Supplementary materials

Efficient reduction of nitro compounds and domino preparation of 1-substituted-1*H*-1,2,3,4-tetrazoles by Pd(II)-polysalophen coated magnetite NPs as a robust versatile nanocomposite

DaPeng Xu,^a Meilu Xiong,^b*Milad Kazemnejadi,*c

 ^a Institute of Chemical Technology, Gansu Industry Polytechnic College, TianShui 741000, China Public Foundation College, Gansu Health Vocational College, Lanzhou 730207, China
 ^b Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran.
 *Corresponding: Email: <u>bearbabyx@sina.com</u> (Meilu Xiong); <u>miladkazemnejad@yahoo.com</u> (Milad Kazemnejadi)

Fig. S1 ¹H-NMR spectrum of TCT(SA)₃(3) (CDCl₃, 400 MHz)

Fig. S2 ¹³C-NMR spectrum of TCT(SA)₃ (**3**) (CDCl₃, 100 MHz)

Table S1 Determination of	Pd content and mea	n diameter in Cat.	9 with different Pd loadir	ıg
amounts				

Entry	Cat. 9/ Pd (wt%)		Mean diameter (nm) ^a
	ICP analysis	EDX (mean of 5 points)	-
1	2.22	1.54	82
2	6.06	5.90	85
3	10.11	9.90	82
4	14.16	13.98	90
5	18.19	18.01	94

^a DLS analysis

Table S2 Reduction of nitroarens and domino preparation of 1-substituted-1*H*-1,2,3,4-tetrazoles catalyzed by $Fe_3O_4@SiO_2@polysalophen-Pd(II)$ **9** with various Pd content.

Entry	Catalyst 9	Product	2		
		7a ^a	8a ^b	8a ^c	

		Time	Yield	Time	Yield	Time	Yield
		(min)	(%)	(min)	(%)	(min)	(%)
1	Cat. 9/ 0.12 mol%Pd	60	33	75	22	90	15
2	Cat. 9/ 0.3 mol%Pd	60	72	75	60	90	50
3	Cat. 9/ 0.6 mol%Pd	60	96	75	97	90	98
4	Cat. 9/ 0.8 mol%Pd	60	98	75	97	90	98
5	Cat. 9/ 1.0 mol%Pd	60	95	75	92	90	90

^a Nitroarene (1.0 mmol), NaBH₄ (2.0 mmol), H₂O (2.0 mL), catalyst 9 (5 mg), reflux.
^b Aniline (1.0 mmol), triethyl orthoformate (1.2 mmol), catalyst 9 (5 mg), H₂O (2.0 mL), reflux.
^c Nitrobenzene (1.0 mmol), triethyl orthoformate (1.2 mmol), NaN₃ (1.5 mmol), NaBH₄ (2.0 mmol), H₂O (2.0 mL), catalyst 9 (5 mg), reflux.

Characterization data for 12a-12h

1-Phenyl-1*H*-Tetrazole (Table 3, 12a)

White solid; m.p. 64-45 °C [1]; ¹H NMR (250 MHz, CDCl₃) δ (ppm)= 6.87-7.05 (m, 5H), 8.20 (s, 1H); ¹³C NMR (62.9 MHz, CDCl₃) δ (ppm)= 129.5, 130.1, 134.2, 135.0; CHN: Found %: C 57.52; H 4.10; N 38.39. C₇H₆N₄. Calculated, %: C 57.53; H 4.14; N 38.34.

1-(4-Methoxyphenyl)-1*H*-Tetrazole (Table 3, 12b)

White solid; m.p. 114-115 °C [1]; ¹H NMR (250 MHz, CDCl₃) δ (ppm)= 3.72 (s, 3H), 6.72 (d, *J*= 8.00 Hz, 2H), 7.19 (d, *J*= 8.00 Hz, 2H), 8.27 (s, 1H); ¹³C NMR (62.9 MHz, CDCl₃) δ (ppm)= 57.8, 115.4, 123.6, 128.4, 133.6, 150.6; CHN: Found %: C 54.52; H 4.60; N 31.81. C₈H₈N₄O. Calculated, %: C 54.54; H 4.58; N 31.80.

1-(4-Phenol)-1*H*-Tetrazole (Table 3, 12c)

White solid; mp 185-187 °C [1,2]; ¹H NMR (250 MHz, DMSO- d_6) δ (ppm)= 6.97-7.00 (d, *J*= 9 Hz, 2 H), 7.6-7.7 (d, *J*= 9 Hz, 2 H), 9.94 (s, 1 H), 10.15 (s, 1H); ¹³C NMR (62.9 MHz, DMSO- d_6) δ (ppm)= 116.6, 123.5, 125.9, 142.5, 159.0; CHN: Found %: C 51.87; H 3.76; N 34.50. C₇H₆N₄O. Calculated, %: C 51.85; H 3.73; N 34.55.

