Electronic Supplementary Information (ESI)

Supramolecular gel formation regulated by water content in organic

solvents: self-assembly mechanism and biomedical applications

Lieqiang Liao,^{ab‡} Xinjian Jia,^{b‡} Haoxiang Lou,^b Jinlian Zhong,^b Huijin Liu,^b Shunming Ding,^a Chao Chen,^{*a} Sanguo Hong^{*a} and Xuzhong Luo^{*b}

^a Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, P. R. China. E-mail: chaochen@ncu.edu.cn; hongsanguo2020@163.com

^b Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China. E-mail: luoxuzhong@hotmail.com

[‡] These authors contributed equally to this work.

1. Synthesis of compounds

Scheme S1. Synthetic route for PDA-N4, PDA-Ph and PDA-O4

The pyridylamide derivative, PDA-N4, was prepared according to the literature method.^{1,2} Other compounds (PDA-Ph and PDA-O4) were obtained similar to the PDA-N4 (Scheme S1). They were characterized by FT-IR, ¹H NMR, ¹³C NMR and LC-MS, respectively.

In a typical experiment, 3,5-pyridinedicarboxylic acid (7.1945 g, 43.05 mmol) was added into $SOCl_2$ (24 mL) in the presence of N,N-dimethylformamide (DMF, 0.1 mL), and then was stirred for 0.5 h at room temperature. The mixture was refluxed at 75-80°C for 6 h until all solid have been dissolved and reacted. Subsequently, the solvent was removed by reduced pressure distillation, and the remaining material was dried under vacuum. The corresponding acyl chloride was obtained as a solid at room temperature. Next, a freshly distilled THF (15mL) containing 3,5-pyridin-dicarbonyl dichloride (15 mmol, 3.075 g) was added dropwise to the THF solution (30 mL) of 4-

pyridylamine (30 mmol, 2.820g) and distilled triethylamine (43.1 mmol, 6 mL) at 0° C with continuous stirring. After stirring for 7h, the white precipitate was filtered and washed with THF for four times. The crude product was recrystallized from a mixed solvent of DMSO (100 mL) and H₂O (200 mL), washed with H₂O and dried at 80°C under vacuum (3.390 g, 70.8%).

N,*N*′-di(pyridin-4-yl)-pyridine-3,5-dicarboxamide (PDA-N4):

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 9.30 (2H, d, *J* = 2.1 Hz), 8.83 (1H, t, *J* = 2.1 Hz), 8.59–8.44 (2 H, m), 7.79 (2H, dd, *J* = 4.8 Hz, 1.5 Hz). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 164.93, 152.22, 149.94, 146.92, 135.69, 129.89, 114.68. IR (KBr): 3240, 3157, 3070, 1680, 1594, 1515, 1419, 1335, 1230, 1253, 1208, 1107, 1059, 1031, 1000, 924, 886, 830, 730, 582, 539 cm⁻¹. LC-MS [M+H]⁺ calculated for C₁₇H₁₃N₅O₂ : m/z 319.11; found: 320.12

N,N'-di(phenyl)-pyridine-3,5-dicarboxamide (PDA-Ph):

Yield >75%

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 10.64 (2H, s), 9.28 (2H, s), 8.87 (1 H, d, J = 1.2 Hz), 7.82 (4H, d, J = 8.3 Hz), 7.40 (4H, t, J = 7.9 Hz), 7.15 (2H, t, J = 7.4 Hz). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 163.93, 151.48, 139.18, 135.21, 130.70, 129.24, 124.65, 120.87. IR (KBr): 3461, 3263, 3062, 1670, 1645, 1599, 1549, 1499, 1447, 1336, 1268, 1027, 883, 760, 743, 691, 584, 507 cm⁻¹. LC-MS [M+H]⁺ calculated for C₁₉H₁₅N₃O₂ : m/z 317.12; found: 318.12.

N,*N*'-di(pyridin-4-yl)-pyridine-3,5-dicarbomethoxy (PDA-O4):

Yield >80%

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 9.21 (2H, d, *J* = 2.1 Hz), 8.64 (1H, t, *J* = 2.1 Hz), 7.88 (4H, d, *J* = 7.4 Hz), 6.43 (4H, d, *J* = 7.3 Hz). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 176.54, 166.27, 153.72, 140.27, 137.73, 127.73, 116.33. IR (KBr): 3068, 1713, 1636, 1517, 1476, 1397, 1333, 1278, 1189, 1036, 848, 751, 704, 547 cm⁻¹. LC-MS [M+H]⁺ calculated for C₁₇H₁₁N₃O₄ : m/z 321.29; found: 322.30.

	Solvents		Compounds	
	Solvents	PDA-N4	PDA-Ph	PDA-O4
1	DMSO	S	S	S
2	DMF	S	S	S
3	Methanol	S	Р	S
4	Ethanol	S	Р	S
5	Benzene	Ι	Ι	Ι
6	CCl_4	Ι	Ι	Ι
7	THF	Ι	S	Р
8	1,4-Dioxane	S	S	Р
9	H_2O	Ι	Ι	Р

Table S1. Solubility of PDA-N4, PDA-Ph and PDA-O4 in various solvents

* S = solution; I = insoluble; P = precipitate.

