Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Green metal-free "one-pot" microwave assisted synthesis of 1,4-dihydrochromene triazoles

Tânia M. F. Alves ^a; Guilherme A. M. Jardim^a; Marco A. B. Ferreira^{a*}

^aCentre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo, Brazil, 13565-905. *marco.ferreira@ufscar.br

Generalities

Reagents, when not synthesized, as well as solvents were obtained commercially and when necessary were treated according to the literature. Thin layer chromatography analysis (TLC) using fluorescent-treated silica gel 60 (F254) coated aluminum plates and revealed under UV light and/or vanillin were performed to follow up the reactions. Column chromatography using silica gel 60 (230-240 mesh) was the technique of choice for purifications. ¹H and ¹³C NMR spectra were recorded using the Bruker Advance 400 brand spectrometer at 400 MHz and 100 MHz, respectively, employing CDCl₃ or DMSO d_6 as solvent, using tetramethylsilane (TMS) for the ¹H NMR spectra as a reference and for the ¹³C spectra the solvent signal was used, with the chemical displacements (δ) reported in ppm and the coupling constants (J) in Hertz (Hz). The following abbreviations were used to note signal multiplicities: s - singlet; d - doublet; t - triplet; q - quartet; dd doublet of doublets, ddt - doublet of doublet of triplets; dq - doublet of quartets; sept septet; m - multiplet. Melting point analysis were performed on a Melting Point M-560 (BUCHI®) apparatus and high-resolution mass spectra were recorded using a Bruker model IMPACT HDTM spectrometer operating in positive mode and electrospray ionization source and quadrupole time of flight analyzer (ESI-QqTOF). Microwave assisted reactions were performed in a CEM-Discover Collmate apparatus with air flush to control flask temperature.

Experimental procedures

Preparation of nitroolefins 1a-o¹

Method A: a 100 mL round bottom flask was charged with the corresponding aldehydes (10.0 mmol), nitro compounds (10.0 mmol) and methanol (4.0 mL) and the mixture was cooled to -5 °C. Then, 2.0 mL of a solution of NaOH (10.5 M) was added dropwise to the mixture, and temperature was kept at -5 °C. The mixture was vigorously stirred for 15 minutes and water (7.0 mL) was added. The resulting mixture was slowly poured in a 50

mL erlenmeyer containing a 4 M solution of HCl (6.0 mL). The yellow precipitate was collected by simple filtration and recrystallized in EtOH (6.0 mL).

Method B: A 5.0 mL resealable microwave reaction vessel was charged with benzaldehyde (20.3 μ L, 0.20 mmol), nitromethane (11 μ L, 1.0 equiv.), benzoic acid (7.2 mg, 30 mol%), pyrrolidine (5.5 μ L, 30 mol%) and PEG400 (1.0 mL). The mixture was irradiated at 300 W with a constant temperature of 80 °C for 10 minutes. Next, water (5.0 mL) was added, and the precipitate was filtered and recrystallized in ethanol (6.0 mL).

(*E*)-(2-nitrovinyl)benzene (1a)²: yellow solid, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ: 8.00 (d, *J* = 13.7 Hz, 1H); 7.59 (d, *J* = 13.7 Hz, 1H); 7.56 – 7.42 (m, 5H).

(E)-1-methyl-4-(2-nitrovinyl)benzene (1b)²: yellow solid, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ: 7.98 (d, J = 13.6 Hz, 1H); 7.57 (d, J = 13.6 Hz, 1H); 7.44 (d, J = 8.2 Hz, 2H); 7.28-7.24 (m, 2H); 2.41 (s, 3H).

(*E*)-1-methoxy-4-(2-nitrovinyl)benzene (1c)²: yellow solid. 66% yield. ¹H NMR (400 MHz, CDCl₃) δ : 7.98 (d, *J* = 13.6 Hz, 1H); 7.53 (d, *J* = 13.6 Hz, 1H), 7.48 – 7.44 (m, 2H); 7.00 – 6.92 (m, 2H); 3.87 (s, 3H).

(E)-1-chloro-4-(2-nitrovinyl)benzene (1d)²: yellow solid, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ: 7.96 (d, J = 13.7 Hz, 1H); 7.56 (d, J = 13.7 Hz, 1H); 7.52 - 7.41 (m, 4H).

