Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

An amino-substituted 2-(2'-hydroxyphenyl)benzimidazole for the fluorescent detection of phosgene based on ESIPT mechanism

Zi-Jie Li,^a Wen-Jie Zhang,^a Wen-Zhu Bi,^{*a} Qiu-Juan Ma,^{*a} Su-Xiang Feng,^{*abc} Xiao-Lan Chen,^d and Ling-Bo Qu^d

^a School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.

^b Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine

Development of Henan Province, Zhengzhou, 450046, China

° Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou, 450046, China

^d College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China.

Corresponding E-mail: biwenzhu2018@hactcm.edu.cn

Contents

1.	Evaluation of HBI as the fluorescent probe for the detection of phosgene	
2.	Measurement of the fluorescence quantum yieldsS3)
3.	UV-Vis spectra of P1 upon addition of phosgeneS4	
4.	Measurement of the LoD for P1S4	
5.	The selectivity of P1 for the detection of phosgeneS5)
6.	Fluorescence spectra of P1 in the presence of interfering compounds	;
7.	Table S1 Determination of phosgene in the presence of interfering compoundsS6	6
8.	HPLC-MS chromatogram and spectrum of the reaction mixture	5
9.	¹ H NMR, ¹³ C NMR and HRMS copies of P1 and P1-COS7	7
10.	Table S2 Comparison of recently reported probes for phosgene detectionS1	11

1. Evaluation of HBI as the fluorescence probe for the detection of phosgene

HBI (2-(2'-hydroxyphenyl)benzimidazole) was synthesized according to literature methods with minor modifications.¹ The method for the evaluation of HBI as the fluorescent

probe for the detection of phosgene was same as that of P1.

Figure S1 (A) Time-dependent fluorescence intensity at 351 nm of HBI (10 μ M) treated with triphosgene (10 μ M) in the presence (black line) or absence (red line) of TEA (20 μ L, 0.1 vol%), λ ex = 309 nm, λ em = 351 nm, slit width =5/5 nm. (B) Fluorescence spectra of 10 μ M HBI solutions containing TEA (20 μ L, 0.1 vol%) upon addition of triphosgene (0-5 μ M), λ ex = 309 nm, slit width = 5/5 nm. (C) Fluorescence spectra of HBI solutions before and after addition of phosgene or various analytes (0.2 mM) for 10 min: (1) blank, (2) triphosgene (5 μ M)/TEA (20 μ L, 0.1 vol%), (3) (COCI)₂, (4) CH₃COCI, (5) SOCI₂, (6) TsCI, (7) DCP, (8) HOAc, (9) POCI₃, (10) SO₂CI₂, (11) triphosgene. λ ex = 309 nm. (D) Images of HBI solution before (left) and after (right) addition of phosgene under 365 nm UV-light.

Reference

1. K. Akutsu, S. Mori, K. Shinmei, H. Iwase, Y. Nakano and Y. Fujii, *Talanta*, 2016, **146**, 575.

2. Measurement of the fluorescence quantum yields

Figure S2 Measurement of the fluorescence quantum yields (Φ f) of **P1** and **P1-CO**. **P1** and **P1-CO** were determined in CH₂Cl₂ with solvent refractive index correction. Quinine sulfate in 1.0 M H₂SO₄ was used as the reference (Φ f = 54%) at an excitation wavelength of 346 nm. The fluorescence quantum yield was calculated by the following equation: Φ_x = Φ_s (F_x/F_s)(A_s/A_x)(n_x/n_s)². Where x and s indicate the determined and reference, respectively, F is the area of the fluorescence peak, A is the optical density at the excitation wavelength, and n is the refractive index of the solvent.

3. UV-Vis spectra of P1 upon addition of phosgene

Figure S3. UV-Vis spectra of 10 μ M **P1** solutions containing TEA (20 μ L, 0.1 vol%) upon addition of triphosgene (0-6 μ M).

