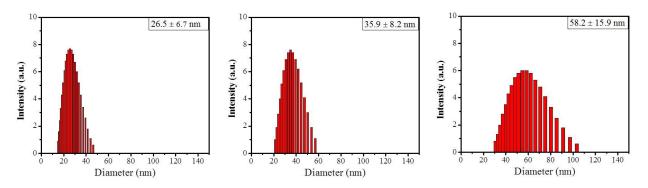
Supporting Information

for

The effect of pH and transition metal ions on cysteine-assisted gold aggregation for a distinct colorimetric detection

Trang Thi Thuy Nguyen,¹ Olivia A. Han,² Eun Bi Lim,¹ Seungjoo Haam,³ Joon-Seo Park,^{2,*} and Sang-Wha Lee^{1,*}

¹Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea


²Department of Chemistry, Eastern University, 1300 Eagle Road, St. Davids, PA 19087-3696, USA

³Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

* Corresponding authors: jpark6@eastern.edu, lswha@gc.gachon.ac.kr

Instrumental Analysis

AuNPs were characterized for the shape, size, structure, and the optical properties. Scanning electron microscopy (SEM; Hitachi S-4700 FE-SEM; Japan) was used to measure the surface morphology of the samples. Electrophoretic light scattering (Photal Otsuka Electronics, ELS 8000) were used to characterize the particle size distribution and zeta potential. X-ray diffraction (XRD; Rigaku Rint 2200 Series, Rigaku, Tokyo, Japan) using Cu K α 1 radiation of wavelength λ = 1.5406 Å, at 40 kV voltage and 30 mA current with the continuous-scanning 2 θ mode was used to identify the crystalline structure of the samples. The absorption spectra of the sample solution with and without Cys were analyzed using UV–Visible spectrophotometer (Shimadzu, Model-UV-3600).

Fig. S1. Particle size distribution of AuNPs prepared at the different molar ratios of citrate/Au³⁺ according to DLS method: (a) citrate/Au³⁺ = 5:1, (b) citrate/Au³⁺ = 3:1, (c) citrate/Au³⁺ = 0.5:1.

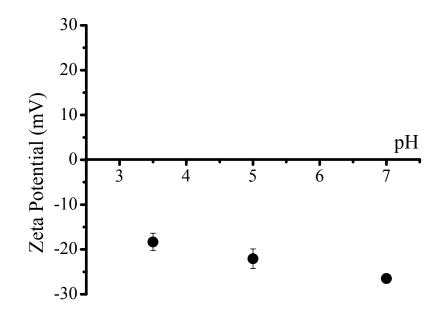
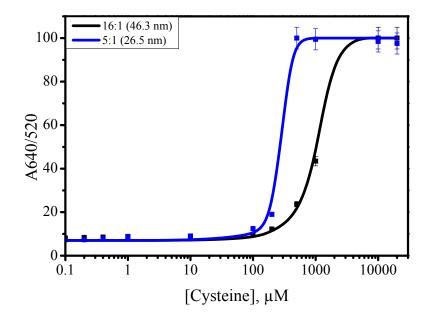
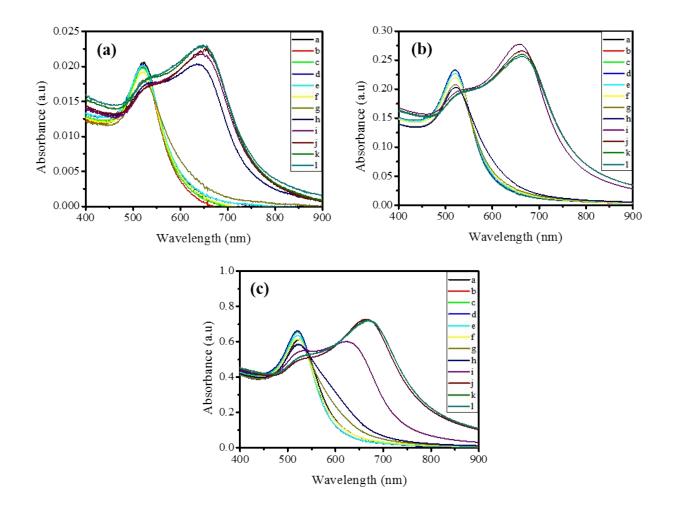
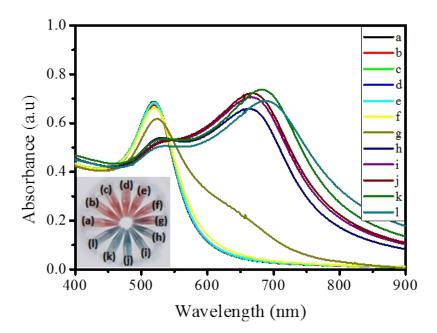
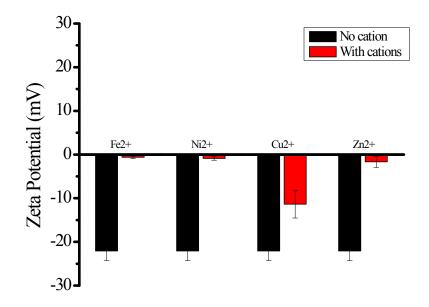