(*E*)-1-isopropyl-4-(2-nitrovinyl)benzene (1e)²: yellow solid, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ: 7.99 (d, *J* = 13.7 Hz, 1H); 7.57 (d, *J* = 13.6 Hz, 1H); 7.61-7.53 (m, 2H); 7.34-7.29 (m, 2H); 3.01-2.92 (m, 1H); 1.27 (d, *J* = 6.9 Hz, 6H).

(*E*)-1-(benzyloxy)-4-(2-nitrovinyl)benzene (1f)²: yellow solid, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ: 7.97 (d, *J* = 13.6 Hz, 1H); 7.52 (d, *J* = 13.6 Hz, 1H); 7.50 – 7.47 (m, 2H); 7.45 – 7.33 (m, 5H); 7.07 – 6.99 (m, 2H); 5.13 (s, 2H).

(*E*)-1-fluoro-4-(2-nitrovinyl)benzene (1g)²: yellow solid, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ: 7.98 (d, *J* = 13.7 Hz, 1H); 7.57 (d, *J* = 13.7 Hz, 1H); 7.54 – 7.50 (m, 2H); 7.19 – 7.12 (m, 2H).

(*E*)-1-(2-nitrovinyl)-4-(trifluoromethyl)benzene (1h)²: yellow solid, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ : 8.02 (d, *J* = 13.8 Hz, 1H); 7.74 – 7.65 (m, 4H); 7.62 (d, *J* = 13.7 Hz, 1H).

(*E*)-1,2-dimethoxy-4-(2-nitrovinyl)benzene (1i)²: yellow solid, 79% yield. ¹H NMR (400 MHz, DMSO-d₆) δ : 8.20 (d, J = 13.5 Hz, 1H); 8.05 (d, J = 13.5 Hz, 1H); 7.50 – 7.46 (m, 1H); 7.44 – 7.38 (m, 1H); 7.04 (d, J = 8.4 Hz, 1H); 3.81 (d, J = 5.4 Hz, 6H).

(*E*)-1-methoxy-3-(2-nitrovinyl)benzene (1j)²: yellow solid, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ: 7.97 (d, *J* = 13.7 Hz, 1H); 7.57 (d, *J* = 13.7 Hz, 1H); 7.40 – 7.33 (m, 1H); 7.17 – 7.11 (m, 1H); 7.06 – 7.01 (m, 2H); 3.85 (s, 3H).

(*E*)-1-nitro-3-(2-nitrovinyl)benzene (1k)²: yellow solid, 79% yield. ¹H NMR (400 MHz, DMSO-d₆) δ : 8.74 (s, 1H); 8.43 (d, *J* = 13.7 Hz, 1H); 8.37 – 8.26 (m, 3H); 7.78 (t, *J* = 8.0 Hz, 1H).

(*E*)-1-methyl-2-(2-nitrovinyl)benzene (11)²: yellow solid, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ: 8.28 (d, *J* = 13.6 Hz, 1H); 7.51(s, 1H); 7.50-7.47 (m, 1H); 7.42 – 7.34 (m, 1H); 7.30 – 7.23 (m, 2H); 2.47 (s, 3H).

(*E*)-(2-nitroprop-1-en-1-yl)benzene (4m)³: yellow solid, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ : 8.10 (s, 1H); 7.50 – 7.40 (m, 5H); 2.46 (d, J = 1.1 Hz, 3H).

(*E*)-1-methoxy-4-(2-nitroprop-1-en-1-yl)benzene (1n)³: yellow solid, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ: 8.06 (s, 1H); 7.45 – 7.38 (m, 2H); 7.00 – 6.94 (m, 2H); 3.85 (s, 3H); 2.46 (d, *J* = 1.0 Hz, 3H).

(*E*)-1-fluoro-4-(2-nitroprop-1-en-1-yl)benzene (10)³: yellow solid, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ: 8.05 (s, 1H); 7.48 – 7.40 (m, 2H); 7.20 – 7.12 (m, 2H); 2.45 (d, *J* = 0.9 Hz, 3H).

