(00F)	106.9
C(00M)-C(00F)-H(00F)	106.9
C(00N)-C(00G)-C(00H)	120.91(16)
C(00N)-C(00G)-H(00G)	119.5
C(00H)-C(00G)-H(00G)	119.5

C(010)-C(00H)-C(00G)	118.39(17)
C(010)-C(00H)-C(00F)	118.83(16)
C(00G)-C(00H)-C(00F)	122.78(15)
N(005)-C(00I)-C(008)	177.5(2)
C(00S)-C(00J)-C(00F)	102.75(14)
C(00S)-C(00J)-H(00A)	111.2
C(00F)-C(00J)-H(00A)	111.2
C(00S)-C(00J)-H(00B)	111.2
C(00F)-C(00J)-H(00B)	111.2
H(00A)-C(00J)-H(00B)	109.1
C(00A)-C(00K)-C(00L)	118.16(14)
C(00A)-C(00K)-C(00O)	113.95(13)
C(00L)-C(00K)-C(00O)	102.49(13)
C(00A)-C(00K)-H(00K)	107.2
C(00L)-C(00K)-H(00K)	107.2
C(00O)-C(00K)-H(00K)	107.2
C(00Q)-C(00L)-C(00K)	103.05(14)
C(00Q)-C(00L)-H(00D)	111.2
C(00K)-C(00L)-H(00D)	111.2
C(00Q)-C(00L)-H(00H)	111.2
C(00K)-C(00L)-H(00H)	111.2
H(00D)-C(00L)-H(00H)	109.1
O(002)-C(00M)-C(00C)	107.48(14)
O(002)-C(00M)-C(00R)	107.38(13)
C(00C)-C(00M)-C(00R)	112.02(14)
O(002)-C(00M)-C(00F)	101.68(12)
C(00C)-C(00M)-C(00F)	113.08(14)
C(00R)-C(00M)-C(00F)	114.28(14)
C(00G)-C(00N)-C(008)	119.78(17)

C(00G)-C(00N)-H(00N)	120.1
C(008)-C(00N)-H(00N)	120.1
O(001)-C(00O)-C(009)	107.31(14)
O(001)-C(00O)-C(00Z)	107.37(13)
C(009)-C(000)-C(00Z)	112.03(13)
O(001)-C(00O)-C(00K)	101.65(12)
C(009)-C(000)-C(00K)	113.15(14)
C(00Z)-C(00O)-C(00K)	114.37(14)
N(006)-C(00P)-C(00B)	178.4(2)
O(003)-C(00Q)-O(001)	120.93(17)
O(003)-C(00Q)-C(00L)	128.80(16)
O(001)-C(00Q)-C(00L)	110.27(14)
C(00M)-C(00R)-C(00X)	110.63(14)
C(00M)-C(00R)-H(00J)	109.5
C(00X)-C(00R)-H(00J)	109.5
C(00M)-C(00R)-H(00L)	109.5
C(00X)-C(00R)-H(00L)	109.5
H(00J)-C(00R)-H(00L)	108.1
O(004)-C(00S)-O(002)	120.78(18)
O(004)-C(00S)-C(00J)	128.50(17)
O(002)-C(00S)-C(00J)	110.72(15)
C(010)-C(00T)-C(008)	119.27(16)
С(010)-С(00Т)-Н(00Т)	120.4
С(008)-С(00Т)-Н(00Т)	120.4
C(00C)-C(00U)-C(011)	122.54(16)
C(00C)-C(00U)-C(014)	121.55(18)
C(011)-C(00U)-C(014)	115.91(16)
C(00Y)-C(00V)-C(00B)	119.34(16)
C(00Y)-C(00V)-H(00V)	120.3

C(00B)-C(00V)-H(00V)	120.3
C(00Z)-C(00W)-C(012)	109.84(14)
C(00Z)-C(00W)-H(00M)	109.7
C(012)-C(00W)-H(00M)	109.7
C(00Z)-C(00W)-H(00O)	109.7
C(012)-C(00W)-H(00O)	109.7
H(00M)-C(00W)-H(00O)	108.2
C(011)-C(00X)-C(00R)	109.78(14)
C(011)-C(00X)-H(00Q)	109.7
C(00R)-C(00X)-H(00Q)	109.7
C(011)-C(00X)-H(00R)	109.7
C(00R)-C(00X)-H(00R)	109.7
H(00Q)-C(00X)-H(00R)	108.2
C(00V)-C(00Y)-C(00A)	121.24(17)
C(00V)-C(00Y)-H(00Y)	119.4
C(00A)-C(00Y)-H(00Y)	119.4
C(00W)-C(00Z)-C(00O)	110.63(14)
C(00W)-C(00Z)-H(00S)	109.5
C(00O)-C(00Z)-H(00S)	109.5
C(00W)-C(00Z)-H(00U)	109.5
C(00O)-C(00Z)-H(00U)	109.5
H(00S)-C(00Z)-H(00U)	108.1
C(00T)-C(010)-C(00H)	121.47(17)
С(00Т)-С(010)-Н(010)	119.3
C(00H)-C(010)-H(010)	119.3
C(00U)-C(011)-C(00X)	112.96(15)
C(00U)-C(011)-H(01A)	109.0
C(00X)-C(011)-H(01A)	109.0
C(00U)-C(011)-H(01B)	109.0

