Electronic Supplementary Information for:

A General Method for the Synthesis of Covalent and Ionic Amine Borane Complexes Containing Trinitromethyl Fragments

Jin Wang,^{a,c} Ming-Yue Ju,^a Xi-Meng Chen,^{*a} and Xuenian Chen^{*a,b}

^a School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China

^b Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China

^c College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, Heilongjiang 157011, China

E-mails: xnchen@htu.edu.cn; chenximeng@htu.edu.cn

Fig. S1. IR spectrum of the residue from the TGA–MS experiment of $NH_3BH_2C(NO_2)_3$ (3a) Fig. S2. X-ray powder diffraction pattern of the residue from the TGA–MS experiment of $NH_3BH_2C(NO_2)_3$ (3a) (The peaks are related to B_2O_3)4 Fig. S3. IR spectrum of the residue from the TGA–MS experiment of $[H_2B(NH_3)_2][C(NO_2)_3]$ Fig. S4. X-ray powder diffraction pattern of the residue from the TGA-MS experiment of Fig. S6. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of $CH_3NH_2BH_2CI$ (1b) in THF......6 Fig. S7. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of $(CH_3)_2$ NHBH₂Cl (1c) in THF......6 Fig. S8. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of $(CH_3)_3NBH_2CI$ (1d) in THF.7 Fig. S9. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of ClBH₂NH₂CH₂CH₂NH₂BH₂Cl (1e) in THF......7 Fig. S10. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of $(CH_3)_3NBH_2I$ (1f) in toluene.....7 Fig. S11. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of $(NH_3)_2BH_2CI$ (1g) in DMF......8 Fig. S12. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of $NH_3BH_2C(NO_2)_3$ (3a) in CD_3CN8

Fig. S13. ¹ H (a) and ¹ H{ ¹¹ B} NMR (b) spectra of NH ₃ BH ₂ C(NO ₂) ₃ (3a) in CD ₃ CN8
Fig. S14. IR spectrum of $NH_3BH_2C(NO_2)_3$ (3a)9
Fig. S15. ¹¹ B (a) and ¹¹ B{ ¹ H} NMR (b) spectra of $CH_3NH_2BH_2C(NO_2)_3$ (3b) in CD_3CN 9
Fig. S16. ¹ H (a) and ¹ H{ ¹¹ B} NMR (b) spectra of CH ₃ NH ₂ BH ₂ C(NO ₂) ₃ (3b) in CD ₃ CN9
Fig. S17. ¹³ C NMR spectrum of $CH_3NH_2BH_2C(NO_2)_3$ (3b) in CD_3CN 10
Fig. S18. IR spectrum of $CH_3NH_2BH_2C(NO_2)_3$ (3b)10
Fig. S19. ¹¹ B (a) and ¹¹ B{ ¹ H} NMR (b) spectra of $(CH_3)_2NHBH_2C(NO_2)_3$ (3c) in CD_3CN 10
Fig. S20. ¹ H (a) and ¹ H{ ¹¹ B} NMR (b) spectra of $(CH_3)_2NHBH_2C(NO_2)_3$ (3c) in CD_3CN 11
Fig. S21. ¹³ C NMR spectrum of $(CH_3)_2$ NHBH ₂ C(NO ₂) ₃ (3c) in CD ₃ CN11
Fig. S22. IR spectrum of $(CH_3)_2NHBH_2C(NO_2)_3$ (3c)12
Fig. S23. ¹¹ B (a) and ¹¹ B{ ¹ H} NMR (b) spectra of $[CH_2NH_2BH_2C(NO_2)_3]_2$ (3e) in CD ₃ CN12
Fig. S24. ¹ H (a) and ¹ H{ ¹¹ B} NMR (b) spectra of $[CH_2NH_2BH_2C(NO_2)_3]_2$ (3e) in CD ₃ CN12
Fig. S25. ¹³ C NMR spectrum of $[CH_2NH_2BH_2C(NO_2)_3]_2$ (3e) in CD ₃ CN
Fig. S26. IR spectrum of $[CH_2NH_2BH_2C(NO_2)_3]_2$ (3e)
Fig. S27. ¹¹ B (a) and ¹¹ B{ ¹ H} NMR (b) spectra of $[H_2B(NH_3)_2][C(NO_2)_3]$ (3g) in CD ₃ CN14
Fig. S28. ¹ H (a) and ¹ H{ ¹¹ B} NMR (b) spectra of $[H_2B(NH_3)_2][C(NO_2)_3]$ (3g) in CD ₃ CN14
Fig. S29. IR spectrum of $[H_2B(NH_3)_2][C(NO_2)_3]$ (3g)15
Fig. S30. X-ray powder diffraction pattern of KCl15
Fig. S31. IR spectrum of K[C(NO ₂) ₃]16

Entry	Comps.	А	¹ H NMR (ppm)	
1	3 a	NH ₃	2.61	
2	3b	CH ₃ NH ₂	2.53	
3	3c	$(CH_3)_2NH$	2.47	
4	3d	$(CH_3)_3N$	-	
5	3e	$(NH_2CH_2)_2$	2.02 ^b	
6	3f	$(CH_3)_3N$	-	
7	3g	(NH ₃) ₂	2.56	
^a "A" is a Lewis base; ^b molecular formula [NH ₂ CH ₂ BH ₂ C(NO ₂) ₃] ₂ .				