General microwave procedure for the synthesis of triazoles 2a-g

A 5 mL resealable microwave reaction vessel was charged with the corresponding nitroolefins (0.20 mmol), benzoic acid (12.2 mg, 50 mol%), sodium azide (26.0 mg, 0.4 mmol) and PEG400 (0.5 mL). The mixture was irradiated at 300 W with a constant temperature of 80 °C for 25 minutes. Then, the mixture was extracted with H₂O (15 mL) and EtOAc (3 x 10 mL) and the organic phase was dried with Na₂SO₄ and concentrated under vacuum. The crude products were purified via flash column chromatography utilizing a gradient of hexane/EtOAc mixture as eluent. The purified products were obtained with a hexane/EtOAc (8:2) proportion in all cases.

4-phenyl-1*H***-1,2,3-triazole (2a)⁴:** white solid, 62% yield. ¹**H NMR** (400 MHz, DMSOd₆) δ: 15.03 (s, 1H); 8.33 (s, 1H); 7.87 (d, *J* = 7.4 Hz, 2H); 7.47 (d, *J* = 7.3 Hz, 2H); 7.35 (d, *J* = 6.0 Hz, 1H).

4-(*p***-tolyl)-1***H***-1,2,3-triazole (2b)⁴:** white solid, 31% yield. ¹H NMR (400 MHz, CDCl₃) δ: 12.96 (s, 1H); 7.95 (s, 1H); 7.71 (d, *J* = 8.0 Hz, 2H); 7.30 – 7.22 (m, 2H); 2.38 (d, *J* = 6.4 Hz, 3H).

4-(4-methoxyphenyl)-1*H***-1,2,3-triazole (1c)⁴:** white solid, 34% yield. ¹H NMR (400 MHz, CDCl₃) δ: 12.76 (s, 1H); 7.90 (s, 1H); 7.79 – 7.71 (m, 2H); 7.01 – 6.96 (m, 2H); 3.86 (s, 3H).

4-(4-chlorophenyl)-1*H***-1,2,3-triazole (2d)⁴:** white solid, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ: 12.64 (s, 1H); 7.96 (s, 1H); 7.79 – 7.74 (m, 2H); 7.45 – 7.41 (m, 2H).

5-methyl-4-phenyl-1*H***-1,2,3-triazole (2e)**⁴: white solid, 57% yield. ¹**H NMR** (400 MHz, CDCl₃) δ: 12.15 (s, 1H); 7.74 – 7.69 (m, 2H); 7.50 – 7.44 (m, 2H); 7.42 – 7.36 (m, 1H); 2.55 (s, 3H).

4-(4-methoxyphenyl)-5-methyl-1*H***-1,2,3-triazole (2f)⁴:** white solid, 35% yield. ¹H **NMR** (400 MHz, CDCl₃) δ: 12.34 (s, 1H); 7.67 – 7.60 (m, 2H); 7.02 – 6.96 (m, 2H); 3.86 (s, 3H); 2.52 (s, 3H).

4-(4-fluorophenyl)-5-methyl-1*H***-1,2,3-triazole (2g)⁴:** white solid, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ: 12,34 (s, 1H); 7,67 – 7,60 (m, 2H); 7,02 – 6,96 (m, 2H); 3,86 (s, 3H); 2,52 (s, 3H).

Microwave sequential "one-pot" procedure for the synthesis of compounds 4a-o

Step 1: A 5 mL resealable microwave reaction vessel was charged with the corresponding nitroolefins (0.20 mmol), substituted salicylaldehydes (0.22 mmol), benzoic acid (7.2 mg, 30 mol%), pyrrolidine (5.5 μ L, 30 mol%) and PEG400 (1.0 mL). The mixture was irradiated at 300 W with a constant temperature of 110 °C for 20 minutes.

Step 2: Next, benzoic acid (4.8 mg, 20 mol%) and sodium azide (26.0 mg, 0.4 mmol) were added in sequence, and the mixture was irradiated (300 W) at 110 °C for 10 minutes. The mixture was extracted with H₂O (15 mL) and EtOAc (3 x 10 mL) and the organic phase was dried with Na₂SO₄ and concentrated under vacuum. The crude products were purified via flash column chromatography utilizing a gradient of hexane/EtOAc mixture as eluent. The purified products were obtained with a hexane/EtOAc (8:2) proportion in all cases.