C(00X)-C(011)-H(01B)	109.0
H(01A)-C(011)-H(01B)	107.8
C(00D)-C(012)-C(00W)	112.97(15)
C(00D)-C(012)-H(01C)	109.0
C(00W)-C(012)-H(01C)	109.0
C(00D)-C(012)-H(01D)	109.0
C(00W)-C(012)-H(01D)	109.0
H(01C)-C(012)-H(01D)	107.8
C(00D)-C(013)-H(01E)	109.5
C(00D)-C(013)-H(01F)	109.5
H(01E)-C(013)-H(01F)	109.5
C(00D)-C(013)-H(01G)	109.5
H(01E)-C(013)-H(01G)	109.5
H(01F)-C(013)-H(01G)	109.5
C(00U)-C(014)-H(01H)	109.5
C(00U)-C(014)-H(01I)	109.5
H(01H)-C(014)-H(01I)	109.5
C(00U)-C(014)-H(01J)	109.5
H(01H)-C(014)-H(01J)	109.5
H(01I)-C(014)-H(01J)	109.5

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
O(001) 16(1)	29(1)	16(1)	1(1)	-3(1)	-5(1)	
O(002) 16(1)	34(1)	16(1)	0(1)	2(1)	5(1)	
O(003) 22(1)	47(1)	26(1)	2(1)	-8(1)	-9(1)	
O(004) 21(1)	58(1)	26(1)	-2(1)	6(1)	11(1)	
N(005) 26(1)	31(1)	33(1)	0(1)	5(1)	-1(1)	
N(006) 32(1)	30(1)	30(1)	3(1)	-5(1)	2(1)	
C(007) 17(1)	22(1)	20(1)	1(1)	1(1)	1(1)	
C(008) 19(1)	16(1)	26(1)	0(1)	3(1)	2(1)	
C(009) 14(1)	23(1)	18(1)	-2(1)	2(1)	-1(1)	
C(00A) 16(1)	16(1)	21(1)	0(1)	-1(1)	-2(1)	
C(00B) 21(1)	17(1)	23(1)	1(1)	-4(1)	-2(1)	
C(00C) 14(1)	26(1)	18(1)	-3(1)	-2(1)	1(1)	
C(00D) 13(1)	25(1)	23(1)	2(1)	0(1)	-1(1)	
C(00E) 19(1)	21(1)	21(1)	1(1)	2(1)	0(1)	
C(00F) 14(1)	20(1)	20(1)	-5(1)	-3(1)	2(1)	
C(00G) 18(1)	19(1)	23(1)	1(1)	-2(1)	-2(1)	
C(00H) 18(1)	16(1)	22(1)	-1(1)	-2(1)	2(1)	
C(00I) 19(1)	20(1)	31(1)	-1(1)	4(1)	1(1)	
C(00J) 18(1)	28(1)	20(1)	-5(1)	-3(1)	7(1)	
C(00K) 15(1)	19(1)	16(1)	-2(1)	1(1)	-2(1)	
C(00L) 15(1)	27(1)	19(1)	-2(1)	0(1)	-6(1)	
C(00M)14(1)	24(1)	15(1)	-2(1)	0(1)	2(1)	
C(00N) 21(1)	18(1)	23(1)	1(1)	-3(1)	-1(1)	