1-*p*-Tolyl-1*H*-Tetrazole (Table 3, 12d)

White solid (91% yield); m.p. 94-96 °C [1,3]; ¹H NMR (250 MHz, CDCl₃) δ (ppm)= 2.87 (s, 3H), 6.73 (d, *J*= 8.50 Hz, 2H), 7.15 (d, *J*= 8.50 Hz, 2H), 8.27 (s, 1H); ¹³C NMR (62.9 MHz, CDCl₃) δ (ppm)= 23.8, 116.7, 124.9, 127.5, 133.6, 145.4; CHN: Found %: C 59.93; H 3.5.05; N 35.02. C₈H₈N₄. Calculated, %: C 59.99; H 5.03; N 34.98.

1-(4-Chlorophenyl)-1*H*-Tetrazole (Table 3, 12e)

White crystal; m.p. 157 °C [3,4]; ¹H NMR (250 MHz, CDCl₃) δ (ppm)= 7.30 (d, *J*= 9.0 Hz, 2H), 7.51 (d, *J*= 9.6 Hz, 2H), 8.36 (s, 1H); ¹³C NMR (62.9 MHz, CDCl₃) δ (ppm)= 117.7, 119.1, 123.7, 129.5, 135.8; CHN: Found %: C 46.55; H 2.77; N 31.06. C₇H₅ClN₄. Calculated, %: C 46.56; H 2.79; N 31.02.

1-(4-Benzonitrile)-1H-Tetrazole (Table 3, 12f)

White solid; m.p. 177-179°C [1,2]; ¹H NMR (250 MHz, CDCl₃) δ (ppm)= 7.25 (d, *J*= 5.75 Hz, 2H), 7.32 (d, *J*= 5.7 Hz, 2H), 8.26 (s, 1H); ¹³C NMR (62.9 MHz, CDCl₃) δ (ppm)= 112.3, 118.2, 122.7, 132.8, 137.4, 140.4; CHN: Found %: C 56.17; H 2.97; N 40.86. C₈H₅N₅. Calculated, %: C 56.14; H 2.94; N 40.92.

2-(1H-tetrazol-1-yl) pyridine (Table 3, 12g)

White solid; mp 80-82 °C [18]; ¹H NMR (250 MHz, CDCl₃) δ (ppm)= 7.50-7.45 (m, 1 H), 8.05-7.99 (m, 1 H), 8.12-8.09 (d, *J*= 9 Hz, 1 H), 8.57-8.55 (q, *J*= 2.3Hz, 1 H), 9.57 (s, 1 H); ¹³C NMR (62.9 MHz, CDCl₃) δ (ppm)= 114.4, 124.8, 139.8, 140.1, 146.9, 149.0; CHN: Found %: C 49.01; H 2.45; N 46.55. C₆H₅N₅. Calculated, %: C 48.98; H 3.43; N 47.60.

1-(3-Nitrobenzene)-1*H*-Tetrazole (Table 3, 12h)

H₂N

White solid; m.p. 106-108 °C [2,4]; ¹H NMR (250 MHz, CDCl₃) δ (ppm)= 7.41-7.48 (m, 1 H), 7.90 (d, 1 H, J = 9.5 Hz), 8.02 (d, 1 H, J = 9.5 Hz), 8.40 (s, 1 H), 8.53 (s, 1 H); ¹³C NMR (62.9 MHz, CDCl₃) δ (ppm)= 114.4, 118.6, 125.5, 129.7, 130.4, 139.1, 149.8; CHN: Found %: C 52.19; H 4.41; N 43.40. C₇H₇N₅. Calculated, %: C 52.17; H 4.38; N 43.45.

References

- [1] Habibi, D., Pakravan, N., Arabi, A., & Kaboudvand, Z. (2018). Preparation of Fe₃O₄@ 5, 10-dihydropyrido [2, 3-b] quinoxaline-7, 8-diol copper complex: A capable nanocatalyst for the green synthesis of 1-substituted 1*H*-tetrazoles. *Applied Organometallic Chemistry*, 32(1), e3988.
- [2] Aridoss, G., & Laali, K. K. (2011). Building Heterocyclic Systems with RC(OR)²⁺ Carbocations in Recyclable Brønsted Acidic Ionic Liquids: Facile Synthesis of 1-Substituted

1*H*-1, 2, 3, 4-Tetrazoles, Benzazoles and Other Ring Systems with CH(OEt)₃ and EtC(OEt)₃ in [EtNH₃][NO₃] and [PMIM (SO₃H)][OTf]. *European Journal of Organic Chemistry*, 2011(15), 2827-2835.

- [3] Sharghi, H., Ebrahimpourmoghaddam, S., & Doroodmand, M. M. (2013). Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4'-phenyl-2, 2': 6', 2 "-terpyridine copper (II) complex immobilized onto activated multi-walled carbon nanotubes. *Journal of Organometallic Chemistry*, 738, 41-48.
- [4] Ghasemzadeh, M. S., & Akhlaghinia, B. (2017). 2-Aminoethanesulfonic Acid Immobilized on Epichlorohydrin Functionalized Fe₃O₄@WO₃ (Fe₃O₄@WO₃-EAE-SO₃H): A Novel Magnetically Recyclable Heterogeneous Nanocatalyst for the Green One-Pot Synthesis of 1-Substituted-1 *H*-1, 2, 3, 4-Tetrazoles in Water. *Bulletin of the Chemical Society of Japan*, 90(10), 1119-1128.