Supplementary Materials

Unexpected ortho C-H bond activation in coordinated 7,8-benzoquinoline: Synthesis and characterisation of a heteroleptic Ir(III) 7,8-benzoquinoline complex

Kahnu Charan Pradhan, Hemanta K. Kisan, Satyanarayan Pal* P. G. Dept. of Chemistry, Utkal University, Bhubaneswar, India Email: snpal@utkaluniversity.ac.in

Contents:

- 1. Experimental
- 2. Fig. S1: Synthetic scheme of complex (2) and (3)
- 3. Fig. S2: IR spectrum of [Ir(benzq)₂(pyrald)] (2) in ATR mode
- 4. Fig. S3: ESI Mass spectrum of [Ir(benzq)₂(pyrald)] (2)
- 5. **Fig. S4:** ¹H NMR spectrum of [Ir(benzq)₂(pyrald)] (2) in DMSO-d₆8.
- 6. Fig. S5: IR spectrum of $[Ir^{III}(benzq-\kappa N, \kappa C^{10})(benzq-\kappa C^2)(Hpyrald)(Cl)]$ (3) in ATR mode
- 7. Fig. S6: ESI Mass spectrum of $[Ir^{III}(benzq-\kappa N, \kappa C^{10})(benzq-\kappa C^2)(Hpyrald)(Cl)]$ (3)
- 8. Fig. S7: ¹H NMR spectrum of $[Ir^{III}(benzq-\kappa N, \kappa C^{10})(benzq-\kappa C^2)(Hpyrald)(Cl)]$ (3) in DMSO-d₆
- 9. **Table S1:** Crystallographic data for complex [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)] (**3**)
- 10. Table S2: Selected bond distances and angles of $[Ir(benzq-\kappa N, \kappa C^{10})(benzq-\kappa C^2)(Hpyrald)(Cl)]$ (3)
- 11. **Fig. S8**: The hydrogen bonded dimer of $[Ir(benzq-\kappa N, \kappa C^{10})(benzq-\kappa C^2)(Hpyrald)(Cl)]$ (3) with different types of hydrogen bonds
- 12. **Table: S3**: List of hydrogen bonds and C-H- π interactions [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)] (**3**)
- 13. Fig. S9: The $\pi \dots \pi$ and C-H... π interactions in [Ir(benzq- $\kappa N, \kappa C^{10}$)(benzq- κC^{2})(Hpyrald)(Cl)] (3)
- 14. Table: S4: List of Intermolecular stacking parameters
- 15. **Fig. S10**: The packing diagram of $[Ir(benzq-\kappa N, \kappa C^{10})(benzq-\kappa C^2)(Hpyrald)(Cl)]$ (3) is viewed perpendicular to (010) plane
- 16. Fig. S11. The Kohn–Sham orbital contours of $[Ir(benzq-\kappa N, \kappa C^{10})(benzq-\kappa C^2)(Hpyrald)(Cl)]$ (3)
- 17. Table S5: Selected TDDFT data of [Ir(benzq- κN , κC^{10})(benzq- κC^2)(Hpyrald)(Cl)] (3)
- 18. Table S6: Electronic, Emission and Electrochemical data of complex (2) and (3)
- 19. Fig. S12: UV-Vis spectrum of (i) complex (2) and (ii) complex (3) in dichloromethane medium
- 20. Fig. S13: Emission spectrum of (i) complex (2) and (ii) complex (3) in dichloromethane medium
- 21. Fig. S14: Cyclic voltammogram of (i) complex (2) and (ii) complex (3) in acetonitrile solution

1. Experimental:

1.1 Materials:

The IrCl₃.3H₂O, pyridine-2-aldoxime, 7,8-benzoquinoline, 2-(2,4-difuorophenyl)pyridine were purchased from Sigma-Aldrich and used without further purification. All the solvents were dried by reported methods¹ and distilled prior to use. The dichloro bridged dimers [Ir(benzq)₂(μ -Cl)₂Ir(benzq)₂] and [Ir(F₂ppy)₂(μ -Cl)₂Ir(F₂ppy)₂] were prepared from IrCl₃.3H₂O by 7,8-benzoquinoline (benzq) and 2(2,4-difluorophenyl)pyridine (F₂ppy) by using the method described by Nonoyama.²

