Supplementary material for Bendix, Bechgaard and Christensen: Synthesis and Properties of 2,4,7,9-Tetramethyl-1,6dithiapyrene (TMDTP) and Structure of (TMDTP)₃(PF₆)₂·2THF and TMDTP-TCNQ.

Table of content:

- S1-S18: Determination of composition of the mixture of 2,6- and 2,7-dimethylnaphthalene.
- S19-S24: NMR of compound 4.
- S25-S29: NMR of compound 5.
- S30-S35: NMR of compound 6.
- S36-S41: NMR of compound 7.
- S42-S47: NMR of compound 3.

Full ¹H-NMR spectrum of 2,6-Dimethylnapththalene in CDCl₃

2,6-DMN

Full ¹H-NMR spectrum of 2,7-Dimethylnapththalene (2,7-DMN) in $CDCI_3$

2,7-DMN

2,6-DMN and 2,7-DMN interacts in CDCl₃ as seen from the 1 H-NMR spectra:

Mixture of 2,6- and 2,7-DMN

All 3 ¹H-spectra expanded in the aromatic area and stacked:

Legend: 2,7-DMN is blue, 2,6-DMN is green and the mixture of 2,6- and 2,7-DMN is red (formed by mixing the solutions of 2,6- and 2,7-DMN).

There is some interaction taking place between the 2,6- and the 2,7-DMN. The carbon-spectra are however unchanged:

All 3 $^{\rm 13}\text{C}\xspace$ spanded in the aromatic region and stacked:

Legend: 2,7-DMN is blue, 2,6-DMN is green and the mixture of 2,6- and 2,7-DMN is red. None of the carbon-signals are shiftet upon mixing the two isomers.

Assigning the protons in 2,6-DMN by 1H-COSY in CDCl₃:

H 1 & H1': 7.33 ppm (s), but small meta-coupling to H3, H3'

H4, H4': 7,71 ppm (d, J = 10 Hz)

H3, H3': 7,34 ppm (d, J = 10 Hz)

HSQC-spectrum of 2,6-DMN in CDCl₃ was used to find assign C1/C1' to H1/H1':

Shows that the carbon at 126.65 ppm is bound to proton 1 and 1'.

This allows identification of H1/H1' in the mixture of 2,6- and 2,7-DMN:

Assigning the protons in 2,7-DMN by 1H-COSY in CDCl₃:

H 1 & H1': 7.42 ppm (s)

H4, H4': 7,60 ppm (d, J = 10 Hz)

H3, H3': 7,34 ppm (d, J = 10 Hz)

HSQC-spectrum of 2,7-DMN in CDCl₃ was used to find assign C1/C1' to H1/H1':

The NMR-spectra in $CDCI_3$ of the eutectic mixture isolated by crystallization looks:

Expanded:

¹H-COSY:

¹³C-NMR:

HSQC-NMR:

HSQC-spectrum of the mixture of 2,6- and 2,7-DMN in CDCl₃. Finding H1/H1' in 2,6-DMN:

The peak at 7.46 ppm corresponds to H1/H1' in 2,6-DMN and the peak at 7,42 ppm corresponds to H1/H1' in 2,7-DMN.

Determining the composition:

Gives a 1:0.73 ratio between 2,6- and 2,7-DMN corresponding to 58 % 2,6-DMN in the mixture.

NMR-spectra of compound 4 in CDCl₃

H7825.10.fid Email= jbc@kiku 646	.dk				~ 7.32	
PROTON CDCI3 /	opt/topspin/da	ita bnmr1 60				- 40000
						- 35000
						-
						- 30000
						-
						- 25000
						_
						- 20000
						- 15000
						10000
						- 10000
			H			
						- 5000
8.9 8.8 8	8.7 8.6 8	.5 8.4 8.3	8.2 8.1 8.0 7	.9 7.8 7.7 7.6 7.5 f1 (ppm)	7.4 7.3 7.2 7.1 7.0	6.9 6.8 6.7 6.6 6.5

COSY

APC-13C

riku dk		
	Š	
164 CDCl3 /opt/topspin/data bnmr1 60		

HSQC-NMR

NMR-spectra of compound ${\bf 5} \text{ in } {\bf CDCl}_3$

¹H-NMR

COSY-NMR

APT-13C-NMR

HSQC-NMR

NMR-spectra of compound ${\bf 6}$ in CDCl_3

COSY-NMR

APT-¹³C-NMR

35.12.fid					.62	88. 88	.05 82 46	.12										-			
kiku.dk					- 134	-131	- 126	- 123									200				
VPT64 CD	CI3 /opt/top	spin/data	bnmr1	17			NV (*	[
															_						
													_		_						
Laupperor/Annual/Inc	normality de tribujande di kommenta	(Maplemarker Horan	uniumiumi	an ng manang p	huennelenev	no man	www.		in and a state of the	unitismumber	NI HANNA	rimani Minya		www.pantvnijev	urwww.	united and the second	NANANA	han yan yan yan yan yan yan yan yan yan y	handraufarma	www.	urinulliywalaw
																		1			
												_	_		_			_			
										_		_		_	_			_			
													_								
							1					_			_			_	_		
								 	1 1												<u> </u>

HSQC-NMR

NMR of compound $\boldsymbol{7}$ in $CDCl_3$

¹H-NMR

COSY-NMR

APT-13C-NMR

-18704.12. ₿d			54 54 88	38 39		8	m N	2500
bc@kiku.ੴ 723.4 C13APT64 CDCl3 /	opt/topspin/data	bnmr1 20	- 141. - 134.	$\frac{129}{127}$		45.9	— 28.7 — 22.0	- 2300
								- 2000
								- 1500
								- 1000
					1			- 500
								-
								500
								100
								150
								200

HSQC-NMR

NMR-data on compound $\boldsymbol{2}$ in CS_2 with a $CDCI_3\text{-lock}$ tube

(2)

COSY-NMR

APT-¹³C-NMR

HSQC-NMR

