Supporting Information

Vlasoulides A and B, a pair of neuroprotective C_{32} dimeric sesquiterpenes with hexacyclic 5/7/5/5/(5)/7 carbon skeleton from the roots of *Vladimiria souliei*

Zhi-li Wu^{a,b}, Qun Wang^b, Lu Fu^b, Ri-xin Su^b, Ze-shi Sun^b, Hui-liang Li^{a,b}*

Affiliation

^a School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China

^b School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China

Contents

Table S1. ¹ H NMR (500 MHz, CDCl ₃ J in Hz) and ¹³ C NMR (125 MHz, CDCl3) Spectroscopic Data for 1 and 24
Isolation Procedures6
Compound characterization of 1–27
(R)-and (S)-MTPA Esters of compounds 1 and 27
Neuroprotection Assay8
Figure S1. HRESIMS spectrum of Vlasoulide A (1)9
Figure S2. IR spectrum of Vlasoulide A (1)10
Figure S3. OR Value of <i>Vlasoulide A (1)</i> in CH ₃ OH11
Figure S4. CD Value of <i>Vlasoulide A (1)</i> in CH ₃ OH12
Figure S5. UV spectrum of Vlasoulide A (1) in CH ₃ CN/H ₂ O13
Figure S6. ¹ H- NMR spectrum of <i>Vlasoulide A (1)</i> in CDCl ₃ 14
Figure S7. ¹³ C NMR spectrum of <i>Vlasoulide A (1)</i> in CDCl ₃ 15
Figure S8. DEPT-135 NMR spectrum of Vlasoulide A (1) in CDCl ₃ 16
Figure S9. ¹ H- ¹ H COSY spectrum of <i>Vlasoulide A (1)</i> in CDCl ₃ 17
Figure S10. HSQC spectrum of <i>Vlasoulide A (1)</i> in CDCl₃18
Figure S11. HMBC spectrum of <i>Vlasoulide A (1)</i> in CDCl ₃ 19
Figure S12. NOESY spectrum of <i>Vlasoulide A (1)</i> in CDCl ₃ 20
Figure S13. HRESIMS spectrum of Vlasoulide B (2)21
Figure S14. IR spectrum of Vlasoulide B (2)22
Figure S15. OR Value of <i>Vlasoulide B (2)</i> in CH ₃ OH23
Figure S16. CD Value of <i>Vlasoulide B (2)</i> in CH ₃ OH24
Figure S17. UV spectrum of Vlasoulide B (2) in CH ₃ CN/H ₂ O25
Figure S18. ¹ H NMR spectrum of <i>Vlasoulide B (2)</i> in CDCl ₃ 26
Figure S19. ¹³ C NMR spectrum of <i>Vlasoulide B (2)</i> in CDCl ₃ 27
Figure S20. DEPT-135 NMR spectrum of <i>Vlasoulide B (2)</i> in CDCl ₃ 28
Figure S21. ¹ H- ¹ H COSY spectrum of <i>Vlasoulide B (2)</i> in CDCl ₃ 29
Figure S22. HSQC spectrum of <i>Vlasoulide B (2)</i> in CDCl₃30
Figure S23. HMBC spectrum of <i>Vlasoulide B (2)</i> in CDCl₃31
Figure S24. NOESY spectrum of Vlasoulide B (2) in CDCl ₃

Figure S25. (R)and (S)-MTPA Esters of compound 1.	33
Figure S26. (<i>R</i>)and (<i>S</i>)-MTPA Esters of compound 2	34

Table S1.¹H NMR (600 MHz CDCl₃ J in Hz) and ¹³C NMR (150 MHz, CDCl₃)

Position	1ª		2ª				
	$\delta_{ m H}$ mult (J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ mult (<i>J</i> in Hz)	$\delta_{ m C}$			

Spectroscopic Data for 1 and 2

1	2.96, m	44.9	2.96, m	44.8	
2	2.20, 1.78, m	29.3	2.20, 1.78, m	29.3	
3	2.24, 1.76, m	35.8	2.24, 1.78, m	35.7	
4		54.3		54.2	
5	2.78°, dd (6.74, 6.52)	54.1	2.77° dd (6.65, 6.93)	54.2	
6	4.12, t (9.8)	78.8	4.11, t (9.7)	79.0	
7	2.86°, m	57.5	2.85°, m	56.9	
8	2.11, 1.50, m	31.9	2.11, 1.51, m	31.8	
9	2.47, 2.15, m	34.1	2.47, 2.12, m	34.0	
10		150.1		150.1	
11		180.2		180.1	
12	1.87, 1.43, m	30.5	1.82, 1.45, m	30.3	
13	4.99, s, 4.81, s	114.2	4.98, s, 4.80, s	114.1	
14		211.6		211.7	
15	2.67, 2.66, d (8.5)	50.5	2.63, 2.62, d (8.7)	51.6	
16	4.24, m	63.9	4.25, m	63.5	
17	1.21, d (6.3)	22.5	1.20, d (6.4)	22.2	
1′	2.89 °, m	47.4	2.88°, m	47.4	
2'	1.96, 1.82, m	30.0	1.97, 1.82, m	30.0	