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for (±)-9j' (mo_bwsx1094_0m_a).The anisotropic

displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(00O) 13(1)	22(1)	14(1)	-1(1)	-2(1)	-1(1)
C(00P) 23(1)	21(1)	25(1)	1(1)	-3(1)	0(1)
C(00Q) 18(1)	28(1)	18(1)	-4(1)	0(1)	-4(1)
C(00R) 18(1)	22(1)	16(1)	0(1)	-1(1)	-1(1)
C(00S) 17(1)	35(1)	19(1)	-6(1)	-2(1)	5(1)
C(00T) 15(1)	26(1)	32(1)	1(1)	0(1)	-2(1)
C(00U) 14(1)	28(1)	22(1)	1(1)	0(1)	2(1)
C(00V) 16(1)	27(1)	28(1)	3(1)	-2(1)	2(1)
C(00W)17(1)	20(1)	23(1)	0(1)	-1(1)	1(1)
C(00X) 21(1)	21(1)	20(1)	1(1)	1(1)	-2(1)
C(00Y) 17(1)	26(1)	24(1)	1(1)	3(1)	1(1)
C(00Z) 16(1)	22(1)	15(1)	0(1)	0(1)	1(1)
C(010) 16(1)	25(1)	29(1)	0(1)	-6(1)	-2(1)
C(011) 18(1)	23(1)	28(1)	1(1)	3(1)	3(1)
C(012) 18(1)	20(1)	30(1)	1(1)	-4(1)	-3(1)
C(013) 17(1)	33(1)	48(1)	-1(1)	6(1)	-6(1)
C(014) 18(1)	39(1)	46(1)	-3(1)	-9(1)	9(1)

	X	у	Z	U(eq)
H(007)	3995	5990	7933	23
H(009)	6405	6335	3566	22
H(00C)	8979	6366	-1408	23
H(00E)	4570	5804	10353	24
H(00F)	10088	5704	-397	22
H(00G)	11332	6070	3013	24
H(00A)	11929	6011	773	27
H(00B)	11662	5473	-292	27
H(00K)	5257	5684	4517	20
H(00D)	3670	5485	4602	24
H(00H)	3435	6012	5720	24
H(00N)	10745	5897	5437	25
H(00J)	11265	7043	973	22
H(00L)	10244	6992	1793	22
H(00T)	8172	5433	3647	29
H(00V)	7185	5418	8593	28
H(00M)	4943	7918	5979	24
H(00O)	4833	7700	4268	24
H(00Q)	10502	7946	912	25
H(00R)	10602	7712	-786	25
H(00Y)	6603	5614	6175	27

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for (±)-9j' (mo_bwsx1094_0m_a).

H(00S)	4150	7026	5991	21	
H(00U)	5173	6953	6796	21	
H(010)	8761	5625	1236	28	
H(01A)	8900	7731	1016	27	
H(01B)	9040	8020	-609	27	
H(01C)	6404	7987	4454	27	
H(01D)	6537	7683	6062	27	
H(01E)	7837	6810	3240	49	
H(01F)	8078	7227	4625	49	
H(01G)	7718	7488	3051	49	
H(01H)	7574	6856	-1768	51	
H(01I)	7713	7532	-1970	51	
H(01J)	7345	7279	-391	51	

_

Table 6. Torsion angles [°] for $(\pm)-9j'$ (mo_bwsx1094_0m_a).

C(00E)-C(007)-C(00A)-C(00Y)	-0.2(3)
C(00E)-C(007)-C(00A)-C(00K)	-178.93(16)
C(000)-C(009)-C(00D)-C(012)	-2.5(3)
C(000)-C(009)-C(00D)-C(013)	176.67(18)
C(00A)-C(007)-C(00E)-C(00B)	-0.6(3)
C(00V)-C(00B)-C(00E)-C(007)	1.2(3)
C(00P)-C(00B)-C(00E)-C(007)	-175.00(16)
C(00N)-C(00G)-C(00H)-C(010)	0.6(2)
C(00N)-C(00G)-C(00H)-C(00F)	-179.87(16)
C(00J)-C(00F)-C(00H)-C(010)	-150.34(17)
C(00M)-C(00F)-C(00H)-C(010)	88.64(19)
C(00J)-C(00F)-C(00H)-C(00G)	30.1(2)
C(00M)-C(00F)-C(00H)-C(00G)	-90.90(19)
C(00H)-C(00F)-C(00J)-C(00S)	-157.22(14)
C(00M)-C(00F)-C(00J)-C(00S)	-30.36(17)
C(00Y)-C(00A)-C(00K)-C(00L)	154.72(16)
C(007)-C(00A)-C(00K)-C(00L)	-26.6(2)
C(00Y)-C(00A)-C(00K)-C(00O)	-84.87(19)
C(007)-C(00A)-C(00K)-C(00O)	93.85(19)
C(00A)-C(00K)-C(00L)-C(00Q)	156.16(14)
C(00O)-C(00K)-C(00L)-C(00Q)	29.99(16)
C(00S)-O(002)-C(00M)-C(00C)	-143.44(15)
C(00S)-O(002)-C(00M)-C(00R)	95.87(16)
C(00S)-O(002)-C(00M)-C(00F)	-24.44(17)
C(00U)-C(00C)-C(00M)-O(002)	-104.3(2)
C(00U)-C(00C)-C(00M)-C(00R)	13.4(3)
C(00U)-C(00C)-C(00M)-C(00F)	144.33(18)

