Electronic Supplementary Information

Copper(I) Pyrimidine-2-thiolate Cluster-based Polymers as Bifunctional Visible-

Light-Photocatalysts for Chemoselective Transfer Hydrogenation of α,β-

Unsaturated Carbonyls

MengJuan Zhang,*a David James Young, b JiLong Ma a and GuoQuan Shao a

^a College of Traditional Chinese Medicine, Bozhou University, Bozhou 236800, Anhui, People's

Republic of China

^b Faculty of Science and Engineering, University of the Sunshine Coast, Maroochydore DC,

Queensland, 4558 Australia

Table of Con

General Information	S3
Synthesis of 2	S3
Synthesis of 3	S3
X-ray Crystallography	S4
Density functional theory (DFT) calculations	S4
Typical procedure of photocatalytic reaction of unsaturated carbonyls to un	isaturated
alcohols	S4
¹ H and ¹³ CNMR data of the products	
References	
Table S1. Crystal Data and Structure Refinement Parameters for 2.3Cl	H ₂ Cl ₂ and
3.0.5MeCN	S10
Table S2. Selected Bond Lengths (Å) and Angles (°) for 2·3CH ₂ Cl ₂ and 3·0.5MeCN	S11
Table S3. Optimizing Reaction Conditions of Photoinduced Chemoselective	Transfer
Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol	S12
Fig. S1 PXRD patterns for 2	S13
Fig. S2 PXRD patterns for 3	S13
Fig. S3 TGA curves of 2 and 3	S13
Fig. S4 XPS patterns of Cu in 2 and 3	S14
Fig. S5 The N_2 adsorption–desorption isotherm measured at 77 K of 2 and 3	S14
Fig. S6 The UV-vis spectra of 1-3 in the solid state	S14
Fig. S7 Emission spectra of 1-3 in the solid state at room temperature	S15
Fig. S8 Transient photocurrent responses for 1-3	S15
Fig. S9 Solid-state optical diffuse-reflection spectra of 1-3	S15
Fig. S10 PXRD patterns of 3 after catalytic reaction	S16
Fig. S11 SEM image of NPs 3 after fourth cycle	S16
Fig. S12 DFT calculated energy diagram for transfer hydrogenation (B3LYP level)	S16
Fig. S13 Optimized structures of Cat II, 2aa and TS1, MS1, TS2, FS1 for C=O hydroge	enation
catalyzed by Cat II.	S17
Fig. S14 Optimized structures of TS3, MS2, TS4, MS3, TS5 and FS2 for C=C hyd	rogenation
catalyzed by Cat II.	S17
Scheme S1. Plausible Pathway for Selective Transfer Hydrogenation	S18
The ¹ H and ¹³ C NMR spectra of products (Fig. S15 - S34)	S19

General Information: 1 was prepared according to a literature method.^[S1] All reagents were obtained from commercial sources and used directly without further purification. All solvents were obtained from commercial sources and purified according to standard procedures. Column chromatography was performed on silica gel. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were measured at 150 MHz or 100 MHz using a Varian UNITY plus-400 spectrometer with $CDCl_3$ or $DMSO-d_6$ as the solvent. Powder X-ray diffraction (PXRD) patterns were recorded on an X'Pert PRO SUPERA rotation anode X-ray diffractometer with Ni-filtered Cu-Ka radiation ($\lambda = 1.5418$ Å). Elemental analyses for C, H, and N were performed on a Carlo-Erbo CHNO-S microanalyzer. IR spectra (KBr disc) were recorded on a Nicolet MagNa-IR550 FT-IR spectrometer (4000-400 cm⁻¹). The product yields were measured on an Agilent 1260 HPLC. The thermogravimetric analyses (TGA) were performed using a Mettler TGA/SDTA851 thermal analyzer under an N₂ atmosphere with a heating rate of 10 °C min⁻¹ in the temperature range of 20-1000 °C. The UV/Vis spectra of 1-3 were recorded with a Hitachi U-4100 spectrophotometer. Photoluminescent spectra were recorded by a FLS980 with Xenon lamp light source. Scanning electron microscopy (SEM) was used to study the morphology of NPs 2 and nanowires 3 using a HITACHI S-4700 scanning electron microscope. X-ray photoelectron spectra (XPS) were recorded with an X-ray photoelectron spectrometer (AXIS Ultra DLD, USA). The photocurrent response data were collected with a CHI 630E analyzer.

