Supporting Information

Efficient charge separation and transfer of TaON/BiVO₄

heterojunction for photoelectrochemical water splitting

Na Li^{a, b}, Yi Jiang^{a*}, Xiaodi Wang^a, Chongyang Hu^a, Wenchao Jiang^a, Siyuan Li^a, and Lixin Xia^{a, b*}

a. College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China.

b. Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou,

115014, Liaoning, China.

†E-mail address: jiangyi@lnu.edu.cn; lixinxia@lnu.edu.cn.

Materials

 Ta_2O_5 , Bi(NO_3)_3:5H₂O, VO(acac)_2 and p-benzoquinone were purchased from Aladdin-Reagent. All other reagents were used as purchased without further purification. The Glass slides coated with fluorine-doped tin oxide (FTO) purchased from Zhuhai Kaivo Optoelectronic Technology. FTO was cleaned by ultrasonication in ethanol, DI water and acetone before used as a substrate for the thin films.

Fig. S1 XRD patterns of BiVO₄, the TaON and TaON/BiVO₄ electrodes.

Fig. S2 The IPCE spectra of the sample electrodes.

Fig. S3 UV-Vis absorption spectra of the sample electrodes.

Fig. S4 The charge separation efficiency of different electrodes.

To calculate J_{abs} (the photocurrent density when the absorbed photons completely convert into photocurrent), the reference solar spectral irradiance at AM 1.5 G was converted to the solar energy spectrum in terms of number of photons vs. wavelength. Then, according to the UV-Vis absorption (Fig S3), the number of photons that BiVO₄ can effectively absorb was calculated using a trapezoidal integration (in 1 nm increments) of the spectrum and was converted to the current density (mA·cm⁻²). ^[1,2] Using these calculations, $J_{abs} = 5.6 \text{ mA/cm}^2$ was obtained (The effects of all electrodes calculated by this method are similar, so we uniformly take the value of 5.6 mA/cm²). The photocurrent density arising from PEC water oxidation can be described as: $J_{H2O} = J_{abs} \times \eta_{sep} \times \eta_{trans}$, where: η_{sep} is the charge separation efficiency, and η_{trans} is the charge injection efficiency. With Na₂SO₃ as a hole scavenger, the surface recombination is eliminated, $\eta_{trans} = 1$, and the photocurrent can be described as: $J_{Na2SO3} = J_{abs} \times \eta_{sep}$, So the η_{sep} can describe as: $\eta_{sep} = J_{Na2SO3}/J_{abs}$.

Fig. S5 UV-Vis absorption spectra of TaON and BiVO₄

Fig. S6 I-t curves of the BiVO₄, Co-Pi/TaON/BiVO₄ electrodes at 0.8 V vs. RHE.

Table S1. The interface charge transfer resistance (R(ct)) of different electrodes.

Electrodes	BiVO ₄	1-TaON/BiVO ₄	2-TaON/BiVO ₄	3-TaON/BiVO ₄
R(ct)	329	219	203	212

[1] T. W. Kim and K.-S. Choi, Science, 2014, 343, 990-994.

[2] D. Zhou, K. Fan, Q. Zhuo, Y. Zhao, and L. Sun, ACS Appl. Mater. Interfaces, 2021, 13, 2723–2733.