3'	2.55, 2.44, m	32.2	2.55, 2.44, m	32.2
4′		151.3		151.3
5'	2.74 °	52.0	2.73 °	51.9
6'	4.21, t (9.5)	84.0	4.22, t (9.6)	84.0
7′	2.09, m	48.7	2.07, m	48.7
8′	1.85°, 1.64°, m	25.3	1.83°, 1.64°, m	25.3
9'	2.49°, 2.04°, m	36.0	2.49°, 2.05°, m	36.0
10′		149.6		149.6
11′		76.7		76.7
12′		176.8		176.8
13'	1.81°, 1.69°, m	30.8	1.81°, 1.66°, m	30.9
14′	4.89,s, 4.80, s	112.2	4.89,s, 4.79, s	112.2
15'	5.19, d (0.8), 5.06, d (1.0)	109.7	5.19, d (1.1), 5.05, d (1.1)	109.7

^a¹H NMR Spectroscopic Data at 600 MHz and ¹³C NMR Data at 150 MHz

Materials and methods

General experimental procedures. Column chromatography (CC): silica gel H (10–40 μ m; Marine Chemical Factory, Qingdao, P. R. China); MCI gel CHP-20P; Sephadex LH-20 (Pharmacia Fine Chemicals, Piscataway, NJ, USA); RP-C₁₈ gel (40–63 μ m; Daiso, Co, Japan) were used for column chromatography. TLC: silica gel plates, visualization by spraying with 10 % H₂SO₄ in EtOH and dragendorff's reagent. Semi-preparative HPLC: Agilent 1260 series with a Zorbax SB-C₁₈ (5 μ M, 9.4 mm × 25 cm) column. Melting point: X-4B apparatus and was uncorrected. IR spectra: Bruker Vector 22 (KBr pellets). Optical rotation: Autopol VI (serial No. 90079, manufactured by Rudolph Research Analytical, Hackettstown, NJ). UV spectra were obtained by the DAD detector of HLPC (Agilent 1260). NMR Spectra: Bruker Ascend-500 spectrometer (500 MHz); δ in ppm with SiMe₄ as internal standard. MS: Agilent *MSD-Trap-XCT* (for ESI) and *Q-Tof* micro mass spectrometer (for HR-ESI).

Plant Material. The whole plants of *Vladimiria souliei* was collected at daJin, SiChuan province of China, in October, 2019, and authenticated by Prof. Bao-Kang Huang of Second Medical Military University. Currently A voucher specimen (No. 20191001) is deposited in School of Pharmacy, Second Military Medical University.

Extraction and Isolation. The dried and chipped roots of *V. souliei* (50.0 kg) were extracted by maceration with 95% ethanol overnight at room temperature (3×60 L). After remove of solvent, the ethanol extract (5.60 kg) was partitioned between water and petroleum ether (PE)/ethyl acetate (EtOAc), successively, to give PE, EtOAc and water extracts. EtOAc extract (1.15 Kg) was segmented by MCI column chromatography (MeOH/H₂O, 30:70 to 100:0) to give 8 fractions (Fr. 1-8). Fraction 5 (52.5 g) was further isolated by ODS column chromatography (MeOH/H₂O, 30:70 to 90:10) to obtain 8 subfractions (Fr. 5.1-5.8). Subfraction 5.4 (5.5 g) was further purified by Sephadex LH-20 column chromatography (PE: EtOAc: MeOH, 10:10:1) to give 6 subfractions (Fr.

5.5.1-5.5.6). Subfraction 5.5.4 (252 mg) was purified by semi-preparative RP-C₁₈ HPLC (CH₃CN/H₂O, 70:30) to produce compounds **1** (7.2 mg) and **2** (6.5 mg). Above all, compounds **1** (7.2 mg) and **2** (6.5 mg) were obtained.