Fig. S2. Zeta potential of AuNPs (26.5 nm) at different pHs.

Fig. S3. XRD patterns of AuNPs (26.5 nm).


Fig. S4. Effect of Cys concentration on the absorbance ratio at 640/520 (nm/nm) for the same surface area of AuNPs prepared with 5:1 and 16:1 citrate-to-gold ratios that are corresponding to $\sim 10^{11}$ /mL and 2.809 × 10¹⁰/mL, respectively.

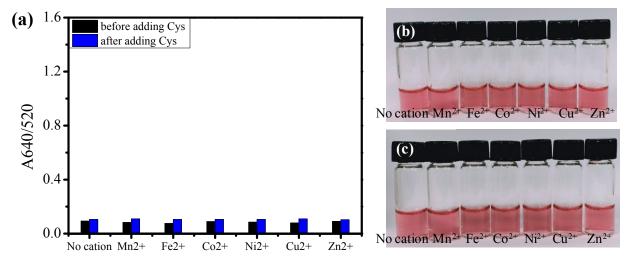

Fig. S5. UV–vis spectra of 26.5 nm AuNPs prepared with 5:1 citrate/Au³⁺ molar ratio in response to different concentrations of Cys (0 μ M, 0.1 μ M, 0.2 μ M, 0.4 μ M, 1 μ M, 10 μ M, 100 μ M, 200 μ M, 500 μ M, 1000 μ M, 20000 μ M) from a to 1: (a) 10¹⁰ particles/mL (b) 10¹¹ particles/mL (c) 3 × 10¹¹ particles/mL.

Fig. S6. UV-vis spectra of the 26.5 nm AuNPs prepared with 5:1 citrate/Au³⁺ molar ratio in response to different concentrations of cysteine (0 μ M, 0.1 μ M, 0.2 μ M, 0.4 μ M, 1 μ M, 10 μ M, 100 μ M, 200 μ M, 500 μ M, 1000 μ M, 2000 μ M) from a to 1 in the presence of 0.1 mM Cu²⁺. The inset shows the photograph of these AuNPs.

Fig. S7. Zeta potential of AuNPs in the presence of various metal cations at 1.0 mM in acidic condition (pH 5): No cation, Fe²⁺, Ni²⁺, Cu²⁺, and Zn²⁺.

Fig. S8. The absorbance ratio of A640/520 in the presence of transition metal ions at 0.1 mM before and after adding 1.5 μ M Cys at pH 5 (a). The photograph of AuNPs solution before (b) and after adding Cys (c) with various cations (0.1 mM): No cation, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, and Zn²⁺.