Efficient non-metal based conducting polymers for photocatalytic

hydrogen production: comparative study between polyaniline,

polypyrrole and PEDOT

Haitham M. El-Bery^{1*}, Mahmoud R. Salah¹, Seddique M. Ahmed,² Soliman A.

Soliman²

¹Advanced Functional Materials Laboratory, Chemistry Department, Faculty of Science,

Assiut University, Assiut 71515, Egypt.

²Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt.

*Corresponding Author Email: Haitham.El-Bery@aun.edu.eg

Fig.S1 Systematic illustration of stepwise preparation of PAn and PPy

Fig.S2 the simulated apparatus of photoelectrochemical measurements

Fig.S3 The XRD of polyaniline doped HCl and polypyrrole doped HCl.

Fig.S4 SEM images (a, b) of PAn powder (c, d) TiO₂@5PAn composites.

Fig.S5 Low magnification TEM images of (a)TiO₂, (b)TiO₂@2PEDOT, (c)TiO₂@2PPy,

and (d)TiO₂@5PAn

Fig.S6 The TiO₂@5PAn (a), TiO₂@2PEDOT (b), and TiO₂@2PPy(c) compared to bare TiO₂.

Fig. S7. EDX spectrum and elemental mapping of Ti, O, C, and S of TiO₂@2PEDOT

nanocomposites.

Fig. S8. EDX spectrum and elemental mapping of Ti, O, C, and N of TiO₂@2PPy

nanocomposites.

Fig. S9. EDX spectrum and elemental mapping of Ti, O, C, and N of TiO₂@5PAn

nanocomposites.

Fig.S10 The DTA curves TiO₂@2PEDOT, (c) TiO₂@2PPy, and (d) TiO₂@5PAn

nanocomposites

Fig.S11 The DRS curves (a) series of TiO₂@PEDOT (b) series of TiO₂@PPy, and (c)

series of TiO₂@PAn composites.

Fig. S12. The doping mechanism of PAn by protonic acids

Fig. S13. The electrochemical impedance spectroscopy (EIS) measured under light irradiation of TiO₂@PAn prepared by various counterions.

Fig.S14 Transient photocurrent response (I-t) curves of TiO_2 , TiO_2 @2PEDOT,

TiO₂@2PPy and TiO₂@5PAn photocatalysts.

Fig. S15 The Mott- Schottky plots of TiO₂, PAn, PPy, and PEDOT.

Photocatalyst	Serial resistance	Interfacial resistance
	$\mathbf{R}_{\mathrm{s}}\left(\Omega ight)$	$R_{ct}(\Omega)$
TiO ₂	34.66	9.14 x10 ⁴
TiO ₂ @PEDOT	28.60	1.35 x10 ⁴
TiO ₂ @PPy	35.53	3.60 x10 ⁴
TiO ₂ @PAn	22.39	1.03 x10 ²

Table S1: Charge transfer properties at TiO_2 @CPs /electrolyte interface from EISdata