Supporting Information

Synergistic effect of cocatalytic NiSe₂ on stable 1T- MoS₂ for hydrogen evolution

Zhen Li,^a Xinzhi Ma,^a Lili Wu,*^{ab} Hongfeng Ye,^a Lu Li,^a Shuangyan Lin,^c Xitian

Zhang,^a Zhitao Shao,^a Yue Yang^a and Hong Gao*^a

^aKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

^bCenter for Engineering Training and Basic Experimentation, Heilongjiang University of Science and Technology, Harbin 150022, China

^cSchool of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, PR China

^{*}Corresponding authors: Email: wll790107@hotmail.com; gaohong65cn@126.com.

Fig. S1. SEM image of NiSe₂

Fig. S2. EDS spectrum of bare NiSe₂

Fig. S3. XRD pattern of three-month aged bare MoS_2

Fig. S4. SEM image of bare MoS₂

Fig. S5. High-resolution TEM image of bare MoS_2

Fig. S6. Cyclic voltammetry (CV) curves of (a) $NiSe_2$, (b) MoS_2 , (c) $MoS_2/NiSe_2$ at different scan rate: 20, 40, 60, 80 and 100 mV s⁻¹. Experiments were performed in 0.5 M H₂SO₄ by sweeping the potential in non-faradic region.

Fig. S7. Cyclic voltammetry curves of NiSe₂, MoS₂, MoS₂, MoS₂/NiSe₂ at pH = 7 phosphate buffer with a scan rate of 50 mV s⁻¹.

Fig. S8. SEM of MoS₂/NiSe₂ after stability measurement.

Fig. S9. XRD patterns of $MoS_2/NiSe_2$ before and after stability measurement.

Table S1 Comparison of HER performances in 0.5 M H_2SO_4 solution for $MoS_2/NiSe_2$ with other HER electrocatalysts.

Catalyst	Tafel slope (mV dec ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Catalyst loading (mg cm ⁻²)	Ref
MoS ₂ /MoO ₂	129	210	0.28	1
Ni ₂ P/MoS ₂	76	~200	-	2
MoS ₂ /Graphene	68	142	0.701	3
MoS ₂ /rGO	77	154	0.17	4
MoSe ₂ -NiSe@carbon	76.3	154	0.285	5
CoS ₂ @MoS ₂	85.9	290	0.285	6
CoS _x @MoS ₂	103	239	0.285	7
NHCS@MoS2	96	190	0.75	8
S-MoS ₂ @C	78	136	1	9
MCM@MoS ₂ -Ni	81	161	0.49	10
defect-rich MoS ₂	63	176	2.8	11
MoS_2 nanorods	93	282	0.204	12
MoS ₂ /NiSe ₂	58	94	1	Our work

References

- [1] C. L. Wu, P. C. Huang, S. Brahma, J. L. Huang and S. C. Wang, *Ceram. Int.*, 2017, 43, S621-S627.
- [2] Y. R. Liu, W. H. Hu, X. Li, B. Dong, X. Shang, G. Q. Han, Y. M. Chai, Y. Q. Liu and C. G. Liu, *Appl. Surf. Sci.*, 2016, **383**, 276-282.
- [3] L. Li, J. Li, L. Liu, X. Wang, Y. Guo and Y. Zhou, *ACS Appl. Energy Mater*, 2019, 2, 1413-1418.
- [4] A. Kagkoura, I. Tzanidis, V. Dracopoulos, N. Tagmatarchis and D. Tasis, Chem. Commun., 2019, 55, 2078-2081.
- [5] C. Liu, K. Wang, X. Zheng, X. Liu, Q. Liang and Z. Chen, Carbon, 2018, 139, 1-9.
- [6] Y. Guo, L. Gan, C. Shang, E. Wang and J. Wang, Adv. Funct. Mater, 2017, 27, 1602699.
- [7] L. Yang, L. Zhang, G. Xu, X. Ma, W. Wang, H. Song and D. Jia, ACS Sustainable Chem. Eng., 2018, 6, 12961-12968.
- [8] W. Xu, W. Song, F. Liu, Z. Wang, G. Jin, C. Li, X. Yang and C. Chen, *ChemElectroChem*, 2019, 6, 1101-1106.
- [9] Q. Xu, Y. Liu, H. Jiang, Y. Hu, H. Liu and C. Li, Adv. Energy Mater, 2019, 9, 1802553.
- [10] H. Zhang, L. Yu, T. Chen, W. Zhou and X. W. Lou, Adv. Funct. Mater, 2018, 28, 1807086.
- [11] L. F. Zhang, X. Ke, G. Ou, H. Wei, L. N. Wang and H. Wu, Sci China Mater, 2017, 60, 849-856.
- [12] J. D. Yi, T. T. Liu, Y. B. Huang and R. Cao, Sci China Mater, 2019, 62, 965-972.