C(00H)-C(00F)-C(00M)-O(002)	162.68(13)
C(00J)-C(00F)-C(00M)-O(002)	33.09(15)
C(00H)-C(00F)-C(00M)-C(00C)	-82.39(18)
C(00J)-C(00F)-C(00M)-C(00C)	148.02(15)
C(00H)-C(00F)-C(00M)-C(00R)	47.35(19)
C(00J)-C(00F)-C(00M)-C(00R)	-82.24(16)
C(00H)-C(00G)-C(00N)-C(008)	0.8(3)
C(00T)-C(008)-C(00N)-C(00G)	-1.7(3)
C(00I)-C(008)-C(00N)-C(00G)	173.71(16)
C(00Q)-O(001)-C(00O)-C(009)	144.71(14)
C(00Q)-O(001)-C(00O)-C(00Z)	-94.68(15)
C(00Q)-O(001)-C(00O)-C(00K)	25.72(16)
C(00D)-C(009)-C(00O)-O(001)	103.56(19)
C(00D)-C(009)-C(00O)-C(00Z)	-14.1(2)
C(00D)-C(009)-C(00O)-C(00K)	-145.15(17)
C(00A)-C(00K)-C(00O)-O(001)	-162.39(13)
C(00L)-C(00K)-C(00O)-O(001)	-33.54(15)
C(00A)-C(00K)-C(00O)-C(009)	82.87(18)
C(00L)-C(00K)-C(00O)-C(009)	-148.28(15)
C(00A)-C(00K)-C(00O)-C(00Z)	-47.05(19)
C(00L)-C(00K)-C(00O)-C(00Z)	81.81(16)
C(000)-O(001)-C(00Q)-O(003)	173.65(16)
C(000)-O(001)-C(00Q)-C(00L)	-6.81(19)
C(00K)-C(00L)-C(00Q)-O(003)	163.95(19)
C(00K)-C(00L)-C(00Q)-O(001)	-15.54(18)
O(002)-C(00M)-C(00R)-C(00X)	72.60(16)
C(00C)-C(00M)-C(00R)-C(00X)	-45.2(2)
C(00F)-C(00M)-C(00R)-C(00X)	-175.45(14)
C(00M)-O(002)-C(00S)-O(004)	-175.40(17)

C(00M)-O(002)-C(00S)-C(00J)	5.20(19)
C(00F)-C(00J)-C(00S)-O(004)	-162.55(19)
C(00F)-C(00J)-C(00S)-O(002)	16.80(19)
C(00N)-C(008)-C(00T)-C(010)	1.0(3)
C(00I)-C(008)-C(00T)-C(010)	-174.39(17)
C(00M)-C(00C)-C(00U)-C(011)	2.8(3)
C(00M)-C(00C)-C(00U)-C(014)	-176.40(18)
C(00E)-C(00B)-C(00V)-C(00Y)	-0.9(3)
C(00P)-C(00B)-C(00V)-C(00Y)	175.30(17)
C(00M)-C(00R)-C(00X)-C(011)	61.65(18)
C(00B)-C(00V)-C(00Y)-C(00A)	0.0(3)
C(007)-C(00A)-C(00Y)-C(00V)	0.5(3)
C(00K)-C(00A)-C(00Y)-C(00V)	179.28(16)
C(012)-C(00W)-C(00Z)-C(00O)	-61.94(18)
O(001)-C(00O)-C(00Z)-C(00W)	-71.78(16)
C(009)-C(000)-C(00Z)-C(00W)	45.80(19)
C(00K)-C(00O)-C(00Z)-C(00W)	176.26(14)
C(008)-C(00T)-C(010)-C(00H)	0.4(3)
C(00G)-C(00H)-C(010)-C(00T)	-1.2(3)
C(00F)-C(00H)-C(010)-C(00T)	179.20(16)
C(00C)-C(00U)-C(011)-C(00X)	13.6(3)
C(014)-C(00U)-C(011)-C(00X)	-167.11(17)
C(00R)-C(00X)-C(011)-C(00U)	-45.0(2)
C(009)-C(00D)-C(012)-C(00W)	-13.5(3)
C(013)-C(00D)-C(012)-C(00W)	167.29(17)
C(00Z)-C(00W)-C(012)-C(00D)	44.8(2)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(00L)-H(00H)O(004	4)#1 0.99	2.36	3.348(2)	172.1
C(00L)-H(00D)N(000	5)#2 0.99	2.68	3.540(2)	145.3
C(00J)-H(00A)O(003	6)#3 0.99	2.35	3.337(2)	173.8
C(00C)-H(00C)N(00	5)#4 0.95	2.67	3.561(2)	157.0
C(009)-H(009)N(006)#4 0.95	2.68	3.574(3)	156.5
C(00L)-H(00H)O(004	4)#1 0.99	2.36	3.348(2)	172.1
C(00L)-H(00D)N(000	5)#2 0.99	2.68	3.540(2)	145.3
C(00J)-H(00A)O(003	6)#3 0.99	2.35	3.337(2)	173.8
C(00C)-H(00C)N(00	5)#4 0.95	2.67	3.561(2)	157.0
C(009)-H(009)N(006)#4 0.95	2.68	3.574(3)	156.5
C(009)-H(009)N(006)#4 0.95	2.68	3.574(3)	156.5
C(00C)-H(00C)N(00	5)#4 0.95	2.67	3.561(2)	157.0
C(00J)-H(00A)O(003	6)#3 0.99	2.35	3.337(2)	173.8
C(00L)-H(00D)N(000	5)#2 0.99	2.68	3.540(2)	145.3
C(00L)-H(00H)O(004	4)#1 0.99	2.36	3.348(2)	172.1