Compound characterization of 1 and 2

Vlasoulide A (1)

White powder; $[\alpha]$ 25 D -1.00 (*c* 0.08, CH₃OH); UV (CH₃CN/H₂O) λ_{max} 210; IR (KBr) ν_{max} 3438, 3079, 2933, 2869, 1770, 1710, 1639, 1448, 1382, 1351, 1268, 1222, 1153, 1272, 1020, 995, 896, cm⁻¹; ¹H- and ¹³C-NMR data (600 MHz/150 MHz), see Table S1; ESIMS *m/z* 561.4 ([M+Na]⁺); positive HRESIMS *m/z* 561.2828 ([M+Na]⁺, calcd 561.2823).

Vlasoulide B (2)

White powder; [α]25 D 0.00 (*c* 0.05, CH₃OH); UV (CH₃CN/H₂O) λ_{max} 210; IR (KBr) v_{max} 3440, 3079, 2929, 2869, 1772, 1752, 1639, 1448, 1400, 1382, 1353, 1282, 1257, 1224, 1068, 1018, 995, 896 cm⁻¹; ¹H- and ¹³C-NMR data (600 MHz/150 MHz), see Table S1; ESIMS *m/z* 561.5 ([M+Na]⁺); positive HRESIMS *m/z* 561.2829 ([M+Na]⁺, calcd 561.2823).

(R)-and (S)-MTPA Esters of compounds 1 and 2

To each compounds **1** and **2** (each 1.5 mg) in pyridine- d_5 (130 μ L) was separately added (*R*)-(-)-MTPA (5 μ L) and (*S*)-(+)-MTPA (5 μ L) at room temperature, followed by stirring at 40°C for 8 h, and each reaction mixture was transferred into a 1.7 mm NMR tube.

(R)-MTPA ester of 1

¹H NMR (pyridine-d₅, 600MHz): $\delta_{\rm H}$ 1.20 (3H, d, H₃-17), 2.88 (1H, m H-15a), 2.91 (1H, m, H-15b),

4.30 (1H, t, H-6), 2.91 (1H, m, H-7), 2.21 (1H, m, H-8a), 1.58 (1H, m, H-8b).

(S)-MTPA ester of **1**

¹H NMR (pyridine-d₅, 600MHz): $\delta_{\rm H}$ 1.32 (3H, d, H₃-17), 2.83 (1H, m H-15a), 2.85 (1H, m, H-15b), 4.20 (1H, t, H-6), 2.88 (1H, m, H-7), 2.19 (1H, m, H-8a) 1.56 (1H, m, H-8b).

(R)-MTPA ester of 2

¹H NMR (pyridine-d₅, 600MHz): $\delta_{\rm H}$ 1.32 (3H, d, H₃-17), 2.71 (1H, m H-15a), 2.74 (1H, m, H-15b), 4.21 (1H, t, H-6), 2.93 (1H, m, H-7), 2.14 (H, m, H-8a) 1.54 (1H, m, H-8b).

(S)-MTPA ester of 2

¹H NMR (pyridine-d₅, 600MHz): $\delta_{\rm H}$ 1.22 (3H, d, H₃-17), 2.77 (1H, m H-15a), 2.78 (1H, m, H-15b), 4.27 (1H, t, H-6), 2.98 (1H, m, H-7), 2.16 (1H, m, H-8a), 1.55 (1H, m, H-8b).

Neuroprotection Assay

P-12 cells were seeded in 96-well culture plates at 8 × 10³ cells/mL at 37°C for 12 h. Then the cells were incubated with glutamate for an additional 24 h and drugs were pretreated for 1 h before treated with glutamate. Cell viability was determined by the cck8 assay, after treatment, 10 μ L of cck8 were added to each well and incubated at 37°C for 4 h. The optical density (OD) was spectrophotometrically measured at 450 nm (cck8) using a microplate reader, respectively (BioTek Instruments,

Height (Calc)	Height Sum% (Calc)	Height % (Calc)	m/z (Calc)	Diff (mDa)	Height	Height %	Height Sum %	m/z
304244.4	69.4	100	561.2823	-0.5	316121.1	100	72.1	561.2828

Best	ID Source	Formula	Mass (MFG)	Species	m/z	Score	Diff (ppm)	Score (MFG)
TRUE	MFG	C32 H42 O7	538.2931	(M+Na)+	561.2828	96.74	-0.76	96.74

Figure S1. HRESIMS spectrum of Vlasoulide A (1)

Figure S2. IR spectrum of Vlasoulide A (1)

Rudolph Research Analytical

Friday, 04/20/2018

This sample was measured on an Autopol VI, serial number 90079, manufactured by Rudolph Research Analytical, Hackettstown, NJ.

