Monitoring the Heme Iron State in Horseradish Peroxidase to Detect Ultratrace Amount of

Hydrogen Peroxide in Alcohols

Raheleh Ravanfar, Alireza Abbaspourrad*

Department of Food Science, Cornell University, Ithaca, NY, USA

* Corresponding author: Alireza Abbaspourrad, e-mail: alireza@cornell.edu

Supplementary Figures

Figure S1. UV/Vis spectra of 1 μ M Horseradish Peroxidase (500 μ L) upon the addition of 500 μ L of ethanol containing H₂O₂ at these concentrations a) 0 μ M, b) 0.001 μ M, c) 0.01 μ M, d) 0.1 μ M,

e) 1 μ M, f) 10 μ M, g) 100 μ M, h) 1000 μ M, and i) 10⁴ μ M. The wavelengths associated to Soret bands are shown in green. j) All the UV/Vis spectra of the 1 μ M HRP solution upon the addition of H₂O₂ in ethanol at different concentrations are shown together.

Figure S2. UV/Vis spectra of the 10 μ M HRP solution in 0.1 M phosphate buffer (500 μ L) upon the addition of 500 μ L of ethanol containing H₂O₂ at these concentrations a) 0 μ M, b) 0.001 μ M, c) 0.01 μ M, d) 0.1 μ M, e) 1 μ M, f) 10 μ M, g) 100 μ M, h) 1000 μ M, and i) 10⁴ μ M. The wavelengths associated to Soret bands are shown in green. All HRP solutions were prepared in 0.1 M potassium phosphate buffer (pH= 6.0).

Figure S3. UV/visible absorption spectra of 500 μ L HRP solution (10 μ M) after treatment with 500 μ L a) ethanol, b) glycerol, c) 2-chloroethanol, and d) isopropanol, containing unreported amounts of H₂O₂.

Figure S4. UV/visible absorption spectra of 500 μ L HRP solution (10 μ M) after treatment with 500 μ L a) ethylene glycol, b) methanol, c) 2-mercaptoethanol, d) 2,2-dichloroethanol, e) trifluoroethanol, and f) 2,2,2,-trichloroethanol.

Figure S5. The red shifts upon a) the first addition of ethanol containing 100 μ M H₂O₂ and b) the second addition of ethanol containing 100 μ M H₂O₂ after the decay of the ferryl intermediate formed from the first addition of ethanol. c) Circular dichroism spectroscopy for 500 μ L of 1 μ M

HRP solution in potassium phosphate buffer (0.1 M, pH= 6.0) before and after treatment with 500 μ L ethanol containing 80 μ M H₂O₂. d) Circular dichroism spectroscopy of 500 μ L of 10 μ M HRP solution in potassium phosphate buffer (0.1 M, pH= 6.0) before and after treatment with 500 μ L ethanol containing 80 μ M H₂O₂.

Figure S6. a) EPR spectra of the native HRP (control) at both high-spin and low-spin regions. b, c, d, e) EPR spectra of the 100 μ L HRP solution upon the addition of 100 μ L glycerol containing H₂O₂ impurity at 0.5 min, 15 min, 30 min, and 60 min, respectively. Spectra were collected at 12 K and 625 μ W.

Figure S7. UV/Vis absorbance of 2 mM ABTS at 420 nm at different ranges of H_2O_2 impurity of ethanol (i: 0 μ M – 1 μ M, ii: 1 μ M – 100 μ M, and iii: 100 μ M – 1000 μ M) using HRP solution concentrations of a) 0.1 μ M, b) 1 μ M, and c) 10 μ M. 50 μ L of ABTS in 0.1 M potassium phosphate buffer (pH 6.0) was mixed with 50 μ L of HRP solution and 50 μ L of ethanol containing different concentrations of H_2O_2 . The absorbance at 420 nm (λ_{max} of the oxidized product of ABTS) was recorded versus H_2O_2 concentrations at 25 °C 30 min after mixing, which was linearly increased.

Table S1. The formulas to measure the impurity of H_2O_2 in alcohols based on the absorbance range of ABTS. Briefly, 50 µL of ABTS (20 mM) in 0.1 M potassium phosphate buffer (pH 6.0) was mixed with 50 µL of HRP solution (0.1 µM) and 50 µL of ethanol containing H_2O_2 . The absorbance at 420 nm (λ_{max} of the oxidized product of ABTS) was recorded versus H_2O_2 concentrations at 25 °C, 30 min after mixing, which was linearly increased. Three main formulas were derived from the linear fits and were used to measure the H_2O_2 impurity in alcohols.

Formula No.	Formula	R^2	Range of ABTS absorbance (a.u)	Range of H ₂ O ₂ impurity (µM)
1	y = 0.081x + 0.13	0.97	0-0.3	0 - 1
2	y = 0.005x + 0.20	0.99	0.3-1.0	1 - 100
3	y = 0.003x + 0.37	0.99	1.0-4.0	100 - 1000

Table S2. Quantification of H_2O_2 impurity in common primary and secondary alcohols. 50 μ L of
ABTS (20 mM) in 0.1 M potassium phosphate buffer (pH 6.0) was mixed with 50 μ L of HRP
solution (0.1 μ M) and 50 μ L of alcohols containing impurity of H ₂ O ₂ . The absorbance at 420 nm
(λ_{max} of the oxidized product of ABTS) was recorded versus H ₂ O ₂ concentrations at 25 °C 30 min
after mixing at 1 cm path length, which was linearly increased. The mean and standard deviation
for three absorbance measurements of three samples prepared similarly have been shown in the
second column from left.

Alcohol	ABTS radical cation absorbance (a.u.), 1 cm path length	Applied Formula No.	H ₂ O ₂ impurity (μM)
Ethanol	0.600± 0.013	2	79.9
Glycerol	0.279± 0.003	1	1.8
Benzyl alcohol	3.479± 0.003	3	1036.4
2-Chloroethanol	1.844± 0.026	3	491.4
1-Butanol	0.187± 0.005	1	0.7
1-Hexanol	0.304± 0.004	1	2.1
1-propanol	0.191± 0.002	1	0.8
Isopropanol	0.136± 0.008	1	0.1