Table 7. Hydrogen bonds for $(\pm)-9j'$ (mo_bwsx1094_0m_a) [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z+1 #2 -x+1,-y+1,z-1 #3 x+1,y,z

#4 x,y,z-1

X-ray data of 9j —CCDC2111150 (Original name: mo bwsx01093 0m)

Crystal data for mo_bwsx01093_0m: C₁₇H₁₇NO₂, M = 267.31, a = 9.5290(10) Å, b = 17.7336(19) Å, c = 8.6854(9) Å, $a = 90^{\circ}$, $\beta = 108.621(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 1390.9(3) Å³, T = 100(2) K, space group P21/c, Z = 4, μ (MoK α) = 0.084 mm⁻¹, 15426 reflections measured, 4108 independent reflections ($R_{int} = 0.0263$). The final R_I values were 0.0398 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1016 ($I > 2\sigma(I)$). The final R_I values were 0.0489 (all data). The final $wR(F^2)$ values were 0.1082 (all data). The goodness of fit on F^2 was 1.042.

View of a molecule of 9j (bwsx01093) with the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of 9j (bwsx01093).

Hydrogen-bonds are shown as dashed lines.

Table 1. Crystal data and structure refinement	for 9j (mo_bwsx01093_0m).			
Identification code	mo_bwsx01093_0m			
Empirical formula	C17 H17 N O2			
Formula weight	267.31			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P21/c			
Unit cell dimensions	a = 9.5290(10) Å	$\alpha = 90^{\circ}$.		
	b = 17.7336(19) Å	$\beta = 108.621(2)^{\circ}.$		
	c = 8.6854(9) Å	$\gamma = 90^{\circ}$.		
Volume	1390.9(3) Å ³			
Z	4			
Density (calculated)	1.277 Mg/m ³			
Absorption coefficient	0.084 mm ⁻¹			
F(000)	568			
Crystal size	0.870 x 0.350 x 0.260 mm ³			
Theta range for data collection2.255 to 30.942°.				
Index ranges	-13<=h<=12, -25<=k<=24, -12<=l<=12			
Reflections collected	15426			
Independent reflections	4108 [R(int) = 0.0263]			
Completeness to theta = 25.242°	99.6 %			
Absorption correction	Semi-empirical from equivalents			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4108 / 0 / 182			
Goodness-of-fit on F ²	1.042			
Final R indices [I>2sigma(I)]	R1 = 0.0398, wR2 = 0.1016			
R indices (all data) $R1 = 0.0489, wR2 = 0.1082$				
Extinction coefficient	n/a			
Largest diff. peak and hole	0.391 and -0.237 e.Å ⁻³			
	Х	У	Z	U(eq)
-------	----------	---------	----------	-------
O(1)	10491(1)	795(1)	7620(1)	18(1)
O(2)	12224(1)	656(1)	10031(1)	23(1)
N(1)	1776(1)	2509(1)	8486(1)	29(1)
C(1)	7339(1)	393(1)	3686(1)	26(1)
C(2)	7297(1)	30(1)	5241(1)	21(1)