Synthesis of 2. To a solution of **1** (20.3 mg, 0.0167 mmol) was slowly added a solution of CuI (38.0 mg, 0.2 mmol) in MeCN (6 mL). A large amount of yellow precipitate was observed to form immediately. After the mixture was stirred at room temperature for several hours, the mixture was filtrated. The resulting yellow solid was washed with MeCN and Et₂O, and then dried in air. Yield: 32.57 mg (90 % based on **1**). Anal. Calcd for $C_{36}H_{42}Cu_{11}I_5N_{12}S_6$: C 19.95, H 1.95, N 7.75. Found: C 20.18, H 1.75, N 7.66%. IR (KBr pellet, cm⁻¹) 1585 (s), 1526 (m), 1431 (m), 1385 (w), 1345 (m), 1254 (s), 1135 (w), 878 (w), 571 (w).

2 was also obtained by the addition of the MeCN (6 mL) solution of CuI (38.0 mg, 0.2 mmol) into the solution of Hdmpymt (14.0 mg, 0.1 mmol) and Et_3N in CH_2Cl_2 (4 mL).

Fabrication of NPs of 2. To a solution of **1** (10.2 mg, 0.0084 mmol) in CH_2Cl_2 (2 mL) was added a solution of CuI (19.0 mg, 0.10 mmol) in MeCN (2 mL). The yellow precipitate formed immediately. The resulting yellow solid was quickly separated, washed with MeCN and Et₂O, and finally dried in air to yield NPs of **2**.

Synthesis of 3. To a Pyrex glass tube (15 cm in length, 7 mm in inner diameter) was loaded (Ph₃P)CuI (22.7 mg, 0.05 mmol), **1** (10.2 mg, 0.0084 mmol), MeCN (1 mL) and toluene (1 mL). The tube was sealed and heated in an oven to 120 °C for 24 h, and cooled to ambient temperature at the rate of 5 °C per 60 min to give block orange crystals, which were collected by filtration, washed with MeCN and Et₂O, and the dried in air. Yield: 14.65 mg (88 % based on 1). Anal. Calcd for $C_{36}H_{42}Cu_{10}I_4N_{12}S_6$: C 21.86, H 2.14, N 8.50. Found: C 21.91, H 2.16, N 8.46%. IR (KBr pellet, cm⁻¹): 1587 (s), 1522 (m), 1426 (m), 1353 (m), 1259 (s), 1177 (w), 1027 (w), 882 (w), 841

(w), 560 (w).

Fabrication of Nanowires of 3. To the MeCN (4mL) and toluene (4 mL) solution of 1 (20.3 mg, 0.0167 mmol) and (Ph₃P)CuI (45.3 mg, 0.1 mmol) was added PVP (100 mg). The mixture was heated at 120 °C for 24 h and then cooled to room temperature. The orange product was centrifuged, washed with distilled water and absolute ethanol three times each, and finally dried in a vacuum at 60 °C for 12 h to yield nanowires.

X-ray Crystallography

Single crystals of $3 \cdot 0.5$ MeCN suitable for X-ray analysis was obtained directly from the above preparations. Crystals of $2 \cdot 3$ CH₂Cl₂ was obtained by slowly layering the MeCN solution of CuI onto the CH₂Cl₂ solution of **1**. Single crystals of $2 \cdot 3$ CH₂Cl₂ and $3 \cdot 0.5$ MeCN were mounted on glass fibers with grease and cooled in a liquid nitrogen stream at 193 K ($2 \cdot 3$ CH₂Cl₂) or 223 K ($3 \cdot 0.5$ MeCN). Crystallographic measurements were made on a Bruker APEX-II CCD ($2 \cdot 3$ CH₂Cl₂) or Rigaku Saturn ($3 \cdot 0.5$ MeCN) diffractometer by using graphite-monochromated Mo-K α ($\lambda = 0.71070$ Å). The collected data were reduced by using the program CrystalClear (Rigaku and MSC, Ver.1.3, 2001) or Bruker APEX2, and the reflection data were also corrected for Lorentz and polarization effects.

The crystal structures of $2 \cdot 3$ CH₂Cl₂ and $3 \cdot 0.5$ MeCN were solved by direct methods and refined on F^2 by full-matrix least-squares techniques with the SHELXTL-97 program.^{S2} In $2 \cdot 3$ CH₂Cl₂, one Cl atom and one C atom from one CH₂Cl₂ molecule was split into two sites with an occupancy ratio of 0.5/0.5 for Cl(2)/Cl(2A) and C(19)/C(19A). In $3 \cdot 0.5$ MeCN, one MeCN molecule was refined to quarter-occupancy to give acceptable thermal parameters. Except of C(19) and C(20) atoms of CH₂Cl₂ molecule $2 \cdot 3$ CH₂Cl₂, C(19) and C(20) atoms of MeCN molecule in $3 \cdot 0.5$ MeCN, all non-hydrogen atoms were refined on F^2 anisotropically by full-matrix least square method. Hydrogen atoms of one CH₂Cl₂ molecule (C(19) and C(19A)) $2 \cdot 3$ CH₂Cl₂ and the uncoordinated MeCN molecule (C(19), C(20)) in $3 \cdot 0.5$ MeCN were not located. All other hydrogen atoms introduced at the calculated positions and included in the structure-factor calculations. A summary of the important crystallographic information for $2 \cdot 3$ CH₂Cl₂ and $3 \cdot 0.5$ MeCN are summarized in Table S1.

