1 Novel poly(arylene ether ketone) /poly(ethylene

2 glycol)-grafted poly(arylene ether ketone) composite
3 microporous polymer electrolyte for electrical double-
4 layer capacitors with efficient ionic transport

5

6 Fangyuan $\mathrm{Hu}^{\mathrm{a}, *}$, Yiting Liu ${ }^{\mathrm{a}}$, Wenlong Shao ${ }^{\text {b }}$, Tianpeng Zhang ${ }^{\text {a }}$, Siyang Liu ${ }^{\text {a }}$,
7 Dongming Liu ${ }^{\mathrm{a}}$, Shouhai Zhang ${ }^{\mathrm{b}}$, Xigao Jian ${ }^{\text {a,b }}$
8
9 a School of Materials Science and Engineering, State Key Laboratory of Fine
10 Chemicals, Key Laboratory of Energy Materials and Devices (Liaoning Province),
11 Liaoning Province Engineering Centre of High Performance Resins. Dalian
12 University of Technology, Dalian, 116024, China.
$13{ }^{\text {b }}$ State Key Laboratory of Fine Chemicals, Liaoning Province Engineering Research
14 Centre of High Performance Resins. Dalian University of Technology, Dalian,
15 116024, China.
16 * Corresponding Author. E-mail: hufangyuan@dlut.edu.cn(F. Hu).
17
18

1 Materials

2 4-(4-hydroxyl-phenyl)(2H)-phthalazine-1-one (DHPZ, 99\%) was kindly offered by
3 Dalian Polymer New Materials Co., Ltd. (Dalian, China). 4,4'-difluorobenzophenone 4 (DFBP, 99\%), diphenolic acid (DPA, 98\%), carboxylated chitosan (BR, water soluble,

5 degree of substitution $\geqslant 60 \%$), methoxypolyethylene glycol ($\mathrm{Mn}=1000 \mathrm{~g} \mathrm{~mol}^{-1}, 99 \%$),
6 N,N'-dicyclohexylcarbodiimide (DCC, 99\%), 4-dimethylaminopyridine (DMAP, 99\%)
7 were all purchased from Aladdin Industrial Co., Ltd. Activated carbon powder (surface
8 area of $1600 \mathrm{~m}^{2} \mathrm{~g}^{-1}$, porous volume of 0.7 mL g g) was provided by SCM Industrial
9 Chemical Co. Ltd. Shanghai, China. Polytetrafluoroethylene (PTFE) ($60 \mathrm{wt} \%$
10 dispersion), acetylene black (Specific surface area: $58 \mathrm{~m}^{2} / \mathrm{g}$), titanium mesh (100 mesh),
11 lithium perchlorate (99.9\%) were obtained from Guangdong Canrd New Energy
12 Technology Co.,Ltd. Anhydrous tetrahydrofuran (THF, 99\%), sulfolane (99\%), toluene
13 (99\%), 1-methyl-2-pyrrolidinone (NMP, 99\%), isopropanol (99\%), concentrated HCl 14 (99\%) and anhydrous potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 99 \%\right)$ were all obtained from

15 Beijing Chemical Reagent Company. Commercial separator (model: NKK-MPF30AC-
16 100, thickness of $90-100 \mathrm{~mm}$) were obtained from Saibo Electrochemical reagent
17 company.
(a)

(b)

(c)

2 Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectra of (a) PAEK, (b) PAEK-COOH, and (c) PAEK-g-PEG

2 Fig. S2. FTIR spectra of (a) PAEK, (b) PAEK-COOH, and (c) PAEK-g-PEG

Thermal weight loss temperature	PAEK	PAEK-g-PEG
The first step $\left({ }^{\circ} \mathrm{C}\right)$	475	175
The second step $\left({ }^{\circ} \mathrm{C}\right)$	$/$	375

 Fig. S3. The digital photos of composite microporous polymer electrolyte S3.

3 Fig. S4. (a) Surface morphology of the commercial separator CS. (b) Cross-section

6 Fig. S5. (a) the assembly schematic for the bulk impedance and (b) interface
7
8
(a)

(b)

10 Fig. S6. (a) The digital photos of two-point test and (b) assembly device using 2025-
11 type button cell.

2 Fig. S7. (a) EIS Nyquist plot and fit figure for the frequency range of 100 kHz to 1 Hz 3 at 293 K. (a, inset) Equivalent circuit model to extrapolate $\mathrm{R}_{\mathrm{b}}\left(\mathrm{R}_{\mathrm{b}}\right.$ - the bulk electrolyte 4 membrane, CPE - the constant phase element, the fitting error on R_{b} is less than 5\%)
5 and (b) EIS Nyquist plot and fit figure for the frequency range of $0.01 \mathrm{~Hz}-100 \mathrm{kHz}$. (b, inset) Equivalent circuit model to extrapolate $\mathrm{R}_{\text {int }}\left(\mathrm{R}_{\text {int }}\right.$ the interface impedance, $\mathrm{C}_{\text {int }}-$ 7 the interface capacitance, Z_{w} - the Warburg impedance element, the fitting error on $\mathrm{R}_{\text {int }}$ 8 are less than 5\%).
9
10 Tab. S2. Specific capacitance C_{s}, energy density $E_{\text {cell }}$, and power density $P_{\text {cell }}$ of
11

Current density	$\begin{aligned} & \mathrm{C}_{\mathrm{s}}-\mathrm{S} 3 \\ & \left(\mathrm{~F} \mathrm{~g}^{-1}\right) \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{s}}-\mathrm{CS} 0 \\ \left(\mathrm{~F}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathbf{E}_{\text {cell- }} \text { S3 } \\ \left(\mathbf{W h ~ k g}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathbf{E}_{\text {cell- }}-\mathbf{C S 0} \\ \left(\mathbf{W h ~ k g}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{cell}}-\mathrm{S} 3 \\ \left(\mathbf{W} \mathrm{~kg}^{-1}\right) \end{gathered}$	$\begin{aligned} & \mathbf{P}_{\text {cell- }}-\mathrm{CS} 0 \\ & \left(\mathbf{W ~ k g}^{-1}\right) \end{aligned}$
$\left(\mathbf{A g}^{-1}\right)$						
0.2	134.38	126.92	10.47	9.90	20.92	20.82
0.5	133.70	125.38	10.38	9.74	51.91	51.94
1	122.61	112.11	9.43	8.64	103.34	103.47
2	108.96	101.73	8.22	7.72	204.73	205.27
5	90.92	78.27	6.37	5.50	493.08	493.75

12