C(3)	8000(1)	328(1)	6697(1)	17(1)
C(4)	8910(1)	1033(1)	6948(1)	15(1)
C(5)	8740(1)	1555(1)	8322(1)	15(1)
C(6)	7168(1)	1695(1)	8295(1)	14(1)
C(7)	6415(1)	1222(1)	9062(1)	16(1)
C(8)	4998(1)	1399(1)	9077(1)	17(1)
C(9)	4320(1)	2063(1)	8330(1)	16(1)
C(10)	2892(1)	2295(1)	8411(1)	20(1)
C(11)	6439(1)	2339(1)	7498(1)	16(1)
C(12)	5032(1)	2530(1)	7517(1)	17(1)
C(13)	10992(1)	862(1)	9244(1)	17(1)
C(14)	9814(1)	1202(1)	9857(1)	17(1)
C(15)	8646(1)	929(1)	3969(1)	25(1)
C(16)	8736(1)	1460(1)	5381(1)	21(1)
C(17)	6438(1)	-691(1)	5089(2)	30(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **9j** (mo_bwsx01093_0m). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(13)	1.3417(12)
O(1)-C(4)	1.4926(11)
O(2)-C(13)	1.2110(12)
N(1)-C(10)	1.1498(14)
C(1)-C(2)	1.5084(15)
C(1)-C(15)	1.5219(17)
C(1)-H(1)	0.9900
C(1)-H(8)	0.9900
C(2)-C(3)	1.3373(13)
C(2)-C(17)	1.5005(15)
C(3)-C(4)	1.4977(13)
C(3)-H(16)	0.9500
C(4)-C(16)	1.5194(13)
C(4)-C(5)	1.5584(12)
C(5)-C(6)	1.5116(12)
C(5)-C(14)	1.5318(13)
C(5)-H(17)	1.0000
C(6)-C(11)	1.3993(13)
C(6)-C(7)	1.4032(13)
C(7)-C(8)	1.3911(13)
C(7)-H(3)	0.9500
C(8)-C(9)	1.3991(13)
C(8)-H(2)	0.9500
C(9)-C(12)	1.3960(13)
C(9)-C(10)	1.4446(13)
C(11)-C(12)	1.3878(13)
C(11)-H(5)	0.9500
C(12)-H(4)	0.9500
C(13)-C(14)	1.5125(13)
C(14)-H(7)	0.9900
C(14)-H(6)	0.9900
C(15)-C(16)	1.5272(14)
C(15)-H(9)	0.9900
C(15)-H(10)	0.9900
C(16)-H(11)	0.9900
C(16)-H(12)	0.9900

Table 3. Bond lengths [Å] and angles [°] for 9j (mo_bwsx01093_0m).

C(17)-H(13)	0.9800
C(17)-H(15)	0.9800
C(17)-H(14)	0.9800
C(13)-O(1)-C(4)	111.22(7)
C(2)-C(1)-C(15)	112.13(9)
C(2)-C(1)-H(1)	109.2
C(15)-C(1)-H(1)	109.2
C(2)-C(1)-H(8)	109.2
C(15)-C(1)-H(8)	109.2
H(1)-C(1)-H(8)	107.9
C(3)-C(2)-C(17)	120.98(10)
C(3)-C(2)-C(1)	121.93(10)
C(17)-C(2)-C(1)	117.09(9)
C(2)-C(3)-C(4)	124.07(9)
C(2)-C(3)-H(16)	118.0
C(4)-C(3)-H(16)	118.0
O(1)-C(4)-C(3)	106.59(7)
O(1)-C(4)-C(16)	107.45(7)
C(3)-C(4)-C(16)	113.15(8)
O(1)-C(4)-C(5)	101.97(7)
C(3)-C(4)-C(5)	114.22(7)
C(16)-C(4)-C(5)	112.41(7)
C(6)-C(5)-C(14)	117.64(8)
C(6)-C(5)-C(4)	115.48(7)
C(14)-C(5)-C(4)	102.68(7)
C(6)-C(5)-H(17)	106.8
C(14)-C(5)-H(17)	106.8
C(4)-C(5)-H(17)	106.8
C(11)-C(6)-C(7)	118.38(8)
C(11)-C(6)-C(5)	118.30(8)
C(7)-C(6)-C(5)	123.30(8)
C(8)-C(7)-C(6)	120.89(8)
C(8)-C(7)-H(3)	119.6
C(6)-C(7)-H(3)	119.6
C(7)-C(8)-C(9)	119.52(9)
C(7)-C(8)-H(2)	120.2
C(9)-C(8)-H(2)	120.2
C(12)-C(9)-C(8)	120.38(8)