Table S1. The chemical shift of hydrides in BH₂ group in 3a-3g in ¹H NMR^a.

Fig. S1. IR spectrum of the residue from the TGA–MS experiment of NH₃BH₂C(NO₂)₃ (3a) (The spectrum is similar to that of B₂O₃).

Fig. S2. X-ray powder diffraction pattern of the residue from the TGA–MS experiment of $NH_3BH_2C(NO_2)_3$ (3a) (The peaks are related to B_2O_3).

Fig. S3. IR spectrum of the residue from the TGA–MS experiment of [H₂B(NH₃)₂][C(NO₂)₃] (3g) (The spectrum is similar to that of B₂O₃).

Fig. S4. X-ray powder diffraction pattern of the residue from the TGA–MS experiment of [H₂B(NH₃)₂][C(NO₂)₃] (3g) (The peaks are related to B₂O₃).

Fig. S5. ^{11}B (a) and $^{11}B{^{1}H}$ NMR (b) spectra of NH_3BH_2Cl (1a) in THF.

Fig. S6. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of CH₃NH₂BH₂Cl (1b) in THF.

Fig. S7. ^{11}B (a) and $^{11}B{^{1}H}$ NMR (b) spectra of $(CH_3)_2NHBH_2Cl$ (1c) in THF.

Fig. S9. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of ClBH₂NH₂CH₂CH₂NH₂BH₂Cl (1e) in THF.

Fig. S8. ^{11}B (a) and $^{11}B\{^{1}H\}$ NMR (b) spectra of $(CH_{3})_{3}NBH_{2}Cl$ (1d) in THF.

Fig. S12. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of NH₃BH₂C(NO₂)₃ (3a) in CD₃CN.

BH₂

Fig. S11. ^{11}B (a) and $^{11}B{^{1}H}$ NMR (b) spectra of $(NH_3)_2BH_2Cl$ (1g) in DMF.

(b)

Fig. S14. IR spectrum of NH₃BH₂C(NO₂)₃ (3a).

Fig. S15. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of CH₃NH₂BH₂C(NO₂)₃ (3b) in CD₃CN.

Fig. S16. ^{1}H (a) and $^{1}H{^{11}B}$ NMR (b) spectra of $CH_3NH_2BH_2C(NO_2)_3$ (3b) in CD_3CN .

-29.48

Fig. S17. ¹³C NMR spectrum of CH₃NH₂BH₂C(NO₂)₃ (3b) in CD₃CN.

Fig. S18. IR spectrum of CH₃NH₂BH₂C(NO₂)₃ (3b).

Fig. S19. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of (CH₃)₂NHBH₂C(NO₂)₃ (3c) in CD₃CN.

Fig. S20. ¹H (a) and ¹H{¹¹B} NMR (b) spectra of (CH₃)₂NHBH₂C(NO₂)₃ (3c) in CD₃CN.

Fig. S21. ¹³C NMR spectrum of (CH₃)₂NHBH₂C(NO₂)₃ (3c) in CD₃CN.

Fig. S22. IR spectrum of (CH₃)₂NHBH₂C(NO₂)₃ (3c).

Fig. S23. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of [CH₂NH₂BH₂C(NO₂)₃]₂ (3e) in CD₃CN.

Fig. S24. ^{1}H (a) and $^{1}H{^{11}B}$ NMR (b) spectra of $[CH_2NH_2BH_2C(NO_2)_3]_2$ (3e) in CD_3CN .

Fig. S25. ¹³C NMR spectrum of [CH₂NH₂BH₂C(NO₂)₃]₂ (3e) in CD₃CN.

Fig. S26. IR spectrum of [CH₂NH₂BH₂C(NO₂)₃]₂ (3e).

Fig. S27. ¹¹B (a) and ¹¹B{¹H} NMR (b) spectra of [H₂B(NH₃)₂][C(NO₂)₃] (3g) in CD₃CN.

Fig. S28. ¹H (a) and ¹H{¹¹B} NMR (b) spectra of [H₂B(NH₃)₂][C(NO₂)₃] (3g) in CD₃CN.

Fig. S29. IR spectrum of [H₂B(NH₃)₂][C(NO₂)₃] (3g).

Fig. S30. X-ray powder diffraction pattern of KCl.

Fig. S31. IR spectrum of K[C(NO₂)₃].