4-phenyl-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4a)**⁵: White solid, 80% yield. ¹**H NMR** (400 MHz, DMSO-d₆) δ: 15.14 (s, 1H); 7.68 (d, *J* = 7.3 Hz, 1H); 7.39 – 7.35 (m, 5H); 7.30 – 7.25 (m, 1H); 7.09 – 7.03 (m, 2H); 6.77 (s, 1H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ: 152.5; 139.1; 130.1; 128.6; 127.0; 122.6; 122.2; 117.4; 116.1; 75.4.

4-(*p*-tolyl)-3,4-dihydrochromeno[3,4-*d*][1,2,3]triazole (4b)⁵: White solid, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ: 12.44 (s, 1H); 7.82 – 7.74 (m, 1H); 7.35 – 7.25 (m, 3H); 7.21 – 7.13 (m, 2H); 7.08 – 7.02 (m, 2H); 6.55 (s, 1H); 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.6; 142.4; 139.0; 135.7; 130.6; 129.6; 127.2; 123.4; 122.4; 117.9; 115.8; 76.1; 21.4.

4-(4-methoxyphenyl)-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4c)⁵: White solid, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ: 12.17 (s, 1H); 7.80 – 7.75 (m, 1H); 7.36 (d,** *J* **= 8.7 Hz, 2H); 7.30 – 7.27 (m, 1H); 7.08 – 7.02 (m, 2H); 6.93 – 6.87 (m, 2H); 6.53 (s, 1H); 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 160.2; 153.7; 148.3; 139.2; 130.6; 128.9; 123.4; 122.4; 117.9; 115.9; 114.3; 76.0; 55.5.**

4-(4-chlorophenyl)-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4d)⁵: White solid, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ: 11.92 (s, 1H); 7.77 (dd,** *J* **= 7.6, 1.7 Hz, 1H); 7.41 – 7.34 (m, 4H); 7.32 – 7.27 (m, 1H); 7.10 – 7.04 (m, 2H); 6.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 151.1; 138.6; 129.4; 128.6; 128.5; 127.0; 126.0; 121.8; 119.1; 75.7.**

4-(4-isopropylphenyl)-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4e): White solid. Rf:** 0.40 (hexane/EtOAc 8:2), 37.8 mg, 0.13 mmol, 64% yield. **Melting point:** 144-146 °C. ¹**H NMR** (400 MHz, CDCl₃) δ: 12.92 (s, 1H), 7.78 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.29 – 7.20 (m, 3H), 7.07 – 7.01 (m, 2H), 6.55 (s, 1H), 2.87 (sept, *J* = 7.1 Hz, 1H), 1.20 (d, *J* = 6.9 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 153.5, 149.7, 142.1, 138.7, 135.9, 130.5, 127.2, 126.9, 123.3, 122.3, 117.8, 115.6, 76.1, 33.9, 23.9. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₁₈H₁₈N₃O: cald. – 292.1444 found - 292.1444.

4-(4-(benzyloxy)phenyl)-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4f): White solid. Rf**: 0.31 (hexane/EtOAc 8:2), (43.3 mg, 0.12 mmol), 61% yield. **Melting point:** 172-174 °C. ¹**H NMR** (400 MHz, CDCl₃) δ: 11.74 (s, 1H), 7.77 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.45 – 7.33 (m, 7H), 7.26 (s, 1H), 7.08 – 7.02 (m, 2H), 6.99 – 6.95 (m, 2H), 6.53 (s, 1H), 5.05 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 159.3, 157.3, 153.5, 142.5, 136.8, 133.8, 130.9, 130.5, 128.7, 128.6, 128.0, 127.4, 123.2, 122.3, 117.8, 115.7, 115.0, 75.9, 70.1. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₂₂H₁₈N₃O₂: cald. – 356.1393 found – 356.1392.