 Table S2. Gelation properties of PDA-N4, PDA-Ph and PDA-O4 in DMSO-H2O

 mixed solvents

DMSO/H ₂ O			Compounds			
(v	/v)	PDA-N4	PDA-Ph	PDA-O4		
1	10/90	G	Р	Р		
2	20/80	G	Р	S		
3	30/70	G	Р	S		
4	40/60	G	Р	S		
5	50/50	G	Р	S		
6	60/40	TS	Р	S		
7	70/30	S	Р	S		
8	80/20	S	S	S		
9	90/10	S	S	S		

* G = gel; C = crystal; S = solution; TS = turbid solution; P = precipitate; Gelator concentration: $15 \text{ mg} \cdot \text{mL}^{-1}$.

DMSO/H ₂ O	C _{PDA-N4}				St	tates			
(v/v)	mg∙mL ⁻¹	1D	2D	5D	10D	15D	30D	60D	90D
	6	S	S	S	S	S	S	S	S
	9	S	S	S	S	S	S	S	S
50/50	13	TS	TS	TS+C	TS+C	С	С	С	С
	15	G	G	G	G+C	G+C	С	С	С
	20	G	G	G	G	G+C	G+C	С	С
	6	S	S	S	S	S	S	S	S
	10	TS	TS	TS	TS	TS	TS	TS	TS
20/80	11	G	G	G	G	G	G	G	G
	15	G	G	G	G	G	G	G	G
	20	G	G	G	G	G	G	G	G
	6	S	S	S	S	S	S	S	S
	7	TS	TS	TS	TS	TS	TS	TS	TS
10/00	9	G	G	G	G	G	G	G	G
10/90	12	G	G	G	G	G	G	G	G
	15	G	G	G	G	G	G	G	G
	20	G	G	G	G	G	G	G	G

Table S3. Gel-crystal transition of PDA-N4 in DMSO-H₂O mixed solvents upon aging time extension (90Day)

* G = gel; C = crystal; S = solution; TS = turbid solution.

DMF	F/H ₂ O	Compounds			
(v	/v)	PDA-N4	PDA-Ph	PDA-O4	
1	10/90	G	Р	S	
2	20/80	G	Р	S	
3	30/70	G	Р	S	
4	40/60	G	Р	S	
5	50/50	G	Р	S	
6	60/40	TS	Р	S	
7	70/30	TS	Р	S	
8	80/20	S	S	S	
9	90/10	S	S	S	

Table S4. Gelation properties of PDA-N4, PDA-Ph and PDA-O4 in DMF-H₂O mixed solvents

* G = gel; C = crystal; S = solution; TS = turbid solution; P = precipitate; Gelator concentration: $15 \text{ mg} \cdot \text{mL}^{-1}$.

Table S5. Gelation properties of PDA-N4, PDA-Ph and PDA-O4 in methanol-H₂O mixed solvents

Metha	nol/H ₂ O			
(v	/v)	PDA-N4	PDA-Ph	PDA-O4
1	10/90	Р	Р	S
2	20/80	Р	Р	S
3	30/70	Р	Р	S
4	40/60	Р	Р	S
5	50/50	Р	Р	S
6	60/40	Р	Р	S
7	70/30	S	Р	S
8	80/20	S	Р	S
9	90/10	S	Р	S

* P = precipitate; S = solution; P = precipitate; Gelator concentration: $15 \text{ mg} \cdot \text{mL}^{-1}$.

Ethan	ol/H ₂ O	Compounds			
(v	/v)	PDA-N4	PDA-Ph	PDA-O4	
1	10/90	Р	Р	S	
2	20/80	Р	Р	S	
3	30/70	Р	Р	S	
4	40/60	Р	Р	S	
5	50/50	Р	Р	S	
6	60/40	Р	Р	S	
7	70/30	Р	Р	S	
8	80/20	S	Р	S	
9	90/10	S	Р	S	

Table S6. Gelation properties of PDA-N4, PDA-Ph and PDA-O4 in ethanol-H₂O mixed solvents

* P = precipitate; S = solution; Gelator concentration: 15 mg \cdot mL⁻¹.

Table S7. Gelation properties of PDA-N4, PDA-Ph and PDA-O4 in 1, 4-dioxane-H₂O mixed solvents

1, 4-dio	xane/H ₂ O	Compounds		
(v/v)	PDA-N4	PDA-Ph	PDA-O4
1	10/90	Р	Р	S
2	20/80	Р	Р	S
3	30/70	Р	Р	S
4	40/60	Р	Р	S
5	50/50	Р	Р	S
6	60/40	S	Р	S
7	70/30	S	Р	S
8	80/20	S	Р	S
9	90/10	S	Р	S

* P = precipitate; S = solution; Gelator concentration: 15 mg \cdot mL⁻¹.