Density functional theory (DFT) calculations

The B3LYP hybrid functional was used in our calculations. The LANL2DZ basis set, in conjunction with the LANL2DZ pseudo potential, was employed for copper while the 6-311++G(d,p) basis set was used for other atoms. Frequency analyses were performed on all optimized structures to verify local minima or transition states. All calculated results were based on Gibbs free energies.

Typical procedure of photocatalytic reaction of unsaturated carbonyls to unsaturated alcohols:

Unsaturated carbonyl (0.2 mmol), catalyst (6.0 mg), NaOH (0.04 mmol) and MeCN/i-PrOH (8 mL) were added into a glass tube (35 mL). N_2 was bubbled through the solution for 15 min. Then

the tube was sealed with a rubber cap and irradiated by a blue LED (455nm, 26W) strip light with magnetic stirring at room temperature. After the reaction, the products were purified by vacuum distillation after removing the catalyst by filtration or flash column chromatography.

The ¹H and ¹³CNMR data of the products

Cinnamic alcohol⁸³

ОН

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.38 (d, *J* = 7.4 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.24 (dd, *J* = 8.8, 5.2 Hz, 1H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.36 (dt, *J* = 15.8, 5.7 Hz, 1H), 4.31 (d, *J* = 5.5 Hz, 2H), 1.75 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 136.6, 131.1, 128.6, 128.5, 127.7, 126.4, 63.7. HRMS *m/z* calcd for C₉H₁₀O [M + H]⁺ 135.0810, found 135.0809.

4-Methoxycinnamic alcohol^{S4}

¹H NMR (400 MHz, DMSO-d₆, ppm) δ 7.35 (d, *J* = 8.2 Hz, 2H), 6.88 (d, *J* = 8.2 Hz, 2H), 6.48 (d, *J* = 15.9 Hz, 1H), 6.21 (dt, *J* = 15.8, 5.1 Hz, 1H), 4.80 (t, *J* = 5.3 Hz, 1H), 4.09 (t, *J* = 4.8 Hz, 2H), 3.74 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆, ppm) δ 158.6, 129.5, 128.3, 128.2, 127.3, 114.0, 61.6, 55.0. HRMS *m*/*z* calcd for C₁₀H₁₂O₂ [M + H]⁺ 165.0916, found 165.0917.

4-Methylcinnamic alcohol⁸⁵

¹H NMR (600 MHz, CDCl₃, ppm) δ 7.29 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.32 (dt, *J* = 15.9, 5.9 Hz, 1H), 4.30 (dd, *J* = 5.9, 1.5 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 137.7, 134.0, 131.3, 129.4, 127.5, 126.5, 63.9, 21.3. HRMS *m/z* calcd for C₁₀H₁₂O [M + H]⁺ 149.0966, found 149.0964.

4-Fluorocinnamic alcohol^{S5}

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.34 (dd, *J* = 8.1, 5.7 Hz, 2H), 7.00 (t, *J* = 8.6 Hz, 2H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.28 (dt, *J* = 15.8, 5.7 Hz, 1H), 4.31 (d, *J* = 5.4 Hz, 2H), 1.76–1.68 (m, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 163.3, 161.7, 133.0, 130.1, 128.4, 128.1, 115.7, 115.6, 63.7. HRMS *m/z* calcd for C₉H₉FO [M + H]⁺ 153.0715, found 153.0716.

4-Chlorocinnamic alcohol^{S6}

ЮH

¹H NMR (600 MHz, CDCl₃, ppm) δ 7.29 (q, J = 8.6 Hz, 4H), 6.57 (d, J = 15.9 Hz, 1H), 6.34 (dt, J = 15.9, 5.6 Hz, 1H), 4.32 (dd, J = 5.6, 1.4 Hz, 2H), 1.65 (s, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 135.3, 133.4, 129.9, 129.3, 128.9, 127.8, 63.7. HRMS *m*/*z* calcd for C₉H₉ClO [M + H]⁺ 169.0420, found 169.0423.

