Supporting information for

Phosphotungstic Acid Impregnated Niobium Coated Superparamagnetic Iron Oxide Nanoparticles as Recyclable Catalyst for Selective Isomerization of Terpenes

Luccas Lossano Name,^a Sergio Hiroshi Toma,^b Helton Pereira Nogueira,^b Luis Humberto Avanzi,^c Rafael dos Santos Pereira,^d Luis Fernando Peffi Ferreira,^a Koiti Araki,^b Rodrigo Cella ^{*a}, and Marcos Makoto Toyama^{*b}

^{d.} Msc R. S. Pereira Department of Physics

Universidade Federal do ABC, Centro de Ciências Naturais e Humanas

Address 3: Avenida dos Estados, 5001 - Bloco A - Torre 3 - Lab. L704-3 -09210580 - Bangu- Santo André, SP - Brasil

 ^a Msc. L. L. Name, Dr. L. F. P. Ferreira, Dr. R. Cella (r.cella@fei.edu.br) Department of Chemistry Engineering FEI University
Address Av. Humberto de Alencar Castelo Branco, 3972B- Assunção – São Bernardo do Campo – São Paulo – Brasil – CEP 09850-901
^b Dr. S. H. Toma, Dr. Helton P. Nogueira, Dr. K. Araki, Dr. M. M. Toyama (marcosmakotoyama@gmail.com) Department of Fundamental Chemistry
Chemistry Institute – São Paulo University - IQUSP
Address 2: Av. Professor Lineu Prestes, 748 – CEP 05508-000 - Cidade Universitária – São Paulo – SP – Brasil
^c Dr. L. H. Avanzi
Department of Physics
FEI University
Address 3: Av. Humberto de Alencar Castelo Branco, 3972B - Assunção – São Bernardo do Campo – São Paulo – Brasil – CEP 09850-901

1. REPRESENTATIVE GC CHROMATOGRAMS

Figure S1: Typical turpentine oil chromatogram (it can have variation).

Figure S2: Chromatogram of standard α -pinene.

Figure S3: Chromatogram of standard β -pinene.

Figure S4: Chromatogram of standard camphene.

Figure S5: Chromatogram of standard limonene.

C:\GCsolution\Data\Cella\Makoto\RCII-72B-1R.qgd

Figure S6: Chromatogram of isomerization reaction under HIU, conditions described on Run 1, Table 4. A) Time zero B) 30 minutes.

C:\GCsolution\Data\Cella\Makoto\RCII-72B-2R.qgd

C:\GCsolution\Data\Cella\Makoto\RCII-72B-3R.qgd

6

Figure S7: Chromatograms of isomerization reaction with recycled catalyst, under HIU, conditions described on Runs 2-4, Table 4. A) 2nd reclycling B) 3rd reclycling C) 4th reclycling.

2. X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

The figures below correspond to the high-resolution spectra of phosphorus (P 2p) and carbon (C 1s) and the survey spectra of pure SPION, SPION modified as SPIO-Nb30 and SPION-Nb30 + HPW in run 1 and Run 5, showed in Figure **S8** e **S9**, respectively.

Figure S8: High resolution XPS spectra of SPION, SPION-NB30, SPION-Nb30@HPW-R1 (run 1), and SPION-Nb30@HPW-R5 (Run 5) magnetically recovered from the reaction mixture after the first and fifth catalytic cycle.

Figure S9: Survey XPS spectra (Survey) of SPION, SPION-NB30, SPION-Nb30@HPW-R1 (run 1), and SPION-Nb30@HPW-R5 (Run 5) magnetically recovered from the reaction mixture after the first and fifth catalytic cycle.