Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Fig. S1 DOX calibration curve with DOX standard solutions

Fig. S2 Size distribution of AuNR/R-SiO₂ (a) Length, (b) Width.

Fig. S3 (a) Silica shell thickness and aspect ratio of AuNR/R-SiO₂ with different CTAB concentration (Volume of EtOH: 75 mL); (b) Silica shell thickness and diameter of AuNR/R-SiO₂ with different EtOH volume (Concentration of CTAB: 10mM)

Fig. S4 TEM images of AuNR/R-SiO₂ were collected under different volume of EtOH. (a) 35 mL;(b) 55 mL; and (c) 65 mL. Concentration of CTAB: 10 mM.

Fig. S5 UV-vis-NIR absorption spectra of AuNR and AuNR/R-SiO₂.

Fig. S6 Temperature profile of AuNR/R-SiO_2 solution (250 $\mu\text{g}/\text{mL})$ under 2.0 W/cm² 808 nm

laser irritation and corresponding linear time data vs $-\ln(\theta)$ obtained from the cooling period

(inset).

Fig. S7 (a) Zeta potentials and (b) Hydrodynamic diameters of AuNR/R-SiO₂ and AuNR/R-

 SiO_2/DOX

Fig. S8 Fluorescence intensities of DOX and AuNR/R-SiO2 (with the equivalent DOX

concentrations)

Fig. S9 FT-IR spectra of AuNR/R-SiO₂ before and after thermal annealing

Table S1. Dimensions of AuNR coated with ultra-thick silica shell before and after thermal

annealing

Temperature (°C)	Length (nm)	Width (nm)	Aspect ratio
Control	72.8 ± 7.6	13.4 ± 1.3	5.5 ± 0.5
400	70.8 ± 8.3	14.6 ± 1.0	4.9 ± 0.5
500	67.6 ± 4.4	15.4 ± 0.7	4.4 ± 0.1
600	66.0 ± 4.9	15.5 ± 0.5	4.2 ± 0.3
700	62.2 ± 7.4	15.6 ± 1.8	4.0 ± 0.1
800	60.8 ± 6.4	16.0 ± 0.9	3.8 ± 0.6