118.33(9)
121.27(9)
177.20(11)
121.43(9)
119.3
119.3
119.31(9)
120.3
120.3
121.46(9)
128.03(9)
110.50(8)
102.79(7)
111.2
111.2
111.2
111.2
109.1
110.38(8)
109.6
109.6
109.6
109.6
108.1
111.94(8)
109.2
109.2
109.2
109.2
107.9
109.5
109.5
109.5
109.5
109.5
109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **9j** (mo_bwsx01093_0m). The anisotropic

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	16(1)	20(1)	20(1)	2(1)	8(1)	4(1)
O(2)	16(1)	27(1)	27(1)	10(1)	7(1)	4(1)
N(1)	19(1)	23(1)	46(1)	0(1)	13(1)	0(1)
C(1)	29(1)	33(1)	16(1)	-4(1)	5(1)	10(1)
C(2)	19(1)	21(1)	21(1)	-4(1)	5(1)	6(1)
C(3)	18(1)	16(1)	17(1)	0(1)	6(1)	2(1)
C(4)	16(1)	16(1)	15(1)	2(1)	6(1)	3(1)
C(5)	14(1)	15(1)	16(1)	-1(1)	6(1)	0(1)
C(6)	14(1)	14(1)	14(1)	-3(1)	5(1)	-1(1)
C(7)	16(1)	14(1)	18(1)	0(1)	6(1)	0(1)
C(8)	17(1)	17(1)	19(1)	-2(1)	7(1)	-2(1)
C(9)	13(1)	18(1)	17(1)	-3(1)	4(1)	-1(1)
C(10)	17(1)	18(1)	26(1)	-1(1)	7(1)	-2(1)
C(11)	17(1)	16(1)	17(1)	-1(1)	6(1)	-1(1)
C(12)	17(1)	16(1)	18(1)	0(1)	4(1)	1(1)
C(13)	16(1)	16(1)	20(1)	4(1)	7(1)	0(1)
C(14)	14(1)	21(1)	16(1)	0(1)	5(1)	1(1)
C(15)	32(1)	30(1)	17(1)	4(1)	13(1)	12(1)
C(16)	26(1)	21(1)	18(1)	5(1)	11(1)	7(1)
C(17)	27(1)	24(1)	32(1)	-11(1)	3(1)	-1(1)

displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	X	У	Z	U(eq)
H(1)	6407	675	3191	32
H(8)	7405	-4	2913	32
H(16)	7916	78	7631	20
H(17)	9162	2057	8178	18
H(3)	6880	773	9579	19
H(2)	4494	1072	9590	21
H(5)	6918	2652	6931	20
H(4)	4559	2973	6984	21
H(7)	10239	1589	10699	21
H(6)	9318	810	10309	21
H(9)	8530	1227	2972	30
H(10)	9574	635	4214	30
H(11)	9588	1805	5545	25
H(12)	7825	1771	5107	25
H(13)	6400	-842	6161	44
H(15)	6923	-1087	4657	44
H(14)	5428	-614	4351	44

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **9j** (mo_bwsx01093_0m).

C(15)-C(1)-C(2)-C(3)	20.64(13)
C(15)-C(1)-C(2)-C(17)	-158.88(9)
C(17)-C(2)-C(3)-C(4)	178.36(9)
C(1)-C(2)-C(3)-C(4)	-1.14(15)
C(13)-O(1)-C(4)-C(3)	-97.64(8)
C(13)-O(1)-C(4)-C(16)	140.78(8)
C(13)-O(1)-C(4)-C(5)	22.41(9)
C(2)-C(3)-C(4)-O(1)	-107.28(10)
C(2)-C(3)-C(4)-C(16)	10.61(13)
C(2)-C(3)-C(4)-C(5)	140.93(9)
O(1)-C(4)-C(5)-C(6)	-160.99(7)
C(3)-C(4)-C(5)-C(6)	-46.44(11)
C(16)-C(4)-C(5)-C(6)	84.24(10)
O(1)-C(4)-C(5)-C(14)	-31.64(8)
C(3)-C(4)-C(5)-C(14)	82.90(9)
C(16)-C(4)-C(5)-C(14)	-146.42(8)
C(14)-C(5)-C(6)-C(11)	144.18(9)
C(4)-C(5)-C(6)-C(11)	-94.22(10)
C(14)-C(5)-C(6)-C(7)	-34.21(12)
C(4)-C(5)-C(6)-C(7)	87.40(11)
C(11)-C(6)-C(7)-C(8)	-2.02(13)
C(5)-C(6)-C(7)-C(8)	176.37(8)
C(6)-C(7)-C(8)-C(9)	-0.64(14)
C(7)-C(8)-C(9)-C(12)	2.59(14)
C(7)-C(8)-C(9)-C(10)	-175.76(9)
C(7)-C(6)-C(11)-C(12)	2.82(13)
C(5)-C(6)-C(11)-C(12)	-175.64(8)
C(6)-C(11)-C(12)-C(9)	-0.94(14)
C(8)-C(9)-C(12)-C(11)	-1.81(14)
C(10)-C(9)-C(12)-C(11)	176.59(9)
C(4)-O(1)-C(13)-O(2)	175.70(8)
C(4)-O(1)-C(13)-C(14)	-3.34(10)
O(2)-C(13)-C(14)-C(5)	163.43(10)
O(1)-C(13)-C(14)-C(5)	-17.61(10)
C(6)-C(5)-C(14)-C(13)	157.89(8)
C(4)-C(5)-C(14)-C(13)	29.90(9)