1.2 Physical measurement

The infrared spectrum was recorded in ATR mode on a Thermo Scientific Nicolet iS5 FT-IR spectrophotometer. An Agilent Carry 100 UV-Vis spectrophotometer was used to collect the electronic spectra. Cyclic voltammetry measurements were performed with the help of a CH Instruments model CHI760E with acetonitrile solutions of the complexes containing $[(n-C_4H_9)_4N]CIO_4$ (TBAP) as supporting electrolyte. The three electrode measurements were carried out at 298K under a dinitrogen atmosphere with a platinum disk working electrode, a platinum wire auxiliary electrode and a saturated calomel reference electrode (SCE). Elemental analyses were carried out on a Thermo Finnigan Flash EA1112 series elemental analyser. ¹H NMR data were recorded on a Bruker 400 MHz spectrometer using DMSO-d₆ as solvent. A Thermo Fisher liquid chromatograph mass spectrometer was used for determination of mass of all the complexes.

1.3 Crystal structure determination

X-ray quality single crystal of [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)] (3) was obtained from slow evaporation of dichoromethane-hexane mixture in room temperature. Data was collected on a Bruker SMART APEX CCD single crystal diffractometer, equipped with a graphite monochromator and a MoK α fine-focus sealed tube ($\lambda = 0.71073$ Å) was used to determine the unit cell parameters and to collect the data at 298K. SMART software was used for data acquisition and SAINT-plus software was used for data extraction³. The absorption corrections were performed with the help of the SADABS program.⁴ The structures were solved by direct method and refined on F² by full matrix least-squares procedures. All the non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included at idealized positions using a riding model. The SHELX-97 programs ⁵ accessible in the WinGX software suite ^[6] were used for structure solution and refinement. The ORTEP-3 package⁶ was used for molecular graphics. Crystallographic data was deposited with Cambridge Crystallographic Data Centre with CCDC No. 2050870 for [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)] (3) Selected crystal and refinement data are listed in **Table S1**.

1.4 Computational Methods

The metal complex [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)](2) was optimized using the Gaussian 09 Rev D.01 programme⁷ in gas phase at the B3LYP-D3 level of theory.⁸ The basis set used for iridium was LanL2DZ ⁹, whereas carbons, hydrogens and nitrogens were treated with 6-31g** basis set ^{10,11}. Stationary states were authenticated through Hessian indices examination. The time dependent density functional theory (TD-DFT) calculation were performed on the gas phase optimized geometry for all complexes using SMD continuum solvation model developed by Truhlar and Cramer ¹².

1.5 Synthesis of [Ir(benzq)₂(pyrald)](2) and [Ir(benzq-κN, κC¹⁰)(benzq-κC²)(Hpyrald)(Cl)] (3)

In a100ml round bottom flask pyridine-2-aldoxime (52 mg, 0.42mmol) and triethylamine (0.06 ml, 0.42 mmol) were taken in 25 ml ethanol. The mixture was thoroughly mixed by stirring and added with $[(\text{benzq})_2\text{Ir}(\mu\text{-Cl})_2\text{Ir}(\text{benzq})_2]$ (benzq=7,8 benzoquinoline) (200 mg, 0.17mmol). The whole mixture was refluxed under N₂ atmosphere for 18 hours at 80°C. The reddish yellow solution thus obtained was dried under vacuum and the solid was purified on a neutral aluminium oxide column. Eluting with dichloromethane resulted a reddish yellow band as [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)] (**3**). Further eluting with dichloromethane and acetone (2:1) produced an yellow coloured fraction as [Ir(benzq)₂(pyrald)](**2**). The yields of the complexes were found to be 50 mg (21%) for (2) and 103mg (45%) for (3) respectively. The preparation of complexes (2) and (3) also could be achieved in 2-methoxy ethanol in reflux condition.

Selected IR bands for complex Ir(benzq)₂(pyrald)] (2) (ATR, cm⁻¹), (Fig. S2): 1737(m), 1601(s), 1564(m), 1470(s), 1445(m), 1403(m), 1327(s), 1146(s), 1104(w), 831(s), 751(s), 718(s), 676(s), 526(m), 425(m).

Elemental analysis: Anal. Calcd. for C₃₂H₂₂ClN₄OIr (**2**): C, 57.39; H, 3.16; N, 8.37. Found: C, 58.24; H, 3.38; N, 8.50

ESI-MS for complex (2) (Fig. S3) : Theoretical mass for $C_{32}H_{21}N_4OIr$, [Ir(benzq)₂(pyrald)] (2), 670.13; Found for $C_{32}H_{21}N_4OIr$, [Ir(benzq)₂(pyrald)] (2), 670.86.