4-(4-fluorophenyl)-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4g): Off-white solid. Rf**: 0.32 (hexane/EtOAc 8:2), 36.8 mg, 0.13 mmol, 69% yield. **Melting point:** 147-149 °C. ¹**H NMR** (400 MHz, DMSO) δ : 15.20 (s, 1H), 7.69 (d, *J* = 7.1 Hz, 1H), 7.43 (dd, *J* = 8.5, 5.7 Hz, 2H), 7.29 (t, *J* = 8.6 Hz, 2H), 7.23 (t, *J* = 8.8 Hz, 2H), 7.12 – 7.03 (m, 2H), 6.80 (s, 1H). ¹³**C NMR** (100 MHz, DMSO) δ : 163.3, 160.9, 152.3, 137.0, 135.2, 130.1, 129.4 (d, *J* = 8.6 Hz), 122.7, 122.6, 122.3, 118.2, 117.4, 115.9, 115.6 (d, *J* = 21.9 Hz), 74.7. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₁₅H₁₁FN₃O: cald. – 268.0880 found – 268.0881.

4-(3,4-dimethoxyphenyl)-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4h): White solid. Rf**: 0.36 (hexane/EtOAc 8:2), 34.6 mg, 0.11 mmol, 56% yield. **Melting point:** 183-185 °C. ¹**H NMR** (400 MHz, CDCl₃) δ : 11.92 (s, 1H); 7.78 (dd, *J* = 7.5, 1.4 Hz, 1H); 7.31 – 7.28 (m, 1H); 7.11 – 7.03 (m, 2H); 7.01 – 6.95 (m, 2H); 6.87 – 6.84 (m, 1H); 6.52 (s, 1H); 3.86 (d, *J* = 10.5 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 153.7; 149.7; 149.4; 131.0; 130.7; 123.4; 122.5; 120.1; 117.9; 115.9; 111.2; 110.5; 76.3; 56.0. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₁₇H₁₆N₃O₃: cald. – 310.1186 found – 310.1183.

4-(3-methoxyphenyl)-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4i): White solid. Rf**: 0.41 (hexane/EtOAc 8:2), 33.5 mg, 0.12 mmol, 60% yield. **Melting point:** 126-128 °C. ¹**H NMR** (400 MHz, CDCl₃) δ : 12.79 (s, 1H), 7.78 (dd, J = 7.5, 1.3 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.10 – 6.98 (m, 4H), 6.86 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 6.57 (s, 1H), 3.75 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ : 159.8, 153.4, 141.9, 140.0, 138.7, 130.6, 129.8, 123.3, 122.4, 119.3, 117.8, 115.6, 114.4, 112.6, 75.9, 55.3. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₁₆H₁₄N₃O₂: cald. – 280.1080 found – 280.1083.

4-(3-nitrophenyl)-3,4-dihydrochromeno[3,4-d][1,2,3]triazole (4j): White solid. **Rf**: 0.36 (hexane/EtOAc 8:2), 38.8 mg, 0.13 mmol, 66% yield. **Melting point:** 188-190 °C. ¹**H NMR** (400 MHz, CDCl₃) δ : 12.38 (s, 1H), 8.38 (t, J = 2.0 Hz, 1H), 8.21 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 7.84 (dt, J = 7.4, 0.6 Hz, 1H), 7.79 (dd, J = 8.0, 1.7 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.37 – 7.28 (m, 1H), 7.12 (d, J = 8.0 Hz, 2H), 6.69 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 152.9, 148.5, 141.2, 140.6, 133.0, 131.0, 129.7, 123.7, 123.4, 122.9, 122.1, 117.8, 115.4, 74.7. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₁₅H₁₁N₄O₃: cald. – 295.08256 found - 295.08257.

4-(*o***-tolyl)-3,4-dihydrochromeno[3,4-***d***][1,2,3]triazole (4k): White solid. Rf: 0.30 (hexane/EtOAc 8:2), 32.0 mg, 0.12 mmol, 61% yield. Melting point:** 155-157 °C. ¹H NMR (400 MHz, CDCl₃) δ : 12.68 (s, 1H), 7.80 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.27 – 7.22 (m, 4H), 7.21 – 7.11 (m, 1H), 7.06 (td, *J* = 7.5, 1.1 Hz, 1H), 7.01 (dd, *J* = 8.2, 1.0 Hz, 1H), 6.75 (s, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 153.8, 141.9, 139.3, 136.5, 136.3, 131.0, 130.5, 129.0, 127.7, 126.2, 123.3, 122.3, 117.6, 115.6, 74.2, 19.4. HRMS (ESI-TOF) m/z [M+H]⁺ for C₁₆H₁₄N₃O: cald. – 264.1131 found - 264,1129.