Table 6. Torsion angles [°] for 9j (mo_bwsx01093_0m).

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3
C(3)-H(16)O(2)#2	0.95	2.45	3.3987(12)	175.6
C(5)-H(17)N(1)#1	1.00	2.55	3.3143(13)	133.3

Table 7. Hydrogen bonds for $9j~(\mbox{mo_bwsx01093_0m})~[\mbox{\AA and }^\circ].$

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 -x+2,-y,-z+2

¹H NMR of **8p1** (400 M, CDCl₃)

¹H NMR of **8s2** (600 M, CDCl₃)

³¹P NMR of 8s2 (242 M, CDCl₃)

¹³C NMR of **8t1** (100 M, CDCl₃)

¹³C NMR of **8t2** (100 M, CDCl₃)

¹³C NMR of **8u1** (100 M, CDCl₃)

¹³C NMR of **8u2** (100 M, CDCl₃)

<pre><163.80 <163.76 <163.76 <163.09 <133.02 <</pre>	—18. 1685
--	-----------

¹H NMR of **8u2** (400 M, CDCl₃)

¹³C NMR of **8b** (100 M, CDCl₃)

¹³C NMR of 8c (100 M, CDCl₃)

¹³C NMR of **8d** (100 M, CDCl₃)

¹H NMR of 8e (400 M, CDCl₃)

¹³C NMR of 8f (100 M, CDCl₃)

¹H NMR of **8h** (400 M, CDCl₃)

2.0582 2.0582 2.0009 1.5588 1.5583 1.5583 1.5583 1.5583 1.5584 1.5584 1.5584 1.5584 1.5584 1.5584 1.5584 1.5583 1.5683 1.5683

¹H NMR of **8i** (400 M, CDCl₃)

¹H NMR of **8j** (400 M, CDCl₃)

¹H NMR of **8m** (400 M, CDCl₃)

¹H NMR of **8p** (400 M, CDCl₃)

¹³C NMR of **8p** (100 M, CDCl₃)

¹H NMR of **8r** (400 M, CDCl₃)

¹H NMR of 8t (400 M, CDCl₃)

¹³C NMR of **8u** (100 M, CDCl₃)

¹H NMR of 8v (400 M, CDCl₃)

¹³C NMR of **8v** (100 M, CDCl₃)

¹H NMR of **D-8j** (400 M, CDCl₃)

¹³C NMR of **D-8j** (100 M, CDCl₃)

¹H NMR of **10** (400 M, CDCl₃)

¹H NMR of **11** (400 M, CDCl₃)

¹³C NMR of **15** (100 M, CDCl₃)

<172.3405 172.3220 (140.5773 140.5474 128.3740 128.2705 128.2118 128.2118

¹H NMR of **15** (400 M, CDCl₃)

¹H NMR of **17**(400 M, CDCl₃)

¹³C NMR of **17** (100 M, CDCl₃)

¹³C NMR of (±)-9a (100 M, CDCl₃)

¹⁹F NMR of (±)-9b (565 M, CDCl₃)

¹³C NMR of (±)-9d (150 M, CDCl₃)

¹⁹F NMR of (±)-9d (565 M, CDCl₃)

¹H NMR of (±)-9d' (600 M, CDCl₃)

¹⁹F NMR of (±)-9f (565 M, CDCl₃)

¹³C NMR of (±)-9j (150 M, CDCl₃)

¹³C NMR of (±)-9j' (150 M, CDCl₃)

¹³C NMR of (±)-9k and (±)-9k' (100 M, CDCl₃)

¹H NMR of (±)-9q (400 M, CDCl₃)

¹H NMR of **18** (400 M, CDCl₃)

100 90 fl (ppm)