¹H NMR for complex Ir(benzq)₂(pyrald)] (2) (400 MHz, DMSO-d₆), (Fig. S4): δ 8.81 (dd, J = 5.4, 1.0 Hz, 1H), 8.54 (ddd, J = 8.0, 2.8, 1.0 Hz, 2H), 8.32 (s, 1H), 8.01 (dd, J = 5.4, 1.0 Hz, 1H), 7.96 – 7.74 (m, 5H), 7.69 (ddd, J = 10.9, 8.5, 3.4 Hz, 2H), 7.50 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.41 – 7.30 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.89 (t, J = 6.5 Hz, 1H), 6.22 (d, J = 6.9 Hz, 1H), 6.05 (d, J = 7.0 Hz, 1H).

Selected IR bands for complex (3) (ATR, cm⁻¹) (**Fig. S5**): 1603(s), 1497(s), 1470(s), 1422(w), 1327(s), 127(w), 1125(s), 1084(w), 835(s), 752(s), 720(s), 676(s), 611(s), 562(s), 478(s), 434(s).

Elemental analysis: Anal. Calcd. for C₃₂H₂₂ClN₄OIr (**3**): C, 54.42; H, 3.14; N, 7.93. Found: C, 54.96; H, 3.20; N, 8.06

ESI-MS for complex (3) (Fig. S6) : Theoretical mass for $C_{32}H_{22}N_4OCIIr$, [Ir^{III}(benzq- κN , κC^{10})(benzq- κC^2)(Hpyrald)(Cl)] (3), 706.11; Found for $C_{32}H_{22}N_4OCIIr$, [Ir^{III}(benzq- κN , κC^{10})(benzq- κC^2)(Hpyrald)(Cl)] (3), 706.83.

¹**H NMR for complex (3) (400 MHz, DMSO-d₆), (Fig. S7**): δ 9.66 (d, J = 8.5 Hz, 1H), 8.99 (s, 1H), 8.64 (d, J = 5.3 Hz, 1H), 8.53 (s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.03 (t, J = 8.1 Hz, 2H), 7.90 (dd, J = 14.0, 8.3 Hz, 4H), 7.73 (dt, J = 16.9, 8.7 Hz, 5H), 7.50 – 7.36 (m, 1H), 7.31 (d, J = 5.5 Hz, 1H), 7.02 (d, J = 8.6 Hz, 1H), 6.94 (t, J = 6.1 Hz, 1H).

Fig. S1: Synthetic scheme of complex (2) and (3)

References:

- "Purification of Laboratory Chemicals" by W.L.F. Armarego and C. L. L. Chai, Seventh Ed., Butterworth-Heinemann (Elsevier), 2013
- 2. M. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767–768, https:// DOI 10.1246/bcsj.47.767.
- SMART Version 5.630 and SAINT-plus Version 6.45, Bruker-Nonius Analytical X-ray Systems Inc., Madison, WI, USA, 2003.

- G.M. Sheldrick, SADABS, Program for Area Detector Absorption Correction, University of Göttingen, Göttingen, Germany, 1997.
- G.M. Sheldrick, SHELX-97, Structure Determination Software, University of Göttingen, Göttingen, Germany, 1997.
- 6. L.J. Farrugia, WinGX and ORTEP for Windows: an update, J. Appl. Crystallogr. 2012, 45, 849-854, DOI: https:// 10.1107/S0021889812029111
- M. J. Frisch,G. W. Trucks, H. B Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, H. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.
- S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 2010, 132, 154104, doi.org/10.1063/1.3382344.
- 9. P. J. Hay, and W.R. Wadt, J. Chem. Phys. 1985, 82, 299-310, doi: 10.1063/1.448975.
- W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261, doi: 10.1063/1.1677527.
- 11. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-222, doi.org/10.1007/BF00533485
- 12. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378, doi.org/10.1021/jp810292n

Fig. S2: IR spectrum of [Ir(benzq)₂(pyrald)] (2) in ATR mode

Fig. S3: ESI Mass spectrum of [Ir(benzq)₂(pyrald)] (2)

Fig. S4: ¹H NMR spectrum of [Ir(benzq)₂(pyrald)] (**2**)in DMSO-d₆ along with the enlarged part of 5.9 to 8.9 ppm