6-ethoxy-4-phenyl-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4l):** White solid. **Rf**: 0.46 (hexane/EtOAc 8:2), 34.0 mg, 0.12 mmol, 58% yield. **Melting point:** 129-131 °C. ¹**H NMR** (400 MHz, CDCl₃) δ : 11.96 (s, 1H); 7.49 – 7.44 (m, 2H); 7.39 – 7.28 (m, 4H); 7.01 – 6.96 (m, 1H); 6.92 (dd, *J* = 8.2, 1.5 Hz, 1H); 6.72 (s, 1H); 4.18 – 4.10 (m, 2H); 1.44 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 148.6; 143.0; 142.4; 138.7; 128.7; 126.7; 122.4; 116.9; 115.5; 115.1; 75.7; 65.0; 15.0. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₁₇H₁₆N₃O₂: cald. – 294.1237 found - 294.1235.

8-chloro-4-phenyl-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4m)⁵: White solid, 62% yield. ¹H NMR (400 MHz, DMSO) δ: 15.28 (s, 1H); 7.64 (d,** *J* **= 2.6 Hz, 1H); 7.40 – 7.31 (m, 5H); 7.26 (dd,** *J* **= 8.7, 2.6 Hz, 1H); 7.04 (d,** *J* **= 8.7 Hz, 1H); 6.76 (s, 1H). ¹³C NMR (100 MHz, DMSO) δ: 151.1; 138.6; 129.4; 128.6; 128.5; 126.9; 125.9; 121.8; 119.1; 75.7.**

8-bromo-4-phenyl-3,4-dihydrochromeno[3,4-*d*][1,2,3]triazole (4n): White solid. Rf: 0.43 (hexane/EtOAc 8:2, 36.0 mg, 0.11 mmol, 55% yield. Melting point: 162-164 °C. ¹H NMR (400 MHz, DMSO) δ: 15.35 (s, 1H); 7.79 (d, J = 2.5 Hz, 1H); 7.45 – 7.41 (m, 1H); 7.41 – 7.33 (m, 5H); 7.02 (d, J = 8.7 Hz, 1H); 6.82 (s, 1H). ¹³C NMR (100 MHz, DMSO) δ: 151.6; 138.7; 132.5; 128.8; 128.7; 127.1; 124.7; 119.8; 113.6; 75.7. HRMS (ESI-TOF) m/z [M+H]⁺ for C₁₅H₁₁BrN₃O: cald. – 328.0080 found – 328.0079.

8-(tert-butyl)-4-phenyl-3,4-dihydrochromeno[3,4-*d***][1,2,3]triazole (4o): White solid. Rf**: 0.42 (hexane/EtOAc 8:2), 39.0 mg, 0.13 mmol, 64% yield. **Melting point:** 139-141 °C. ¹**H NMR** (400 MHz, CDCl₃) δ : 13.33 (s, 1H); 7.89 (d, *J* = 2.4 Hz, 1H); 7.51 – 7.46 (m, 2H); 7.39 – 7.32 (m, 4H); 7.02 (d, *J* = 8.6 Hz, 1H); 6.59 (s, 1H); 1.35 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 151.4; 145.5; 142.4; 139.3; 138.8; 128.9; 128.8; 127.8; 127.2; 120.3; 117.3; 115.0; 76.1; 34.6; 31.6. **HRMS (ESI-TOF)** m/z [M+H]⁺ for C₁₉H₂₀N₃O: cald. – 306.1600 found – 306.1599. General procedure for the three step "one-pot" microwave assisted synthesis of 4a, 4d and 4i

Step 1: A 5.0 mL resealable microwave reaction vessel was charged with the corresponding benzaldehyde derivatives (0.20 mmol), nitromethane (11 μ L, 1.0 equiv.), benzoic acid (7.2 mg, 30 mol%), pyrrolidine (5.5 μ L, 30 mol%) and PEG400 (1.0 mL). The mixture was irradiated at 300 W with a constant temperature of 80 °C for 10 - 25 minutes.

Step 2: Next, substituted salicylaldehydes (0.22 mmol) were added, and the mixture was irradiated at 300 W with a constant temperature of 80 °C for 20 minutes.