4-Bromocinnamic alcohol^{S5}

¹H NMR (600 MHz, CDCl₃, ppm) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.55 (d, *J* = 15.9 Hz, 1H), 6.35 (dt, *J* = 15.9, 5.6 Hz, 1H), 4.31 (dd, *J* = 5.6, 1.5 Hz, 2H), 1.62 (s, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 135.0, 129.0, 128.2, 127.8, 125.3, 69.3. HRMS *m/z* calcd for C₉H₉BrO [M + H]⁺ 212.9915, found 212.9916.

4-Nitrocinnamic alcohol^{S5}

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.19 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 16.0 Hz, 1H), 6.54 (dt, *J* = 15.9, 4.9 Hz, 1H), 4.41 (d, *J* = 4.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 146.9, 143.2, 133.5, 128.3, 126.9, 124.0, 63.1. HRMS *m*/*z* calcd for C₉H₉NO₃ [M + H]⁺ 180.0661, found 180.0662.

a-Bromocinnamic alcohol^{S7}

¹H NMR (600 MHz, CDCl₃, ppm) δ 7.64 (d, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.10 (s, 1H), 4.42 (d, *J* = 1.1 Hz, 2H), 3.01 (s, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 135.8, 131.8, 129.9, 129.4, 128.1, 121.6, 63.6. HRMS *m*/*z* calcd for C₉H₉BrO [M + H]⁺ 212.9915, found 212.9917.

a-Methylcinnamic alcohol^{S3}

¹H NMR (600 MHz, CDCl₃, ppm) δ 7.35 (t, *J* = 7.4 Hz, 2H), 7.30 (d, *J* = 7.2 Hz, 2H), 7.24 (t, *J* = 7.5 Hz, 1H), 6.54 (s, 1H), 4.19 (s, 2H), 1.91 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 137.7, 137.8, 129.0, 128.2, 126.5, 125.1, 69.0, 15.4. HRMS *m*/*z* calcd for C₁₀H₁₂O [M + H]⁺ 149.0966, found 149.0966.

a-Amylcinnamic alcohol^{S3}

¹H NMR (600 MHz, CDCl₃, ppm) δ 7.38 (t, *J* = 7.5 Hz, 2H), 7.32–7.27 (m, 3H), 6.58 (s, 1H), 4.28 (d, *J* = 1.3 Hz, 2H), 2.34 (dd, *J* = 10.3, 4.8 Hz, 2H), 1.56 (d, *J* = 7.8 Hz, 2H), 1.34 (d, *J* = 2.5 Hz, 4H), 0.93 (dd, *J* = 4.7, 2.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 142.6, 137.7, 128.8, 128.3, 126.6, 125.4, 67.2, 32.2, 28.9, 28.2, 22.6, 14.2. HRMS *m*/*z* calcd for C₁₄H₂₀O [M + H]⁺ 205.1592, found 205.1593.

(E)-3-(furan-2-yl)prop-2-en-1-ol^{S3}

¹H NMR (600 MHz, CDCl₃, ppm) δ 7.33 (s, 1H), 6.42 (d, *J* = 15.9 Hz, 1H), 6.37-6.34 (m, 1H), 6.27 (dt, *J* = 15.8, 5.6 Hz, 1H), 6.22 (d, *J* = 3.0 Hz, 1H), 4.26 (d, *J* = 5.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 152.5, 142.1, 127.3, 119.3, 111.4, 108.0, 63.2. HRMS *m/z* calcd for C₇H₈O₂ [M + H]⁺ 125.0603, found 125.0602.

(E)-2-methylpent-2-en-1-ol^{S8}

¹H NMR (600 MHz, CDCl₃, ppm) δ 5.39 (t, *J* = 6.7 Hz, 2H), 3.98 (s, 4H), 2.03 (p, *J* = 7.4 Hz, 4H), 1.65 (s, 7H), 0.96 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 134.2, 128.3, 69.1, 21.0, 14.1, 13.6. HRMS *m/z* calcd for C₆H₁₂O [M + H]⁺ 101.0966, found 101.0969.

(E)-hept-2-en-1-ol^{S8}

¹H NMR (600 MHz, CDCl₃, ppm) δ 5.71–5.64 (m, 1H), 5.64–5.58 (m, 1H), 4.06 (d, *J* = 4.9 Hz, 2H), 2.03 (q, *J* = 6.7 Hz, 2H), 1.36–1.28 (m, 4H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 133.6, 128.9, 63.9, 32.0, 31.4, 22.3, 14.0. HRMS *m*/*z* calcd for C₇H₁₄O [M + H]⁺ 115.1123, found 115.1124.