Fig. S5: IR spectrum of [Ir(benzq-κN, κC¹⁰)(benzq-κC²)(Hpyrald)(Cl)] (3) in ATR mode

Fig. S6: ESI Mass spectrum of [Ir(benzq-κN, κC¹⁰)(benzq-κC²)(Hpyrald)(Cl)] (3)

Fig. S7: : ¹H NMR spectrum of [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)] (**3**) in DMSO-d₆ along with the enlarged part of 6.6 to 9.9 ppm

	[Ir(benzq- κN , κC^{10})(benzq- κC^2)(Hpyrald)(Cl)] (3)
Empirical formula	C ₃₂ H ₂₂ Cl Ir N4 O
Formula wt	706.21
Crystal system	Monoclinic
Space group	P21/n
a (Å)	9.2148(14)
b (Å)	28.241(5)
c (Å)	10.6998(14)
α (°)	90.0
β(°)	109.745(4)
γ (°)	90.0
V(A ³)	2620.8(7)
Ζ	4
ρ(Mg m ⁻³)	1.790
$\mu(\text{mm}^{-1})$	5.231
Reflection collected	78829
Reflection unique	5389
Parameters	352
R1 (obs)	0.0336
wR2	0.0551
GOF	1.026
Largest peak	1.00
Deepest Hole	-0.7780

Table S1: Crystallographic data for complex [Ir(benzq- κN , κC^{10})(benzq- κC^2)(Hpyrald)(Cl)] (3)

Table S2: Selected bond distances and angles of [Ir(benzq- κN , κC^{10})(benzq- κC^2)(Hpyrald)(Cl)] (3)

Bond length (Å)			
Ir(1)-Cl(1) 2.3683(12)	Ir(1)-N(4) 2.118(4)		
Ir(1)-N(1) 2.043(3)	Ir(1)-C(14) 2.023(5)		
Ir(1)-N(3) 2.124(4)	Ir(1)-C(11) 2.031(5)		
Bo	ond angles (°)		
C(14)-Ir(1)-C(11) 90.72(19) $C(11)$ -Ir(1)-N(4) 171.72(16)		
C(14)-Ir(1)-N(4) 96.09(18	N(1)-Ir(1)-N(4) 93.69(14)		
C(14)-Ir(1)-N(3) 173.36(1	9) N(1)-Ir(1)-Cl(1) 173.44(10)		
C(11)-Ir(1)-N(3) 95.63(18) N(4)-Ir(1)-N(3) 77.42(16)		

Table: S3: List of hydrogen bonds and C-H- π interactions in [Ir(benzq- κ N, κ C¹⁰)(benzq- κ C²)(Hpyrald)(Cl)] (**3**)

D-HA	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)	
O1-H1AN2	0.82	1.84	2.609(5)	157	C6 C8
C24-H24O1	0.93	2.32	3.221(7)	160	, C5 C7 C9
C1-H1O1 ⁱ	0.93	2.56	3.204(6)	127	C4 C12 C10
C2-H2O2 ⁱ	0.93	2.675	3.259	121.45	C_{2} $C_{g(1)}$ C_{13} C_{11} C_{13} C_{11}
C3-H3 <i>Cl</i> 1 ⁱⁱ	0.93	2.77	3.677(5)	165	Ring 1 Cl
C21-H21 <i>Cl</i> 1 ⁱⁱⁱ	0.93	2.78	3.647(8)	155	
C29-H29Cg1 ^{iv}	0.93	2.59	3.507(3)	168	Ring (1): N1 C1- C7 C12 C13
C29-H29Cg2 ^{iv}	0.93	2.65	3.493(8)	151	Ring (2) : C4 C5 C6 C7 C12 C13

Symmetry codes: (i) 1-x, -y, -z (ii) x, y, 1+z (iii) 2-x, -y, 1-z (iv) -1+x, y, z *Cg1* = *N1/C1-C7*, *C12*, *C13 Cg2* = *C4-C7*, *C12*, *C13*

