Enhancing Interfacial Contact and Photocatalytic Performance of TiO₂/Nanocarbon Hybrids through Coupling with Short Nanotubes

Ahmed Al Mayyahi,^a Brian M. Everhart,^a Tej B. Shrestha,^b Tyson C. Back,^c and

Placidus B. Amama^a

^aTim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA

^bNanotechnology Innovation Center of Kansas State, Manhattan, KS 66506, USA ^cMaterials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

Fig. S1. Low-magnification SEM image of TiO₂-short SWCNT. Weight ratio of SWCNTs is 1 wt. % of TiO₂

Fig. S2. HR-TEM image of TiO₂-short SWCNT. Weight ratio of SWCNTs is 1 wt. % of TiO₂.

Fig. S3. SEM images of TiO_2 -short SWCNT composites with different loading of short SWCNTs: (a) 1 wt. % and (b) 3 wt. %.

Optical Properties

Fig. S2 shows diffuse reflectance absorption spectra for TiO_2 and TiO_2 -short SWCNT hybrid. The samples show the expected absorption with a strong transition in the UV region that is attributed to the intrinsic band gap of TiO_2 and associated transition of electrons from the valance band to conduction band. TiO_2 -short SWCNT gives rise to an increase of light absorption in the visible region with a slight red shift of the absorption edge. The band gaps of TiO_2 (3.22 eV) and TiO_2 -SWNTs (3.19 eV) were calculated via using Tauc's plot, according to literature. ^[1,2]

Fig. S4. (a) UV-Vis spectra of TiO_2 and TiO_2 -short SWCNT (b) Tauc's plot of TiO_2 and TiO_2 -short SWCNT. SWCNTs weight ratio is 1 wt. % of TiO_2 .

Fig. S5. Representative TEM images of short SWCNTs (a, b, and c) and long SWCNTs (d, e and f).

Fig. S6. SEM image of TiO₂-long SWCNT composite. SWCNTs weight ratio is 1 wt. % of TiO₂

Fig. S7. TEM images of (a) microsized graphene oxide, (b) exfoliated nanographene oxide, and (c) non-exfoliated nanographene oxide. (d) A box plot of the size of nanographene oxide. Average size is 125±86 nm.

References

N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. **1995**, 99, [1] 16646.

A. A. Valeeva, E. A. Kozlova, A. S. Vokhmintsev, R. V Kamalov, I. [2]
B. Dorosheva, A. A. Saraev, I. A. Weinstein, A. A. Rempel, *Sci. Rep.* 2018, *8*, 9607.