4. Measurement of the LoD for P1

Figure S4 Measurement of the LoD for **P1** to triphosgene. (A) The ratio of the emission intensities at 358 and 540 nm *vs.* the triphosgene concentration. (B) Ten times of the blank experiment to evaluate the standard deviation σ . The triphosgene detection limit was determined to be 5.3 nM (LoD = $3\sigma/k$, where σ is the standard deviation of the blank experiment, and k is the slope of the relationship between the emission-intensity ratio and the phosgene concentration.

5. The selectivity of P1 for the detection of phosgene.

Figure S5. Fluorescence spectra of **P1** (10 μ M) containing TEA (20 μ L, 0.1 vol%) in 2 mL CH₂Cl₂ upon addition of phosgene or various analytes (50 μ M) for 10 min. λ ex = 305 nm.

6. Fluorescence spectra of P1 in the presence of interfering compounds

Figure S6 Fluorescence spectra of 10 μ M **P1** containing TEA (20 μ L, 0.1 vol%) and interferents (A, 5.0 μ M; B, 10 μ M) in the presence of 3.0 μ M of triphosgene in 2 mL CH₂Cl₂. λ ex = 305 nm.

7. Table S1 Determination of phosgene in the presence of interfering compounds

Interfering	Phosgene	Phosgene	Recovery	Interfering	Phosgene	Phosgene	Recovery
compounds	added	found	(%)	compounds	added	found	(%)
(5.0 μM)	(µM)	(µM)		(10 µM)	(µM)	(µM)	
(COCI) ₂	9.0	8.7	96.7	(COCI) ₂	9.0	5.15	57.1
CH ₃ COCI	9.0	9.8	108.9	CH ₃ COCI	9.0	4.7	52.0
SOCI ₂	9.0	8.1	90.0	SOCI ₂	9.0	4.55	50.8
TsCl	9.0	8.15	90.5	TsCl	9.0	4.75	52.8
DCP	9.0	9.45	105.2	DCP	9.0	5.6	62.4
HOAc	9.0	9.35	104.1	HOAc	9.0	2.45	27.5
POCI ₃	9.0	7.9	87.8	POCI ₃	9.0	4.2	46.6
SO_2CI_2	9.0	8.15	90.7	SO_2CI_2	9.0	1.85	20.6

Figure S7 HPLC chromatogram (up) of the reaction mixture and MS spectrum (down) of the peak at 21.63 min. Chromatographic conditions: chromatographic column: AccucoreTM C18 (150 × 4.6 mm, 2.6 μ m); mobile phase: 0.1% formic acid (A), 0.1% formic acid water

acetonitrile (B); gradient elution: 0 ~ 1 min, 95% A; 1~25 min, 95%~0% A; 25~29 min, 0% A; 29~29.1 min, 0%~95% A, 29.1~34 min, 95% A; flow rate: 0.2 mL/min; column temperature: 30 °C. Mass spectrometry conditions: ion source: heated electrospray ionization source (H-ESI); auxiliary gas pressure: 1.0 Mpa; capillary temperature: 300 °C, auxiliary heating temperature: 275 °C.

9. ¹H NMR, ¹³C NMR and HRMS copies of P1 and P1-CO

Figure S8 ¹H NMR of P1

Figure S9 ¹³C NMR of P1

Figure S10 HRMS of P1

Figure S11 ¹HNMR of P1-CO

Figure S12 ¹³C NMR of P1-CO

Figure S13 HRMS of P1-CO

Structure	Mecha nism	Detection type	Reaction process	λex/λem (nm)	Detection limit	Response time	Reference
$ \begin{pmatrix} f_{1} \\ f_{2} \\ f_{3} \\ f$	FRET	Ratiometric	intermolecular reaction of two fluorophores	λ _{ex} = 343 nm λ _{em} = 464 nm	50 µM		Chem. Commun., 2007, 12 , 1238.
		Turn-on	ring opening reaction of benzimidazole- fused rhodamine dye	λ _{ex} = 560 nm λ _{em} = 590 nm	50 nM (Triphosgene)	20-30 s	Chem Commun., 2012, 48 , 1895.
но ОН		Turn-on	intramolecular reaction of cinnamic acids	λ _{ex} = 330 nm λ _{em} = 382 nm	1 nM		Anal. Chem., 2012, 84 , 4594
H ₂ N HN NO ₂	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 270 nm λ _{em} = 308 nm	0.7 ppb (Triphosgene)	2 min	ACS Appl. Mater. Interfaces., 2016, 8 , 22246.
H ₂ N HN N V V TfO	PET	Turn-on	twice carbamylation reactions	λex = 580 nm λem = 593 nm	20 nM (Triphosgene)	2 min	Angew. Chem. Int. Edit., 2016, 55 , 4729.