4-Phenylbut-3-en-2-ol⁸⁹

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.36 (d, J = 7.4 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.23 (d, J = 5.9 Hz, 1H), 6.55 (d, J = 15.9 Hz, 1H), 6.25 (dd, J = 15.9, 6.4 Hz, 1H), 4.47 (p, J = 6.2 Hz, 1H), 1.93 (s, 1H), 1.36 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 136.8, 133.7, 129.2, 128.6, 127.6, 126.5, 68.7, 23.4. HRMS *m*/*z* calcd for C₁₀H₁₂O [M + H]⁺ 149.0966, found 149.0967. *(E)-4-(p-tolyl)but-3-en-2-ol*^{\$10}

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.27 (d, *J* = 7.8 Hz, 2H), 7.12 (d, *J* = 7.7 Hz, 2H), 6.53 (d, *J* = 15.9 Hz, 1H), 6.21 (dd, *J* = 15.9, 6.4 Hz, 1H), 4.53–4.42 (m, 1H), 2.33 (s, 3H), 1.63 (d, *J* = 6.6 Hz, 1H), 1.36 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 137.6, 134.0, 132.7, 129.5, 129.4, 126.5, 69.2, 23.6, 21.3. HRMS *m/z* calcd for C₁₁H₁₄O [M + H]⁺ 163.1123, found 163.1127.

(E)-4-(4-chlorophenyl)but-3-en-2-ol^{S10}

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.45–7.41 (m, 2H), 7.23 (dd, *J* = 8.4, 1.9 Hz, 2H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.25 (ddd, *J* = 15.9, 6.2, 1.2 Hz, 1H), 4.50–4.46 (m, 1H), 1.38–1.36 (m, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 135.6, 134.3, 131.6, 128.1, 127.9, 121.3, 68.7, 23.4. HRMS *m/z* calcd for C₁₀H₁₁ClO [M + H]⁺ 183.0576, found 183.0577.

(E)-4-(4-bromophenyl)but-3-en-2-ol^{S10}

¹H NMR (400 MHz, DMSO-d₆, ppm) δ 7.45–7.40 (m, 2H), 7.38–7.32 (m, 2H), 6.50 (d, *J* = 16.8 Hz, 1H), 6.33 (dd, *J* = 16.0, 5.4 Hz, 1H), 4.91 (d, *J* = 4.4 Hz, 1H), 4.34–4.26 (m, 1H), 1.20 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆, ppm) δ 136.5, 135.9, 131.5, 128.5, 127.8, 125.9, 66.5, 23.7. HRMS *m*/*z* calcd for C₁₀H₁₁BrO [M + H]⁺ 227.0071, found 227.0070.

(E)-4-(naphthalen-2-yl)but-3-en-2-ol^{S11}

¹H NMR (400 MHz, DMSO-d₆, ppm) δ 7.88–7.82 (m, 4H), 7.68 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.51–7.43 (m, 2H), 6.67 (d, *J* = 15.7 Hz, 1H), 6.46 (dd, *J* = 15.9, 5.5 Hz, 1H), 4.93 (d, *J* = 4.4 Hz, 1H), 4.40–4.32 (m, 1H), 1.25 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆, ppm) δ 136.2, 134.5, 133.3, 132.3, 128.1, 127.8, 127.5, 127.2, 126.3, 125.7, 125.6, 123.7, 66.7, 23.8. HRMS *m*/*z* calcd for C₁₄H₁₄O [M + H]⁺ 199.1123, found 199.1124.

(E)-2-benzylidenecyclohexan-1-ol^{S12}

¹H NMR (400 MHz, DMSO-d₆, ppm) δ 7.32 (dd, *J* = 9.7, 5.4 Hz, 2H), 7.19 (dd, *J* = 7.2, 5.7 Hz, 3H), 6.49 (s, 1H), 4.95 (t, *J* = 4.7 Hz, 1H), 4.06–3.97 (m, 1H), 2.73–2.65 (m, 1H), 1.98–1.86 (m, 2H), 1.77 (dd, *J* = 9.0, 3.8 Hz, 1H), 1.62–1.54 (m, 1H), 1.51–1.38 (m, 2H), 1.36–1.27 (m, 1H). ¹³C

NMR (101 MHz, DMSO-d₆, ppm) δ 145.3, 137.7, 128.6, 128.1, 125.9, 119.2, 71.7, 37.0, 27.2, 27.0, 23.4. HRMS *m/z* calcd for C₁₃H₁₆O [M + H]⁺ 189.1279, found 189.1277.

