Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

3-methyl-1,2,3-triazolium-1N-dinitromethylylide and the strategy of zwitterionic dinitromethyl groups in energetic materials design.

Dominique R. Wozniak[‡], Matthias Zeller[§], Edward F. C. Byrd^{II}, Davin G. Piercey^{*,†}

Department of Materials Engineering, Purdue Energetics Research Center, Purdue University, 205 Gates Road West Lafayette, IN 47904, United States

§ Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States

JU.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21500, United States

†Department of Materials Engineering, Department of Mechanical Engineering Purdue Energetics Research Center, Purdue University, 205 Gates Road West Lafayette, IN 47904, United States

dpiercey@purdue.edu

X-Ray Crystallography

Figure S1. OTREP plot of 1

Table S1. Experimental details

	3-methyl-1,2,3-triazolium-1N-dinitromethylylide (1)		
Crystal data	·		
Chemical formula	C4H5N5O4		
$M_{ m r}$	187.13		
Crystal system, space group	Orthorhombic, Cmca		
Temperature (K)	150		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.7002 (7), 14.3978 (16), 12.7602 (11)		
$V(Å^3)$	1414.7 (2)		
Ζ	8		
<i>F</i> (000)	768		
D_x (Mg m ⁻³)	1.757		
Radiation type	Cu Ka		
No. of reflections for cell measurement	3719		
θ range (°) for cell measurement	6.2–79.9		
μ (mm ⁻¹)	1.38		
Crystal shape	Plate		
Colour	Colourless		
Crystal size (mm)	0.16 imes 0.15 imes 0.02		
Data collection			

Diffractometer	Bruker AXS D8 Quest diffractometer with PhotonIII_C14 charge- integrating and photon counting pixel array detector		
Radiation source	I-mu-S microsource X-ray tube		
Monochromator	Laterally graded multilayer (Goebel) mirror		
Detector resolution (pixels mm ⁻¹)	7.4074		
Scan method	ω and phi scans		
Absorption correction	Multi-scan, <i>SADABS</i> 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10.		
T _{min} , T _{max}	0.613, 0.754		
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5056, 812, 741		
R _{int}	0.037		
θ values (°)	$\theta_{max} = 79.9, \theta_{min} = 6.2$		
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.639		
Range of <i>h</i> , <i>k</i> , <i>l</i>	$h = -7 \rightarrow 9, k = -18 \rightarrow 17, l = -15 \rightarrow 15$		
Refinement			
Refinement on	F^2		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.143, 1.16		
No. of reflections	812		
No. of parameters	72		
No. of restraints	0		
H-atom treatment	H-atom parameters constrained		
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0842P)^2 + 0.8362P]$ where $P = (F_o^2 + 2F_c^2)/3$		
$(\Delta/\sigma)_{max}$	< 0.001		
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.32, -0.25		
Extinction method	SHELXL2018/3 (Sheldrick 2018), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$		
Extinction coefficient	0.0052 (11)		

Detonation Properties

	1	HMX	RDX	TNT ²⁶
Formula	C4H5N5O4	(CH ₂ NNO ₂) ₄	$C_3H_6N_6O_6$	C ₆ H ₃ CH ₃
FW / [g mol ⁻¹]	187.13	296.16	222.12	227.13
$IS / [J]^{\overline{a}}$	8	7	7.5	15
FS / [N] ^b	144-160	112	120	240
N / [%]°	36.74	37.84	37.84	0
$\Omega / [\%]^d$	-55.58	-21.61	-21.61	-73.96
$T_{dec} / [^{\circ}C]^{e}$	150	275	205	295
$\rho / [g cm^{-3}]^{1}$	1.757	1.905	1.858	1.65
$\rho / [g cm^{o}]^{em}$ $\Delta_{f} H_{m}^{o} / [kJ mol^{-1}]^{g}$	224.2	- 74.8	86.3	-59.3
EXPLO6				
$-\Delta_{\rm Ex}U^{\circ}$ / [kJ kg ⁻¹] ^h	-5303	-5700	-5740	-5227
$T_{det} / [\mathbf{K}]^{1}$	3525	4117	3745	3657
P_{CJ} / [kbar] ^j	272	378	336	21.6
$V_{det} / [m s^{-1}]^{\kappa}$	8162	9193 763	8801	1253
$V_0 / [L Kg^{-}]^{-1}$	137	/03	/03	514

 Table S2. Energetic properties of 1 compared to HMX and RDX

[a] impact sensitivity (BAM drophammer (1 of 6)); [b] friction sensitivity (BAM friction tester (1 of 6)); [c] nitrogen content; [d] oxygen balance ($\Omega = (xO-2yC-1/2zH)M/1600$); [e] decomposition temperature from DSC ($\beta = 5 \text{ °C}$); [f] from X-ray diffraction; [g] calculated heat of formation; [h] energy of explosion; [i] explosion temperature; [j] detonation pressure; [k] detonation velocity; [l] volume of detonation gases (assuming only gaseous products).

NMR

Figure S3. ¹H NMR of **1** (DMSO-*d*₆)

Figure S4. ¹³C NMR **1** (DMSO-*d*₆)