Step 3: Next, benzoic acid (4.8 mg, 20 mol%) and sodium azide (26.0 mg, 0.4 mmol) were added in sequence, and the mixture was irradiated (300 W) at 110 °C for 10 minutes. The mixture was extracted with H₂O (15 mL) and EtOAc (3 x 10 mL) and the organic phase was dried with Na₂SO₄ and concentrated under vacuum. The crude products were purified via flash column chromatography utilizing a gradient of hexane/EtOAc mixture as eluent. The purified products were obtained with a hexane/EtOAc (8:2) proportion in all cases.

Green Chemistry Metrics

Three metrics were selected and calculated according to the reported equations:^{6,7}

$$E-factor = \frac{mass of total waste}{mass of product}$$
(1)
$$Atom_{economy} = \frac{molecular mass of desired product}{molecular masses of reactants} \times 100\%$$
(2)

E-Factor: parameters used for the calculations of E-factor were showed in table 1 and 2

Table 1. Parameters for the calculation of E-factor for the multistep procedure with conventional heating.

Multistep procedure with conventional heating – TOTAL = 700.4758										
Solvents and	Synthesis	Synthesis	Synthesis	Extraction			Purification			
Reactants	of 1a	of 3a	of 4a	1 a	3 a	4 a	1a	3 a	4a	
1 a	-	29.8 mg	-	-	-	-	-	-	-	
3 a	-	-	50,6 mg	-	-	-	-	-	-	
PEG400	1.13 g	1.13 g	1.13 g	-	-	-	-	-	-	
benzaldehyde	21.2 mg	-	-	-	-	-	-	-	-	
nitromethane	12.2 mg	-	-	-	-	-	-	-	-	
benzoic acid	7.2 mg	-	4.8 mg	-	-	-	-	-	-	
pyrrolidine	4.7 mg	-	-	-	-	-	-	-	-	
salicylaldehyde	-	29.3 mg	-	-	-	-	-	-	-	
sodium azide	-	-	26.0 mg	-	-	-	-	-	-	
Hexane (g)	-	-	-	-	-	-	-	163.8	163.8	
ethyl acetate	_	_	_		36	36	_	90.8	90.8	
(g)	_	_	_		50	50	_	70.0	70.0	
deionized H ₂ O	_	_	_	5.0	5.0	5.0	-	-	-	
(g)							47			
EtOH (g)	-	-	-	-	-	-	4./	-	-	
$Na_2SO_4(g)$	-	-	-	-	-	6.0	-	-	-	
silica flash (g)	-	-	-	-	-	-	-	45	45	
TOTAL (g)	1.1753	1.1891	1.2114	5	41	47	4.7	299.6	299.6	

E-factor	=	700.4758 - 0.0170	- 44202
purification)		0,0170	41203
E-factor (without extraction = and purification)	=	<u>3.3758 - 0.0170</u> 0.0170	— = 198

Three step "one pot" procedure with microwave irradiation – TOTAL = 347.8354									
Solvents and	Synthesis	Synthesis	Synthesis	Extraction		Purification			
Reactants	of 1a	of 3a	of 4a	1 a	3 a	4 a	1a	3 a	4a
1 a	-	-	-	-	-	-	-	-	-
3 a	-	-	-	-	-	-	-	-	-
PEG400	1.13 g	-	-	-	-	-	-	-	-
benzaldehyde	21.2 mg	-	-	-	-	-	-	-	-
nitromethane	12.2 mg	-	-	-	-	-	-	-	-
benzoic acid	7.2 mg	-	4.8 mg	-	-	-	-	-	-
pyrrolidine	4.7 mg	-	-	-	-	-	-	-	-
salicylaldehyde	-	29.3 mg	-	-	-	-	-	-	-
sodium azide	-	-	26.0 mg	-	-	-	-	-	-
Hexane (g)	-	-	-	-	-	-	-	-	163.8
ethyl acetate (g)	-	-	-	-	-	36	-	-	90.8
deionized H ₂ O	_	_	_			5.0	_		_
(g)	_	_	_			5.0	_		_
EtOH (g)	-	-	-	-	-	-	-	-	-
$Na_2SO_4(g)$	-	-	-	-	-	6.0	-	-	-
silica flash (g)	-	-	-	-	-	-	-	-	45
TOTAL (g)	1.1753	0.0293	0.0308	-	-	47	-	-	299.6

Table 2. Parameters for the calculation of E-factor for the three step "one pot" procedure with microwave irradiation.