Figure S1. MGC variation of PDA-N4 with the water content in mixed solution

Figure S2. Gelation behavior of PDA-N4 under various pH conditions (V_{DMSO} : V_{H2O} = 1 : 1; c_{PDA-N4} = 15mg·mL⁻¹)

Compound	PDA-N4	
Formula	$C_{17}H_{15}N_5O_3$	
F.w.	337.34	
<i>T</i> (K)	100 (2)	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
a (Å)	14.6401(3)	
<i>b</i> (Å)	8.4503(2)	
<i>c</i> (Å)	13.3398(3)	
α (°)	90	
$\beta(\degree)$	112.159(3)	
γ (°)	90	
$V(Å^3)$	1528.42(7)	
Ζ	4	
$Dc (g/cm^3)$	1.466	
$\mu (\mathrm{mm}^{-1})$	0.868	
R _{int}	0.0938	
GOF	1.207	
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]	0.1837, 0.4051	
R1, $wR2$ (all data)	0.1897, 0.4077	

Table S8. Crystal data and structure refinement for PDA-N4

D- H····A	d(D-H)	d(H···A)	d(D…A)	< (DHA)
$O(2)-H(2B)\cdots N(2)^{\#1}$	0.85	2.01	2.7596	146
N(3)-H(3)····O(2)	0.86	1.99	2.8082	160
$N(6)-H(6)\cdots N(5)^{\#2}$	0.86	2.08	2.9327	169

Table S9. Hydrogen bond geometry (Å and °) for PDA-N4 crystal

#1 1-x,1/2+y,1/2-z; #2 -x,1-y,-z.

	<i>D</i> ¹ <i>D</i> ¹ <i>C</i> ¹	, 8 ()	j z ti
01—C11	1.228(7)	C10—C23	1.376(9)
N2—C24	1.329(8)	C10—C15	1.400(8)
N2—C19	1.348(7)	C11—C18	1.499(8)
N3—C14	1.361(9)	C12—C17	1.405(8)
N3—C15	1.397(8)	C13—C18	1.399(8)
N4—C21	1.334(9)	C13—C16	1.413(8)
N4—C20	1.356(7)	C14—C16	1.482(9)
N5—C22	1.339(7)	C15—C25	1.405(10)
N5—C23	1.345(9)	C16—C21	1.380(10)
N6—C11	1.372(8)	C17—C24	1.396(8)
N6—C12	1.410(8)	C18—C20	1.375(8)
O7—C14	1.241(8)	C18—C20	1.375(8)
С9—С19	1.371(8)	C22—C25	1.374(10)
С9—С12	1.407(8)		
C24—N2—C19	117.1(5)	N3—C15—C25	118.6(5)
C14—N3—C15	127.0(5)	C10—C15—C25	117.0(6)
C21—N4—C20	116.2(6)	C21—C16—C13	117.6(6)
C22—N5—C23	115.7(5)	C21—C16—C14	118.8(6)
C11—N6—C12	126.1(5)	C13—C16—C14	123.5(6)
C19—C9—C12	119.5(5)	C24—C17—C12	116.8(5)
C23—C10—C15	118.3(6)	C20—C18—C13	119.4(5)
N6-C11-C18	116.1(5)	C20-C18-C11	117.0(5)
С17—С12—С9	118.4(5)	C13—C18—C11	123.6(5)
C17—C12—N6	123.7(5)	N2—C19—C9	123.0(6)

Table S10. Selected bond lengths (Å) and angles (°) for PDA-N4 crystal

C9—C12—N6	117.9(5)	N4—C20—C18	123.5(6)
C18—C13—C16	117.8(6)	N4—C21—C16	125.4(6)
O7—C14—N3	123.2(6)	N5-C22-C25	124.0(6)
O7—C14—C16	119.8(6)	N5-C23-C10	125.3(5)
N3-C14-C16	116.9(5)	N2-C24-C17	125.2(5)
N3—C15—C10	124.3(6)	C22—C25—C15	119.6(6)

Figure S3. DSC curves for the PDA-N4 gels at different solvent ratios ($c_{PDA-N4} = 15$ mg·mL⁻¹).

When 50% water (volume fraction) was added, a gel obtained and the gel-to-sol transition temperature (T_{gel}) was 66.2 °C. The higher T_{gel} (66.2 °C), T_{gel} (72.4 °C) were found when the water content reached 70% and 90%, respectively. It can be clearly seem that the T_{gel} increased as the H₂O content was increased, showing that the solvent ratio plays a significant role to the thermal stability of the supramolecular gel.

Figure S4. Schematic of the self-assembly mechanism for PDA-N4 in gels

2. References

1 X. Luo, X. Jia, J. Deng, J. Zhong, H. Liu, K. Wang and D. Zhong, J. Am. Chem. Soc., 2013, **135**, 11684-11687.

2 Y. Zhao, M. Lv, J. Fan, L. Luo, Z. Su, W. Sun, *Inorg. Chim. Acta*, 2011, **377**, 138–143.