Table: S4: List of Intermolecular stacking parameters

	and sections.
distance distance	C19 Cg(4) C20, C21
(\dot{A})	Cg(8) Cg(7)
Cg7-Cg8v $3.4895(11)$ $3.547(2)$ 0.635 $1.88(14)$ 10.3 10.3 (15) (23)	C22 C26
Cg8-Cg5 ^v $3.4857(12)$ $3.541(3)$ 0.639 $2.7(2)$ 10.4 9.9	N2 C24 C23
Cg8-Cg7v $3.4893(11)$ $3.546(2)$ 0.633 $1.88(14)$ 10.3 10.3 Ring 6	King /
Cg7-Cg7v $3.5279(12)$ $3.624(3)$ 0.829 $0.00(17)$ 13.2 13.2 Ring (3): N<Ring (4): G	N2 C14 C15 C16 C17 C26
Cg6-Cg5 ^v $3.4768(12)$ $3.512(3)$ 0.462 $3.3(2)$ 7.6 8.7 Ring(5): Classical conditions of the condition of the	C20-C25
Cg4-Cg5 ^v $3.527(1)$ $3.622(3)$ 0.868 $1.8(3)$ 13.9 12.4 Ring(6): N	N2 C14-C20, C25 C26
$\operatorname{Ring}(I): \mathbf{C}$ $\operatorname{Ring}(8): \mathbf{W}^{1}$	vhole ring

Symmetry code: (v) 2-x, -y, 1-z ; I and J are two aromatic rings: Cg = Centroid

 $d_{\pi-\pi}$ = Average perpendicular distances of Cg(J) on ring I and Cg(I) on ring J

Slippage distance = Distance between Cg(I) and perpendicular projection of Cg(J) on Ring I

 α = Dihedral angle between the planes (I and J) of interacting rings

 β = Angle Cg(I)-Cg(J) vector and normal to plane I

 γ = Angle Cg(I)-Cg(J) vector and normal to plane J

LUMO	LUMO+1	LUMO+2	LUMO+3
-1.8928 eV	-1.6226 eV	-1.1861 eV	-1.0074 eV
HOMO)	HOMO-1	НОМО-2	НОМО-3
-5.3571 eV	-5.4788 eV	-5.6788 eV	-5.9286 eV

Fig. S11. The Kohn–Sham orbital contours (isosurface contour value = 0.03) for key orbitals of the [Ir(benzq- $\kappa N, \kappa C^{10}$)(benzq- κC^{2})(Hpyrald)(Cl)] (**3**) computed at the TD-DFT/SMD_(Dichloromethane)/B3LYP-D3/def2-TZVP (Ir), 6-31G** (C, H, N, O, Cl) level of theory. Hydrogens are omitted for clarity

Complex	Nature of transition	Energy(eV)	Oscillator	Computed	Observed
			factor	$\lambda_{max}(nm)$	$\lambda_{max}(nm)$
Complex (2)	HOMO→LUMO	2.7403	0.0066	452.44	Not
					observed
	HOMO-1→LUMO	2.7938	0.0134	443.78	425
	HOMO-2→LUMO	3.0443	0.0994	407.27	425
	HOMO-1→LUMO+1	3.1956	0.0325	387.98	384
	HOMO-3→LUMO+1	3.4869	0.0103	355.57	355

Table S5: Selected TDDFT data of [Ir(benzq- κN , κC^{10})(benzq- κC^2)(Hpyrald)(Cl)] (3)

Table S6: Electronic, Emission and Electrochemical data of complex (2) and (3)

Complex	Electronic spectral data λ	Phosphorescence	Electrochemical
	(nm) ($\epsilon x 10^3 (M^{-1} cm^{-1}))^a$	data ^a	data ^b [E(V) vs SCE]
[Ir(benzq-κN,	$500(1.52)^{\rm c}$, $428(7.68)^{\rm c}$,	539, 591	0.94 ^d , 1.35 ^d , -1.32 ^e
κC^{10})(pyrald)] (2)	382(13.79) ^c , 282(49.26),		
	258(63.15)		
[Ir(benzq- κN,	$500(0.94)^{\rm c}$, $425(6.35)^{\rm c}$,	594, 641	1.27 ^d ,1.59 ^d , -1.41 ^e
κC ¹⁰)(benzq-	384(12.09)°, 355(16.35)°,		[1.06V, -1.14
κC^2)(Hpyrald)(Cl)] (3)	282(52.32)		(Hpyraid)] ²

^a=dichloromethane solution

 b = in acetonitrile solution

 $^{c} = shoulder$

 $^{d} = E_{a}$ values

 $e = E_c$ values

 $^{\rm f}=E_a$ and E_c values of pyridine-2-aldoxime