1-Penten-3-ol⁸⁹

ΟН

¹H NMR (400 MHz, CDCl₃, ppm) δ 5.85 (ddd, *J* = 16.8, 10.2, 6.3 Hz, 1H), 5.22 (d, *J* = 17.2 Hz, 1H), 5.11 (d, *J* = 10.4 Hz, 1H), 4.02 (d, *J* = 5.8 Hz, 1H), 2.34–2.19 (m, 1H), 1.56 (dd, *J* = 8.1, 5.0 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 140.9, 114.6, 74.4, 29.8, 9.5. HRMS *m/z* calcd for C₅H₁₀O [M + H]⁺ 87.0810, found 87.0814.

References

- S1 D. W. Tan, H. X. Li, M. J. Zhang, J. L. Yao and J. P. Lang, *ChemCatChem* 2017, 9, 1113– 1118.
- S2 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3-8.
- S3 H. Shimizu, N. Sayo and T. Saito, *Synlett* **2009**, *8*, 1295–1298.
- S4 X. F. Wu, J. K. Liu, X. H. Li, A. Zanotti-Gerosa, F. Hancock, D. Vinci, J. Ruan and J. L. Xiao, Angew. Chem. Int. Ed. 2006, 45, 6718–6722.
- S5 D. J. Peng, M. T. Zhang and Z. Huang, Chem. Eur. J. 2015, 21, 14737–14741.
- S6 N. Siddqui, B. Sarkar, C. Pendem, R. Khatun, L. N. S. Konthala, T. Sasaki, A. Bordoloi and R. Bal, *Catal. Sci. Technol.* 2017, 7, 2828–2837.
- S7 M. Okutani and Y. Mori, J. Org. Chem. 2009, 74, 442-444.
- S8 T. Mitsudome, M. Matoba, M. Yamamoto, T. Mizugaki, K. Jitsukawa and K. Kaneda, *Chem. Lett.* 2013, 42, 660–662.
- S9 C. P. Casey and H. R. Guan, J. Am. Chem. Soc. 2007, 129, 5816–5817.
- S10 X. N. Chen, H. Zhou, K. Y. Zhang, J. W. Li and H. M. Huang, Org. Lett., 2014, 16, 3912– 3915.
- S11 P. He, X. H. Liu, H. F. Zheng, W. Li, L. L. Lin and X. M. Feng, Org. Lett., 2012, 14, 5134– 5137.
- S12 J. B. Xie, J. H. Xie, X. Y. Liu, W. L. Kong, S. Li and Q. L. Zhou, J. Am. Chem. Soc. 2010, 132, 4538–4539.

Compounds	$2 \cdot 3 CH_2 Cl_2$	3 ·0.5MeCN
Formula	$C_{39}H_{45}Cl_6Cu_{11}I_5N_{12}S_6\\$	$C_{74}H_{87}Cu_{20}I_8N_{25}S_{12}$
Formula weight	2420.37	3997.41
Crystal system	monoclinic	tetragonal
Space group	C2/c	$P4_{1}2_{1}2$
a/Å	28.313(3)	14.182(2)
$b/{ m \AA}$	15.0425(14)	14.182(2)
$c/{ m \AA}$	20.956(2)	29.472(6)
$eta /^{\circ}$	124.589(3)	
$V/Å^3$	7347.6(13)	5927.5(17)
$D_c/({\rm g~cm^{-3}})$	2.188	2.240
Ζ	4	2
μ (Mo–K α)/mm ⁻¹	5.640	5.845
<i>F</i> (000)	4580	3804
Total reflections	110587	24552
Unique reflections	8489	6784
No observations	6173	5808
No parameters	355	323
$R_{\rm int}$	0.1009	0.0613
R^{a}	0.0772	0.0678
wR^b	0.2270	0.1505
GOF^{c}	1.055	1.103

Table S1. Crystal Data and Structure Refinement Parameters for $2\cdot 3 CH_2 Cl_2$ and $3\cdot 0.5 MeCN$