LotID : CMX-31 Set Temperature : 20.0 Temp Corr : OFF

n Average 6 -1.000		Std. 1.000	Dev. 0		Maximum 0.000				Minimum -2.000		
S.No	Sample ID	Time	Result	Scale	OR ° Arc	WLG	Lg.mm	Conc.	Temp.	Comment	
1	CMX-31	04:22:02 PM	0.000	SR	0.000	589	100.00	0.050	19.9		
2	CMX-31	04:22:10 PM	-2.000	SR	-0.001	589	100.00	0.050	19.9		
3	CMX-31	04:22:18 PM	-2.000	SR	-0.001	589	100.00	0.050	19.9		
4	CMX-31	04:22:26 PM	-2.000	SR	-0.001	589	100.00	0.050	19.9		
5	CMX-31	04:22:34 PM	0.000	SR	0.000	589	100.00	0.050	19.9		
6	CMX-31	04:22:43 PM	0.000	SR	0.000	589	100.00	0.050	19.9		

Signature

Figure S3. OR Value of Vlasoulide A (1) in CH₃OH

Figure S4. CD Value of Vlasoulide A (1) in CH_3OH

Figure S5. UV spectrum of Vlasoulide A (1) in CH₃CN/H₂O

Figure S6. ¹H- NMR spectrum of Vlasoulide A (1) in CDCl₃

Figure S7. ¹³C NMR spectrum of Vlasoulide A (1) in CDCl₃

Figure S8. DEPT-135 NMR spectrum of Vlasoulide A (1) in CDCl₃

Figure S9. ¹H-¹H COSY spectrum of Vlasoulide A (1) in CDCl₃

Figure S10. HSQC spectrum of Vlasoulide A (1) in CDCl₃

Figure S11. HMBC spectrum of Vlasoulide A (1) in CDCl₃

Figure S12. NOESY spectrum of Vlasoulide A (1) in CDCl₃

Species	m/z	Score (iso. abund)	Score (mass)	Score (MS)	Score (MFG)	Score (iso. spacing)	Height	Ion Formula
(M+Na)+	561.2829	88.61	98.95	96.12	96.12	99.48	870177.4	C32 H42 Na O7

Figure S13. HRESIMS spectrum of Vlasoulide B (2)

Figure S14. IR spectrum of Vlasoulide B (2)

Rudolph Research Analytical

Friday, 04/20/2018

This sample was measured on an Autopol VI, serial number 90079, manufactured by Rudolph Research Analytical, Hackettstown, NJ.

LotID : CMX-30 Set Temperature : 20.0 Temp Corr : OFF

n Average 6 0.000		Std.Dev. 0.0000		Maximum 0.000			Minimum 0.000			
S.No	Sample ID	Time	Result	Scale	OR ° Arc	WLG	Lg.mm	Conc.	Temp.	Comment
1	CMX-30	03:58:34 PM	0.000	SR	0.000	589	100.00	0.080	20.2	
2	CMX-30	03:58:43 PM	0.000	SR	0.000	589	100.00	0.080	20.2	
3	CMX-30	03:58:51 PM	0.000	SR	0.000	589	100.00	0.080	20.1	
4	CMX-30	03:58:58 PM	0.000	SR	0.000	589	100.00	0.080	20.1	
5	CMX-30	03:59:06 PM	0.000	SR	0.000	589	100.00	0.080	20.1	
6	CMX-30	03:59:14 PM	0.000	SR	0.000	589	100.00	0.080	20.1	

Signature

Figure S15. OR Value of Vlasoulide B (2) in CH₃OH

Figure S16. CD Value of Vlasoulide B (2) in CH₃OH

Figure S17. UV spectrum of Vlasoulide B (2) in CH_3CN/H_2O

Figure S18. ¹H NMR spectrum of Vlasoulide B (2) in CDCl₃

Figure S19. ¹³C NMR spectrum of Vlasoulide B (2) in CDCl₃

Figure S20. DEPT-135 NMR spectrum of Vlasoulide B (2) in CDCl₃

Figure S21. ¹H-¹H COSY spectrum of Vlasoulide B (2) in CDCl₃

Figure S22. HSQC spectrum of Vlasoulide B (2) in CDCl₃

Figure S23. HMBC spectrum of Vlasoulide B (2) in CDCl₃

Figure S25. (R) and (S)-MTPA Esters of Vlasoulide A (1)

Figure S26. (*R*)and (*S*)-MTPA Esters of Vlasoulide B (2)