Supplementary Information

Ring-opening hydrolysis of spiro-epoxyoxindoles using reusable sulfonic acid functionalized nitrogen rich carbon catalyst

Parth Patel,^{a,b} Raj Kumar Tak,^{a,c} Bhavesh Parmar,^{a,c} Shilpa Dabas,^a Brijesh Patel,^{a,c} Eringathodi Suresh,^{c,d} Noor-ul H. Khan^{a,c*} Saravanan Subramanian^{a,c*}

^aInorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India

^bCharotar University of Science and Technology, Changa, Anand-388421, Gujarat, India

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

^dAnalytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat (India)

E-mail: khan251293@yahoo.in; saravanans@csmcri.res.in

X-ray Crystallography

The crystallographic data and refinement for **2a**, **2b**, **2c**, **2e** and **2g** are provided in **Table S1**. Crystal of suitable size was selected from the mother liquor and immersed in paratone oil and then mounted for data collection. Single crystal X-ray data was collected using a Bruker D8 QUEST (PHOTON) diffractometer. The linear absorption coefficients, scattering factors for the atoms, and the anomalous dispersion corrections were obtained from International Tables for X-ray Crystallography. The data integration and reduction were processed using SAINTPLUS software.⁵¹ An empirical absorption correction was applied to the collected reflections with SADABS using XPREP.⁵² The structure was solved by the direct method using SHELXTL⁵³ and was refined on F² by a full-matrix least-squares technique using the SHELXL-2014⁵⁴ program package. Non-hydrogen atoms were refined anisotropically and the hydrogen atoms attached to the organic moiety were stereochemically fixed. CCDC numbers 1961234-1961238 corresponds to all the compounds reported in this manuscript and this data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/cif</u>

Identification code	2a	2b	2c	2e	2g
Chemical formula	$C_{128}H_{120}N_8O_{24}$	$C_{10}H_{11}NO_3$	$C_{12}H_{13}NO_3$	C ₁₇ H ₁₇ NO ₄	CIC ₁₆ H ₁₄ NO ₃
Formula weight (g/mol)	2154.31	193.20	219.23	299.31	303.73
Crystal Color	Colorless	Colorless	Colorless	Light Yellow	Colorless
Crystal Size	0.44 x 0.08 x	0.29 x 0.24 x	0.33 x 0.12 x	0.60 x 0.40 x	0.36 x 0.07 x
(mm)	0.05	0.22	0.04	0.10	0.06
Temperature (K)	301(2)	122(2)	150(2)	305(2)	301(2)
Crystal System	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic
Space Group	P 2 ₁ 2 ₁ 2 ₁	P 2 ₁ /n	P 2 ₁ 2 ₁ 2 ₁	Рс	Fdd2
a(Å)	5.1638(3)	8.3175(11)	5.8505(12)	8.4593(5)	62.210(8)
b(Å)	19.3060(12)	10.2481(16)	11.594(2)	5.8691(4)	17.713(2)
c(Å)	27.209(2)	10.9658(17)	16.205(3)	30.718(2)	5.2259(7)
α(°)	90	90	90	90	90
β(°)	90	98.059(5)	90	97.420(2)	90
γ(°)	90	90	90	90	90
Z	1	4	4	4	16
V(Å ³)	2712.5(3)	925.5(2)	1099.2(4)	1512.33(18)	5758.6(13)
Density (Mg/m³)	1.319	1.387	1.325	1.315	1.401
μ(mm ⁻¹)	0.092	0.103	0.096	0.094	0.274
F(000)	1136	408	464	632	194
Reflections Collected	20795	11988	5494	22546	18150
Independent Reflections	6671	2254	1934	5901	9343
R _{int}	0.1001	0.0426	0.0510	0.0409	0.0835
Number of parameters	369	160	175	469	194
GOF on F ²	0.994	1.135	1.114	1.043	1.009
Final R₁/wR₂ (I ≥2σ(I)	0.0621/0.1019	0.0604/0.1858	0.0767/0.1348	0.0511/0.1309	0.0635/0.1328
Weighted R ₁ /wR ₂ (all data)	0.2041/0.1476	0.0725/0.1953	0.0888/0.1387	0.0661/0.1430	0.1448/0.1730
CCDC number	1961235	1961236	1961234	1961237	1961238

Table S1. Crystal Data and Refinement Parameters for 2a, 2b, 2c, 2e, and 2g.

Figure S1. XPS Deconvoluted Spectrum of N 1S.

Figure S2. Powder XRD pattern of Cal-CB₆ and SO₃H@N-C/CB₆.

Figure S3. SEM image of SO₃H@N-C/CB₆.

¹H & ¹³C NMR analysis of hydrolysis products of spiro epoxyoxindoles

2a: ¹H NMR (600 MHz, CDCl₃), δ 7.41 (d, J = 7.5 Hz, 1H), 7.28 – 7.20 (m, 5H), 7.17 (t, J = 7.5 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 4.91 (d, J = 15.9 Hz, 1H), 4.73 (d, J = 15.7 Hz, 1H), 3.89 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 177.98, 142.59, 135.26, 129.90, 128.90, 127.75, 127.19, 124.59, 123.46, 109.70, 76.23, 66.92, 43.78.