Complex $2.3CH_2CI_2$			
Cu(1)-N(3)	2.014(9)	Cu(1)-S(3)	2.228(3)
Cu(1)-S(1)	2.278(3)	Cu(2)-N(2)	2.003(9)
Cu(2)-S(3B)	2.213(3)	Cu(2)-S(2)	2.282(3)
Cu(3)-N(5)	2.012(10)	Cu(3)-S(1B)	2.249(3)
Cu(3)-S(2)	2.264(3)	Cu(4)-N(4)	1.993(9)
Cu(4)-I(1)	2.6015(19)	Cu(4)-I(2)	2.5284(19)
Cu(5)-N(1A)	1.967(9)	Cu(5)-I(1)	2.516(2)
Cu(5)-I(2)	2.6190(19)	Cu(6)-N(6)	1.990(9)
Cu(6)-I(3)	2.497(3)	$Cu(1)\cdots Cu(3)$	2.7957(18)
$Cu(1)\cdots Cu(2)$	2.998(2)	$Cu(2)\cdots Cu(3B)$	2.7767(18)
$Cu(4)\cdots Cu(5)$	2.5460(19)		
N(3)-Cu(1)-S(3)	125.0(3)	N(3)-Cu(1)-S(1)	110.8(3)
S(3)-Cu(1)-S(1)	118.36(11)	N(2)-Cu(2)-S(3B)	128.5(3)
N(2)-Cu(2)-S(2)	109.2(3)	S(3B)-Cu(2)-S(2)	115.63(11)
N(5)-Cu(3)-S(1B)	125.1(3)	N(5)-Cu(3)-S(2)	118.7(3)
S(1B)-Cu(3)-S(2)	108.25(11)	N(4)-Cu(4)-I(2)	130.8(3)
N(4)-Cu(4)-I(1)	113.6(3)	I(2)-Cu(4)-I(1)	114.23(6)
N(1A)-Cu(5)-I(1)	136.2(3)	N(1A)-Cu(5)-I(2)	107.9(3)
I(1)-Cu(5)-I(2)	114.03(6)	N(6C)-Cu(6)-N(6)	136.8(6)
N(6C)-Cu(6)-I(3)	111.6(3)	N(6)-Cu(6)-I(3)	111.6(3)
Complex 3.0.5MeCN			
Cu(1)-S(1)	2.207(3)	Cu(1)-S(3)	2.314(3)
Cu(1)-N(5A)	1.998(8)	Cu(2)-N(2)	2.026(9)
Cu(2)-S(3A)	2.212(3)	Cu(2)-S(2)	2.289(3)
Cu(3)-N(3A)	2.000(9)	Cu(3)-S(2)	2.220(3)
Cu(3)-S(1A)	2.322(3)	Cu(4)-N(6)	1.985(10)
Cu(4)-I(1)	2.5396(18)	Cu(4)-I(2)	2.577(2)
Cu(5)-N(1)	2.015(9)	Cu(5)-I(1)	2.5538(18)
Cu(5)-I(2)	2.6011(18)	$Cu(1)\cdots Cu(2)$	2.7825(19)
$Cu(1A)\cdots Cu(1)$	2.963(3)	$Cu(3)\cdots Cu(3)$	2.663(3)
$Cu(4)\cdots Cu(5)$	2.501(2)		
N(5A)-Cu(1)-S(1)	135.6(2)	N(5A)-Cu(1)-S(3)	107.4(2)
S(1)-Cu(1)-S(3)	112.57(11)	N(2)-Cu(2)-S(3A)	135.6(3)
N(2)-Cu(2)-S(2)	107.9(3)	S(3A)-Cu(2)-S(2)	112.37(11)
N(3A)-Cu(3)-S(2)	142.2(3)	N(3A)-Cu(3)-S(1A)	111.0(3)
S(2)-Cu(3)-S(1A)	104.31(11)	N(6)-Cu(4)-I(1)	123.7(3)
N(6)-Cu(4)-I(2)	112.1(3)	I(1)-Cu(4)-I(2)	121.39(7)
N(1B)-Cu(5)-I(1)	129.0(3)	N(1B)-Cu(5)-I(2)	110.9(3)
I(1)-Cu(5)-I(2)	119.90(6)		

Table S2. Selected Bond Lengths (Å) and Angles (°) for 2·3CH₂Cl₂ and 3·0.5MeCN. Complex 2·3CH₂Cl₂

Symmetry code: (A) x, -y + 1, z - 3/2; (B) -x + 1/2, -y + 1/2, -z; (C) -x, y, -z - 1/2 for $2 \cdot 3$ CH₂Cl₂, (A) -x + 1, -y + 1, -z+1/2 and (B) -x + 3/2, y - 1/2, -z + 1/4 for $3 \cdot 0.5$ MeCN.