10. Table S2 Comparison of recently reported probes for phosgene detection.

OEt OFNO OFNO OEt	ICT	Ratiometric	twice carbamylation reactions	λex = 410 nm λem= 511/442 nm	1.3 nM (Triphosgene)	20 min	Chem. Commun., 2017, 53 , 1530.
	PET	Turn-on	twice carbamylation reactions	λex = 368 nm λem = 446 nm	3 nM (Triphosgene)	0.5 min	ACS Sens., 2017, 2 , 178.
HN + B'N F F	ICT	Ratiometric	twice carbamylation reactions	λ _{ex} = 390/465 nm λ _{em} = 445/512 nm	0.12 nM (Phosgene)	1.5 s	ACS Appl. Mater. Interfaces, 2017, 9 , 13920.
OH H N F F F		Turn-on	Dehydration of oxime to nitrile	λ _{ex} = 530 nm λ _{em} = 570 nm	0.09 ppb (Triphosgene)	10 s	Anal. Chem., 2017, 89 , 12837.
H_2N HN HN HN HN HN HN HN H	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 450 nm λ _{em} = 530 nm	2.7 nM (Triphosgene)	15 s	<i>Anal. Chem</i> ., 2017, 89 , 4192.

H ₂ N S	ESIPT	Ratiometric	twice carbamylation reactions	λ _{ex} = 375 nm λ _{em} = 445/495 nm	0.14 ppm (Phosgene)	5 min	<i>Anal. Chem.</i> , 2017, 89 , 12596.
$ \begin{array}{c} -0 \\ 0 \\ 0 \\ 0 \\ N_{S}^{N} \end{array} \\ \begin{array}{c} 0 \\ N_{S}^{N} \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ N_{S}^{N} \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	ICT	Turn-on	twice carbamylation reactions	λ _{ex} = 380 nm λ _{em} = 508 nm	20 nM (Phosgene)	20 min	Org. Chem. Front., 2017, 4 , 1719.
	ICT	Ratiometric	twice carbamylation reactions	λ _{ex} = 440 nm λ _{em} = 482/550 nm	27 nM (Phosgene)	2 min	<i>Anal. Chim. Acta.,</i> 2018, 1029 , 97.
	ICT	Turn-on	twice carbamylation reactions	λex = 400 nm λem = 468 nm	0.2 nM (Triphosgene)	30 s	Chem. Eur. J., 2018, 24 , 5652.
NH2 N Si +		Turn-on	conversion of amide to nitrile	λex = 653 nm λem = 679 nm	8.9 nM (Triphosgene)	4 min	<i>J. Mater. Chem.</i> C., 2018, 6 , 10472.
F-B- F-N- H2N	PET	Turn-on	twice carbamylation reactions	λex = 460 nm λem = 511 nm	179 nM (Triphosgene)	10 s	Chem. Eur. J., 2018, 24 , 3136.

	ICT	Ratiometric	twice carbamylation reactions	λ _{ex} = 434/502 nm λ _{em} = 482/615 nm	2.3 nM (Phosgene)	5 min	<i>Anal. Chem</i> ., 2018, 90 , 8686.
		Turn-on	Spirocyclic ring -open reaction	λ _{ex} = 530 nm λ _{em} = 578 nm	3.2 ppb (Triphosgene)	2 min	<i>Anal. Chem</i> ., 2018, 90 , 3382.
	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 480 nm λ _{em} = 516 nm	24 pM (Phosgene)	within 3 s	Sens. Actuator B- Chem., 2019, 283 , 458.
HO N S	ESIPT	Turn-on	conversion of oxime to nitrile	λ _{ex} = 438 nm λ _{em} = 474 nm	0.48 nM (Phosgene)	20 min	<i>Dyes Pigment.</i> , 2019, 163 , 483.
OH ON ON O	ESIPT	Ratiometric	conversion of oxime to isoxazole	λ _{ex} = 382 nm λ _{em} = 495/577nm	0.087 ppm (Phosgene)	1.43 s	<i>J. Mater. Chem. A.</i> , 2019, 7 , 1756.
H ₂ N NH	ICT	Ratiometric	twice carbamylation reactions	λ _{ex} = 470 nm λ _{em} = 520/610 nm	0.09 nM (Phosgene)	Within 20 s	Dyes Pigment., 2019, 163 , 489.