2b: ¹H NMR (600 MHz, CDCl₃), δ 7.39 (d, J = 7.2 Hz, 1H), 7.35 (t, J = 7.9 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 3.86 – 3.77 (m, 2H), 3.19 (s, 3H), 1.67 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 177.66, 143.66, 130.32, 127.57, 124.42, 123.52, 108.76, 75.42, 66.92, 26.29.

2c : ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, J = 7.3 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 5.80 (ddd, J = 21.6, 10.3, 5.3 Hz, 1H), 5.25 – 5.18 (m, 2H), 4.36 – 4.32 (m, 1H), 4.24 (dd, J = 16.5, 4.9 Hz, 1H), 3.89 – 3.79 (m, 2H), 3.17 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 177.49, 142.82, 130.90, 130.14, 127.72, 124.50, 123.45, 117.94, 109.64, 75.57, 67.02, 42.35.

2d : ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.26 – 7.22 (m, 4H), 7.01 (d, J = 7.9 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 4.96 – 4.72 (m, 2H), 3.88 (dt, J = 21.2, 11.4 Hz, 2H), 3.16 – 3.00 (m, 1H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.78, 140.36, 135.31, 133.25, 130.44, 128.94, 127.82, 127.21, 125.25, 109.61, 75.59, 67.09, 43.79, 21.09.

2e: ¹H NMR (600 MHz,CDCl₃) δ 7.34 – 7.29 (m, 2H), 7.27 (d, J = 5.9 Hz, 4H), 7.02 (t, J = 2.0 Hz, 1H), 6.77 – 6.73 (m, 1H), 6.62 (d, J = 8.6 Hz, 1H), 4.93 (d, J = 15.7 Hz, 1H), 4.80 (d, J = 15.7 Hz, 1H),

1H), 3.88 (d, J = 13.8 Hz, 2H), 3.76 (s, 3H), 2.90 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 129.04, 127.95, 127.28, 111.48, 110.52, 67.21, 55.97, 43.93.

2f : ¹H NMR (600 MHz,CDCl₃) δ 7.30 – 7.21 (m, 5H), 7.17 (dd, J = 7.9, 2.3 Hz, 1H), 6.88 (td, J = 8.6, 2.4 Hz, 1H), 6.60 (dd, J = 8.6, 4.0 Hz, 1H), 4.91 (d, J = 15.7 Hz, 1H), 4.78 (s, 1H), 4.75 (d, J = 15.6 Hz, 1H), 3.89 (s, 2H), 3.54 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 177.73, 160.45, 138.42, 134.87, 129.78, 129.73, 129.03, 127.97, 127.16, 116.36, 116.21, 112.98, 112.81, 110.53, 110.47, 76.22, 66.93, 43.97.

2g : ¹H NMR (600 MHz,CDCl₃) δ 7.35 – 7.26 (m, 4H), 7.25 (d, J = 7.3 Hz, 3H), 7.05 (d, J = 8.3 Hz, 1H), 6.72 (s, 1H), 4.91 (s, 1H), 4.78 (d, J = 15.6 Hz, 1H), 3.85 (d, J = 3.3 Hz, 2H), 2.68 (s, 1H). ¹³C NMR (151 MHz,CDCl₃) δ 129.14, 128.14, 127.17, 125.48, 123.45, 110.49, 66.87, 43.90.

2j : ¹H NMR (200 MHz, CDCl₃) δ 7.37 – 7.08 (m, 2H), 6.76 (d, J = 7.9 Hz, 1H), 4.43 (s, 1H), 3.85 (s, 2H), 3.19 (s, 3H), 2.36 (s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 177.61, 141.13, 133.11, 130.30, 127.75, 125.18, 108.40, 66.90, 26.24, 21.05.

2k : ¹H NMR (600 MHz,CDCl₃) δ 7.39 (d, J = 7.2 Hz, 1H), 7.32 – 7.23 (m, 6H), 7.08 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 4.93 (s, 2H), 3.91 (q, J = 11.4 Hz, 2H), 3.13 (s, 3H), 2.69 (s, 1H). ¹³C NMR (151 MHz,CDCl₃) δ 175.04, 143.45, 135.50, 130.25, 128.96, 127.85, 127.27, 125.20, 125.02, 123.27, 109.76, 82.74, 66.85, 53.49, 43.90.

Figure S4. ¹H NMR of 2a.

Figure S6. ¹H NMR of 2b.

Figure S7. ¹³C NMR of 2b.

Figure S8. ¹H NMR of 2c.

Figure S10. ¹H NMR of 2d.

Figure S12. ¹H NMR of 2e.

f1 (ppm)

Figure S14. ¹H NMR of 2f.

Figure S16. ¹H NMR of 2g.

Figure S18. ¹H NMR of 2j.

Figure S20. ¹H NMR of 2k.

Figure S21. ¹³C NMR of 2k.

References:

- **S1.** *SAINT+, 6.02 ed*, Bruker AXS, Madison, WI, 1999.
- **S2.** *XPREP, 5.1 ed*, Siemens Industrial Automation Inc., Madison, WI, 1995.
- **S3.** Sheldrick, G. M. SHELXTL Reference Manual: Version 5.1; Bruker AXS, Madison, WI, 1997.
- **S4.** Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Cryst. C* **2015**, *71*, 3-8.