Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021 Two-step deposition of Ag nanowires/Zn₂SnO₄ transparent conductive electrodes for antistatic coatings Jing Li^{a, b}, Fengmei Chen^b, Haidong Li^{b*}, Hongwen Zhang^a, Gang Wang^c and Daocheng Pan^{c*} ^aSchool of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; ^bCollege of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China; E-mail: hdlipr@163.com ^cState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China E-mail: pan@ciac.ac.cn Fig. S1. SEM image (a) and transmission spectrum (b) of a pure Zn₂SnO₄ film. **Fig. S2.** XRD patterns of as-prepared AgNW/Zn₂SnO₄ composite thin film and the corresponding thin film annealed at 450°C for 30min. Fig. S3. XRD patterns of pristine Zn_2SnO_4 thin films (~1.8 μm) annealed at 450 and 600 °C, respectively. Fig. S4. SEM image (a) and corresponding elemental maps (b, c and d) of as-prepared $AgNW/Zn_2SnO_4 \ composite \ thin \ film \ on \ silicon \ wafers.$ **Table S1.** The relationships between the thickness of the Zn_2SnO_4 layer and the concentration of Zn_2SnO_4 precursor solution as well as the spin-coating rate. | Thickness of the Zn ₂ SnO ₄ layer (nm) | | | | | |--|-----------------|-------------------|-----------------|------------------| | | 1 mL
ethanol | 2.5 mL
ethanol | 5 mL
ethanol | 10 mL
ethanol | | 2000 rpm, 10 s | 855 | 335 | 156 | 56 | | 2600 rpm,10 s | 770 | 293 | 120 | 51 | | 2600 rpm, 20 s | 629 | 250 | 64 | 24 |