	ICT	Ratiometric	twice carbamylation reactions	λ _{ex} = 400 nm λ _{em} = 488/548 nm	0.3 nM (Phosgene)	60 s	<i>J. Mater. Chem.</i> C., 2019, 7 , 1510.
HO N	ESIPT	Ratiometric	twice carbamylation reactions	λ _{ex} = 335 nm λ _{em} = 393/469 nm	0.14 ppm (Phosgene)	30 s	<i>Talanta</i> , 2019, 200 , 78.
	ICT	Turn-on	twice carbamylation reactions	λ _{ex} = 390 nm λ _{em} = 422/526 nm	3.2 nM (Phosgene)	within 10 s	Anal Chem., 2019, 91 , 5690.
NO2 N N N N N H HN	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 460 nm λ _{em} = 525 nm	1.2 nM (Triphosgene)	within 20 s	<i>Anal. Methods</i> , 2019, 11 , 4600.
	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 350 nm λ _{em} = 430 nm	0.4 μM (Triphosgene)	20 s	<i>New J. Chem.</i> , 2019, 43 , 11743.
C16H33 ONO HN H2N	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 440 nm λ _{em} = 500 nm	72 nM (Phosgene)	2 min	Anal Chem., 2019, 91 , 12070.

S S S S S S S S S S S S S S S S S S S	PET	Ratiometric	chloroformylation reaction of N atom	λ _{ex} = 400 nm λ _{em} = 422/445/477 nm	1.54 nM (Phosgene)	within 50 s	<i>New J. Chem.</i> , 2019, 43 , 14991.
O NH2		Turn-on	Conversion of amide to nitrile	λ _{ex} = 342 nm λ _{em} = 440 nm	5.56 nM (Phosgene)	1.4 min	<i>ChemistrySelect</i> , 2019, 4 , 2968.
C ₁₀ H ₃₃ O N O HN HO	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 432nm λ _{em} = 484nm	4.6 nM (Phosgene)	15 s	Chem. Commun., 2019, 55 , 13753.
HN.NH , j. j.N. F F	PET	Turn-on	twice carbamylation reactions	λ _{ex} = 467 nm λ _{em} = 530 nm	0.15 nM (Phosgene)	1.5 s	Org. <i>Lett</i> ., 2019, 21 , 9497.
N.OH	ICT	Turn-on	Beckmann rearrangement of ketoxime	λ _{ex} = 367 nm λ _{em} = 448 nm	6.3 nM (Phosgene)	15 min	<i>Dyes Pigment.</i> , 2020, 173 , 107854.
		Turn-on	twice carbamylation reactions	λ _{ex} = 440 nm λ _{em} = 492 nm	84.2 nM (Phosgene)	2 min	Dyes Pigment., 2020, 173 , 107933.

H^{H_2N}		Ratiometric	twice carbamylation reactions	λ _{ex} = 370 nm λ _{em} = 416 nm	1.27 nM (Phosgene)	1 min	<i>Talanta</i> , 2021, 221 , 121477.
	ICT	Turn-on	twice carbamylation reactions	λex = 390 nm λem = 442/483/517 nm	1.65 nM (Phosgene)	3 min	Sens. Actuator B- Chem., 2021, 326 , 128837.
This work	ESIPT	Ratiometric	twice carbamylation reactions	λex = 305 nm λem = 358/540 nm	5.3 nM (Trihosgene)	Within 50 s	