E-factor	=	347.8354 - 0.0170	20450
purification)		0.0170	- 20433
E-factor (without extraction and purification)	= ·	1.2354 - 0.0170 0.0170	— = 72

Atom economy: multistep procedure with conventional heating and three step "one pot"

procedure with microwave irradiation

Atom economy = $\frac{249,28}{106.12 + 61.04 + 122.12 + 65.00}$ x 100% = 70%

Figure 2. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 4e.

Figure 3. ¹H NMR spectra (400 MHz, CDCl₃) of compound 4f.

Figure 4. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 4f.

Figure 5. ¹H NMR spectra (400 MHz, DMSO-d₆) of compound 4g.

Figure 6. ¹³C NMR spectra (100 MHz, DMSO-d₆) of compound 4g.

Figure 7. ¹H NMR spectra (400 MHz, CDCl₃) of compound 4h.

Figure 8. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 4h.

Figure 9. ¹H NMR spectra (400 MHz, CDCl₃) of compound 4i.

Figure 10. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 4i.

Figure 11. ¹H NMR spectra (400 MHz, CDCl₃) of compound 4j.

Figure 12. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 4j.

Figure 13. ¹H NMR spectra (400 MHz, CDCl₃) of compound 4k.

Figure 14. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 4k.

Figure 15. ¹H NMR spectra (400 MHz, CDCl₃) of compound 4l.

Figure 16. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 4l.

Figure 17. ¹H NMR spectra (400 MHz, DMSO-d₆) of compound 4n.

Figure 18. ¹³C NMR spectra (100 MHz, DMSO-d₆) of compound 4n.

Figure 19¹H NMR spectra (400 MHz, CDCl₃) of compound 40.

Figure 20. ¹³C NMR spectra (100 MHz, CDCl₃) of compound 40.

Figure 21. HRMS (ESI-TOF⁺) of compound 4e.

Figure 22. HRMS (ESI-TOF⁺) of compound 4f.

+MS, 0.80-0.98min #139-171

Figure 23. HRMS (ESI-TOF⁺) of compound 4g.

Figure 24. HRMS (ESI-TOF⁺) of compound 4h.

Figure 25. HRMS (ESI-TOF⁺) of compound 4i.

Figure 26. HRMS (ESI-TOF⁺) of compound 4j.

+MS, 0.77-0.98min #134-170

Figure 27. HRMS (ESI-TOF⁺) of compound 4k.

Figure 28. HRMS (ESI-TOF⁺) of compound 4l.

Figure 29. HRMS (ESI-TOF⁺) of compound 4n.

Figure 30. HRMS (ESI-TOF⁺) of compound 40.

^{1.} Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R.; *Vogel's "Pratical organic chemistry"*, 5a Ed., New York: Longman scientific & technical, **1989**, 1035-1036.

^{2.} Chen, H.; Han, X.; Qin, N.; Wei, L.; Yang, Y.; Rao, L.; Chi, B.; Feng, L.; Ren, Y.; Wan, J.; *Bioorg. Med. Chem.*, **2016**, *24*, 1225–1230.

^{3.} Rokade, B. V.; Prabhu, K. R.; Org. Biomol. Chem., 2013, 11, 6713-6716.

4. Quan, X-J.; Ren, Z-H.; Wang, Y-Y.; Guan, Z-H.; Org. Lett., 2014, 16, 5728-5731.

5. Habib, P. M.; Raju, B. R.; Kavala, V.; Kuo, C.- W.; Yao, C. F.; Tetrahedron, 2009, 65, 5799-5804.

6. (a) Trost, B. M.; *Sience*, **1991**, *254*, 1471-1477; (b) Trost, B. M.; *Angew. Chem. Int. Ed.*, **1995**, *34*, 259-281.

7. (a) Sheldon, R. A.; Chem. Ind. (London), 1992, 903-906; (b) Sheldon, R. A.; Green. Chem., 2007, 9, 1273-1283.