Cat., base, RT solvent, blue LEDs								
4a		,	5a	6a	\checkmark	7a	ų.	
Entry ^a	Cat.	Base	Solvent		Conv.	S	Sel. (%)) ^b
					(%) ^b	5a	6a	7a
1	3	NaOH	i-PrOH		100	80	6	14
2	3	NaOH	MeOH		66	68	14	18
3	3	NaOH	EtOH		73	73	8	19
4	3	NaOH	i-PrOH/MeCN	10/1	98	90	5	5
5	3	NaOH	i-PrOH/MeCN	5/1	94	87	9	4
6	3	NaOH	i-PrOH/MeCN	2/1	100/87°	94	2	4
7	3	NaOH	i-PrOH/MeCN	1/1	100	80	14	6
8	-	NaOH	i-PrOH/MeCN	2/1	11	40	35	25
9	3	-	i-PrOH/MeCN	2/1	16	57	25	18
10 ^d	3	NaOH	i-PrOH/MeCN	2/1	21	79	12	9
11	3	KOH	i-PrOH/MeCN	2/1	100	91	5	4
12	3	tBuOK	i-PrOH/MeCN	2/1	100	87	6	7
13	3	NaOMe	i-PrOH/MeCN 2/1		100	85	8	7
14	3	Cs ₂ CO ₃	i-PrOH/MeCN	2/1	96	85	9	6
15	3	Na ₂ CO ₃	i-PrOH/MeCN	2/1	27	56	19	25
16	3	K ₂ CO ₃	i-PrOH/MeCN	2/1	31	58	23	19
17	3	K ₃ PO ₄	i-PrOH/MeCN	2/1	20	65	20	15
18	1	NaOH	i-PrOH/MeCN	2/1	80	75	15	10
19	2	NaOH	i-PrOH/MeCN	2/1	100/84 ^c	87	7	6
20	4	NaOH	i-PrOH/MeCN	2/1	62	54	23	23
^a General conditions: cinnamaldehyde (0.2 mmol), cat.(6 mg), base (20 mol%),								
solvent (8 mL), room temperature, blue LEDs (455nm, 26W), 24 h, N ₂ . ^b Data								
determined by HPLC with biphenyl as an internal standard. ^c As-synthesized. ^d								
Without irradiation.								

Table S3. Optimizing the reaction conditions of photoinduced chemoselective transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol.

Fig. S1 PXRD patterns for 2.

Fig. S2 PXRD patterns for 3.

Fig. S4 XPS patterns of Cu in 2 and 3.

Fig. S5 The N_2 adsorption–desorption isotherm measured at 77 K of 2 (a) and 3 (b).

Fig. S6 The UV-vis spectra of 1-3 in the solid state.

Fig. S7 Emission spectra of 1-3 in the solid state at room temperature ($\lambda_{ex} = 420$ nm).

Fig. S8 Transient photocurrent responses for 1-3.

Fig. S9 Solid-state optical diffuse-reflection spectra of **1-3** with BaSO₄ as background derived from the diffuse reflectance data at ambient temperature.

Fig. S10 PXRD patterns of 3 after catalytic reaction.

Fig. S11 SEM image of NPs 3 after the fourth cycle.

Fig. 12 DFT calculated energy diagram for transfer hydrogenation (B3LYP level).

TS2FS1Fig. S13 Optimized structures of Cat II, 2aa and TS1, MS1, TS2, FS1 for C=O hydrogenation
catalyzed by Cat II.

TS3

TS4

MS2

MS3

Fig. S14 Optimized structures of TS3, MS2, TS4, MS3, TS5 and FS2 for C=C hydrogenation catalyzed by Cat II.

Scheme S1. Plausible Pathway for Selective Transfer Hydrogenation.

The ¹H and ¹³C NMR spectra of products

$\begin{array}{c} 22 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 $	33 33 33 33 33 33 33 33 33 33 33 33 33	35
1.1.1.00000000	4 4 4 4	ci

Fig. S18 The ¹H and ¹³C NMR spectra for 4-fluorocinnamic alcohol.

Fig. S19 The ¹H and ¹³C NMR spectra for 4-chlorocinnamic alcohol.

Fig. S20 The ¹H and ¹³C NMR spectra for 4-bromocinnamic alcohol.

33333555255 3333555255 333355525555 3335555255555 33355555555	31 32 33	62
111100000000	4 4 4 4	

Fig. S21 The ¹H and ¹³C NMR spectra for 4-nitrocinnamic alcohol.

Fig. S22 The ¹H and ¹³C NMR spectra for α -bromocinnamic alcohol.

Fig. S23 The ¹H and ¹³C NMR spectra for α -methylcinnamic alcohol.

Fig. S24 The ¹H and ¹³C NMR spectra for α -amylcinnamic alcohol.

Fig. S25 The ¹H and ¹³C NMR spectra for (E)-3-(furan-2-yl)prop-2-en-1-ol.

33 33 33 33 33 33 33 33 33 33 33 33 33	6444	
1.1.1.1.10000000	4444	

-68.7

-1.93

 $\binom{1.37}{1.35}$

Fig. S31 The ¹H and ¹³C NMR spectra for (E)-4-(4-bromophenyl)but-3-en-2-ol.

222222222442324444	32 33 33 38 6 58 6 58	2 2
000000011111	44444444	
		\checkmark

