Stabilizing an ultrathin MoS₂ layer during electrocatalytic hydrogen evolution

with a crystalline SnO₂ underlayer

Supporting Information

Jonas Englhard,^{‡,1} Yuanyuan Cao,^{‡,1} Sebastian Bochmann,¹ Maïssa K.S. Barr,¹ Elsje Alessandra Quadrelli,² Julien Bachmann*^{1,3}

- 1. Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
- C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd. du 11 Novembre 1918, 69616 Villeurbanne, France
- 3. Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- ^{*†*} shared first authorship
- * corresponding author: julien.bachmann@fau.de

Keywords: atomic layer deposition, anodic alumina, tin oxide, molybdenum sulfide, hydrogen evolution reaction, water splitting

Figure S1. Cross-section scanning electron micrographs of AAO membranes anodized for *a*) 3 h, *b*) 4 h, *c*) 6 h or *d*) 8 h in 1 wt-% phosphoric acid at 195 V.

Figure S2. Thickness characterization of 40 c atomic layer deposited MoS₂ films. *a*) Spectroscopic ellipsometry: measured and fitted curves in dots and solid line, respectively; the fit yields an MoS₂ thickness of 9 nm. *b*) Step edge measurement by AFM, yielding a thickness of 10 nm.

Figure S3. X-ray diffraction pattern of AAO / SnO_2 / MoS_2 composite electrodes. Comparison of samples with an as-deposited SnO_2 film (orange) and an annealed SnO_2^{T} film (red). All electrodes feature 10 nm $SnO_2,40$ c of MoS_2 and pore lengths of 18.5 µm. Diffraction peaks corresponding to Al (from frame; COD 2300250) and Ni (from backside-contact; COD 2102278) were observed for both samples. The annealed sample features diffraction peaks corresponding to crystalline cassiterite (COD 1000062). No crystalline MoS_2 was observed.

Figure S4. Electrocatalytic performance of AAO / $c-SnO_2$ / MoS₂ composite electrodes for different pore lengths: 8.6 µm (black), 10.0 µm (red), 14.3 µm (blue) and 18.5 µm (green). a) Cyclic voltammograms, measured from +0.2 V to -0.7 V (vs. SHE), scan rate 50 mV/s, step size 2 mV. *b*) Average steady-state current densities vs. pore length for various applied potentials (vs. SHE). The electrodes feature a 20 nm thick c-SnO₂ layer and 40 c of MoS₂. Electrode area 0.0314 cm², performed in 0.1 M H₂SO₄ electrolyte.

Figure S5. Linear sweep voltammogram for an AAO / c-SnO₂ / a-MoS₂ composite electrode featuring pore lengths of 8.6 μ m, a 20 nm c-SnO₂ film and 40 c of MoS₂, recorded from +0.22 V to -0.68 V (vs. RHE). Scan rate 50 mV/s, step size 2 mV, electrode area 0.0314 cm². Performed in 0.5 M H₂SO₄ electrolyte.

MoS₂ thickness / ALD cycles	<i>R</i> _u / Ω	R_{ct} / Ω	$lpha_{ls}$	<i>Υլ₅</i> / 10 ⁻⁶ Ss ^α
10	82.5	12900	0.949	103
25	104	1210	0.921	303
40	79.8	107	0.896	824
75	98.7	109	0.789	1130

Table S1. EIS fit parameters. All measurements performed in 0.1 M $\rm H_2SO_4$ electrolyte.

Electrodes	Loading (mg/cm²)	Current density (mA/cm²)	Overpot. (mV)	Electrolyte (H₂SO₄)	preparation (catalysts)	Ref. in main text
MoS _* /PDOPA@ MWCNTsª	0.283	10	214	0.5 M	Wet chemical	[11]
MoS₃	0.2	10	160	1 M	Electrodeposition	[41]
MoS₅AD ^b	0.1	10	161 ^c	0.5 M	Electrodeposition	[42]
$MoS_{x}QD^{d}$		5	800	0.5 M	Wet chemical	[40]
MoS₂/ graphene foam		10	264	0.5 M	Atomic layer deposition	[43]
MoS _x /N-doped CNT ^e		10	110	0.5 M	Wet chemical	[46]
MoS ₂ /TNTAs ^f	1.2	10	189	0.5 M	Atomic layer deposition	[9]
a-MoS _x /PbTe QD ^d /TNA ^f	4.5	10	138 ^c	0.5 M	Electrochemical anodization	[44]
MoS _x	0.05	10	210	0.5 M	Wet chemical	[45]
MoS2/SnO2 /AAO ^g	0.16 ^h	10	220	0.5 M	Atomic layer deposition	This work

Table S2. Comparison of the HER activities of different amorphous MoS_2 based electrocatalysts.

^a polydihydroxyphenylalanine (PDOPA), multiwalled carbon nanotubes (MWCNTs), ^b anodic deposition, ^cresistance-corrected, ^dquantum dots, ^e carbon nanotubes, ^f titanium oxide nanotubes arrays, ^g anodic aluminum oxide, ^h The catalyst loading was calculated assuming a perfect hexagonal structure with an edge length of 310 nm, a pore diameter after SnO₂ ALD of 340 nm and pore lengths of 7.5 µm (averaged values, determined by SEM).